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INTRODUCTION 
 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder characterized by resting 

tremor, muscle rigidity, bradykinesia and postural 

instability [1, 2]. PD is one of the most common  

alpha-synucleinopathy disorders caused by the abnormal 

accumulation of alpha-synuclein polymer in pathological 

inclusion bodies [3]. Lewy body dementia (LBD) [4], 

idiopathic rapid eye movement sleep behavior disorder 
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ABSTRACT 
 

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson’s disease (PD). 
Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-
wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by 
integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma 
and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal 
gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and 
prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait 
analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale 
study, we identified 16 genes whose genetically regulated protein abundance levels were associated with 
Parkinson’s disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and 
FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 
genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-
wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic 
architecture of PD. 
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(iRBD) [5], and multiple system atrophy are also alpha-

synucleinopathy disorders in which some clinical features 

overlap [6]. 

 
Genome-wide association analysis (GWAS)  

is the application of millions of single nucleotide 

polymorphisms (SNPs) across the genome as molecular 

genetic markers for conducting comparative or 

correlation analyses at the genome-wide level. GWAS 

involves comparing genetic variations to identify genes 

that influence complex traits [7, 8]. Nevertheless, these 

investigations are constrained to delineating the PD  

risk within a genomic region that includes multiple 

candidate genes. The specific genes responsible for the 

pathology at each region and the mechanisms through 

which they contribute to the risk of PD remain elusive. 

The majority of risk variants identified in GWASs  

are situated within noncoding regions, implying that 

these variants may impact disease susceptibility through 

the modulation of gene expression [9–12]. Recently, 

proteome-wide/transcriptome-wide association study 

(PWAS/TWAS), emerging as a new method, has been 

designed to explore the association between gene 

expression and disease across different tissues [13–17]. 

PWAS/TWAS are powerful approaches that integrate 

the gene expression reference panel (protein quantitative 

trait loci [pQTL] or expression quantitative trait loci 

[eQTL] cohort) and genome-wide associations from 

large scale GWAS to identify genes with cis-regulated 

expression associated with complex diseases [18–20]. 

Multi-trait analysis of GWAS (MTAG) can jointly 

analyze multiple traits, thereby enhancing statistical 

power for the detection of genetic associations related to 

each trait [21–23]. 

 
Until recently, three TWAS studies in PD had been 

performed and identified a series of PD risk genes, 

while there are still some limitations that should be 

noted [24–27] (Supplementary Table 1). Firstly, given 

the pivotal involvement of proteins in the majority  

of biological processes and the non-linear correlation 

between messenger ribonucleic acid (mRNA) and 

protein levels (with an approximate overlap of 35% 

between eQTL and pQTL) [28], it is crucial to explore 

whether the reported risk variants have biological 

impact on PD through the modulation of protein 

abundance, in which was not investigated in the 

previous studies. Secondly, the pathological feature of 

PD is alpha-synucleinopathy, which impacts all levels 

of the brain–gut axis, including the central nervous 

system (CNS), autonomic nervous system, and enteric 

nervous systems. There exists a hypothesis positing the 

spread of the pathological process from the gastro-

intestinal tract to the brain [29, 30], while the existing 

studies did not systematically evaluate tissues besides 

the CNS, especially in the digestive system. Thirdly, the 

current investigations predominantly depended on prior 

PD GWAS datasets characterized by insufficient case 

and control cohorts for association analyses. 

 

In this study, we use the largest PD GWAS data 

including 33,674 cases and 449,056 controls. We 

performed PWAS and SMR [31] by integrating 

genome-wide associations PD GWAS with human 

brain and plasma proteomes and pQTL data from 

human brain, plasma, and CSF. We also performed 

TWAS and fine-mapping (FOCUS), leveraging joint-

tissue imputation (JTI) prediction models of 22 tissues 

to identify and prioritize putatively causal genes.  

JIT greatly improves statistical power, replication and 

causal mapping rates compared with existing models 

[32]. FOCUS has higher sensitivity in identifying 

causal genes relative to colocalization (COLOC)  

[33, 34]. We also conducted PWAS, SMR, TWAS  

and FOCUS using the results of MTAG to identify 

additional PD risk genes to boost statistical power. 

 

RESULTS 
 

Multi-trait analysis of GWAS for PD, LBD, and 

RBD resulted in gains equivalent to increasing the 

original sample, which enhancing the statistical 

power 

 

Figure 1 summarizes all the analysis methods and 

procedures applied in this study. We performed multi-

trait analysis for PD, LBD, and RBD GWAS using 

MTAG (Supplementary Table 2 and Supplementary 

Figure 1). “Lead SNPs” refers to nearly independent 

genome-wide significant SNPs with a p-value less than 

5e-8 and low linkage disequilibrium (LD) between SNP 

loci (r2 < 0.1). Lead SNPs are considered to have the 

strongest association with the studied trait or disease. 

From single to multi-trait analysis, the number of lead 

SNPs increased from 32 to 33 for PD, from 5 to 17 for 

LBD, and from 10 to 10 for RBD. The gain in mean 

power of each trait MTAG relative to the GWAS results 

was assessed by the increase in the mean χ2 statistic. 

We estimated the required GWAS sample size to 

achieve an equivalent increase in the χ2 statistic. This 

study found that MTAG analysis for PD, LBD, and 

RBD resulted in gains equivalent to increasing the 

original GWAS sample to 504,827 for PD, 89,741 for 

LBD, and 46,816 for RBD, respectively. 

 

PWAS identified 15 genes associated with PD risk by 

regulating protein abundance levels in both the 

brain and plasma 

 

We firstly performed PWAS by the ROSMAP (Table 1 

and Figure 2A, and Supplementary Table 3) and Banner 

dataset (Table 1 and Figure 2B, and Supplementary 
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Table 4) and identified 11 proteome-wide significant 

genes CD38, EFNA3, GAK, GPNMB, HIP1R, HLA-

DRB5, RAB29, STX4, TMEM175, TTC19 and VKORC1 
for PD (adjusted for Bonferroni correction). While using 

the plasma protein weights, we found four proteome-

wide significant genes FCGR2A, BST1, CTSB, and 

PRSS8 are associated with PD (Table 1 and Figure 2C 

and Supplementary Table 5). We did not identify any 

proteome-wide significant gene for PD in brain, CSF 

and plasma dataset from a recent proteomics study 

(Supplementary Tables 6, 7). In summary, by integrating 

the proteome datasets from different sources and the 

large-scale PD GWAS, we identified 15 relevant genes 

associated with PD risk by regulating protein abundance 

levels in both the brain and plasma. We identified 14 

genes (BST1, CD38, CTSB, EFNA3, GAK, GPNMB, 

HLA-DRB5, HIP1R, PRSS8, RAB29, STX4, TMEM175, 

TTC19 and VKORC1) associated with the risk of PD 

using PD MTAG (Supplementary Table 8).  

 

SMR reveals putative causal genes associated with 

PD using brain, plasma and CSF pQTL 

 

In order to further assess whether the association 

between genetic variants and PD is mediated through 

cis-regulation of protein abundance, we conducted 

SMR using the same discovery dataset (ROSMAP/ 

Banner/plasma/CSF/brain). Thus, evidence suggests 

that the causal effects of five genes (CD38, GPNMB, 

CTSB, FCGR2A and FCGR2B) in PD are consistent 

through the SMR/HEIDI (heterogeneity in dependent 

instruments) using PD GWAS data (Table 1 and 

Supplementary Figure 2). We also used PD MTAG 

data for SMR analysis to identify putative causal  

genes (Supplementary Table 8). There is evidence 

indicating a causal relationship between 4 genes 

(CD38, GPNMB, CTSB, and FCGR2B) and PD by 

SMR/HEIDI using PD MTAG data. To summarize, we 

have identified a total of 16 candidate genes that show 

associations with PD using brain, plasma and CSF 

pQTL by PWAS and SMR analysis. 

 

TWAS and FOCUS identifies candidate genes 

associated with PD risk in gene expression levels 

using single and multi-trait analysis GWAS data 

 

In different evaluated tissues, the performance of the 

predictive model JTI reaches a minimum correlation of 

0.01 (indicating a correlation of at least 10% between 

predicted and measured expression) across a range of 

 

 
 

Figure 1. The workflow of the study. TWAS, transcriptome-wide association study; PWAS, proteome-wide association study; FOCUS, 

Fine-mapping of causal gene sets; SMR, summary-data-based mendelian randomization. 
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Table 1. PWAS and SMR identified PD-associated genes of PD GWAS. 

Gene Chr 

PWAS 
 

SMR 
TWAS 

significant 
ROSMAP Banner Plasma  ROSMAP BRAIN(Yang al) CSF(Yang al) Plasma 

Zscore P-valuea Zscore P-valueb Zscore P-valuec p_SMR p_HEIDI p_SMR p_HEIDI p_SMR p_HEIDI p_SMR p_HEIDI 

RAB29 1 6.04 1.57E-09 - - - - 
 

- - - - - - - - Suggestive 

EFNA3 1 -5.05 4.39E-07 - - - - 
 

- - - - - - - - - 

FCGR2A 1 - - - - 4.16 3.22E-05 
 

- - 8.60E-05 6.85E-01 - - - - - 

FCGR2B 1 - - - - - - 
 

- - - - 4.91E-05 5.13E-01 - - - 

BST1 4 - - - - 5.51 3.55E-08 
 

- - - - - - - - Suggestive 

CD38 4 -6.58 4.77E-11 -5.99 2.16E-09 - - 
 

9.90E-07 7.31E-01 - - 4.78E-08 7.93E-01 5.85E-01 5.47E-01 Suggestive 

GAK 4 - - -4.49 6.99E-06 - - 
 

- - - - - - - - Suggestive 

TMEM175 4 -9.36 8.14E-21 - - - - 
 

- - - - - - - - Suggestive 

HLA-DRB5 6 -4.19 2.78E-05 - - - - 
 

- - - - - - - - - 

GPNMB 7 5.06 4.17E-07 5.69 1.24E-08 - - 
 

- - 2.14E-06 4.68E-01 - - - - Suggestive 

CTSB 8 - - - - -4.64 3.46E-06 
 

- - - - 8.02E-05 2.00E-02 - - Suggestive 

HIP1R 12 -4.44 9.21E-06 - - - - 
 

- - - - - - - - Suggestive 

VKORC1 16 - - 5.08 3.87E-07 - - 
 

- - - - - - - - Suggestive 

PRSS8 16 - - - - -4.45 8.47E-06 
 

- - - - - - - - - 

STX4 16 4.24 2.25E-05 - - - - 
 

- - - - - - - - Suggestive 

TTC19 17 -5.11 3.29E-07 - - - - 
 

- - - - - - - - Suggestive 

aProteome-wide significance level in the ROSMAP dataset was set at p<3.39E-5 (adjusted by Bonferroni multiple testing 
correction method). 
bProteome-wide significance level in the Banner dataset was set at p<4.36E-5 (adjusted by Bonferroni multiple testing 
correction method). 
cProteome-wide significance level in the Plasma dataset was set at p<3.78E-5 (adjusted by Bonferroni multiple testing 
correction method). 
The genes in bold are the ones that are significant in both the proteome-wide and transcriptome-wide levels. 

 

quantities, varying from 6,542 to 12,827 (Supplementary 

Table 9). Utilizing these TWAS models, we identified 

significant associations between the expression of 95 

genes and PD in those 22 tissues. The complete TWAS 

results for PD in the 22 tissues are included in 

Supplementary Table 10. Among these 95 genes, 67 are 

previously unreported genes associated with PD risk 

identified through TWAS studies (Supplementary Table 

11), while there are 28 genes that have been reported in 

previous PD TWAS studies (Supplementary Table 12). 

In addition, to illustrate whether genes in the digestive 

system may influence PD risk, we leveraged seven 

tissues-specific gene expression prediction models 

related to digestive system and identified 59 genes 

associated with the risk of PD. These 11 genes 

AC104113.1, AC116348.3, CDKL2, CR936218.2, 

EFNA3, ERCC8, GBA, KANSL1, LZTS3, PHKG2, and 

TMEM163 have only been shown to be associated with 

PD in the digestive system (Supplementary Figure 3A). 

In another separate TWAS analysis specifically focused 

on whole blood tissue, 26 genes significantly associated 

with PD were identified. By comparing the results of 

the three systems, it was found that they had 19 genes  
in common (Supplementary Figure 3A). Causal genes 

are based on a gene set with 90% credible by FOCUS, 

we found that 27 out of 95 were likely causal genes for 

PD risk (Supplementary Table 13). The 14 of the 27 

putative causal genes were not previously identified in 

prior TWAS studies (Supplementary Table 14). For the 

genomic locus 3:181511166-3:183769683, FAM189B 

had a posterior probability of 0.948 in the brain 

cerebellum, and EFNA3 had a posterior probability  

of 0.938 in the stomach. For the genomic locus 

3:181511166-3:183769683, MCCC1-AS1 had a posterior 

probability greater than 0.9 in the brain frontal cortex 

BA9 and three other brain tissues. And for the  

genomic locus 4:15147446-4:15926136, FAM200B had  

a posterior probability greater than 0.9 in the cerebellar 

brain hemisphere. For the genomic loc 4:77130707-

4:79093979, CDKL2 had a posterior probability greater 

than 0.9 in the stomach. For the genomic locus 

5:58524622-5:60935451, NDUFAF2 had a posterior 

probability greater than 0.9 in the brain cortex, hippo-

campus, nucleus accumbent basal ganglia, substantial 

nigra. For the genomic loc 7:22508611-7:23469560, 

KLHL7-DT had a posterior probability of 0.919 in the 

brain cerebellum. For the genomic loc 16:29036613-

16:31382470, FBXL19 had a posterior probability of 

0.966 in the brain substantia nigra. For the genomic  
loc 17:15020965-17:16411522, TTC19 had the posterior 

probability of 0.924 in the whole blood. For the 

genomic loc 17:43056905-17:45876022, MAPT-IT1, 



www.aging-us.com 1559 AGING 

 
 

Figure 2. Manhattan plots for the PD PWASs in the human brain and plasma proteomes. Manhattan plot for the PWAS 
integrating the PD GWAS with the ROSMAP proteomes (n= 376) (A), Banner proteomes (n= 152) (B), plasma proteomes (n= 152) (C). Each dot 
on the x-axis represents a gene, and the association strength on the y-axis represents the -log10(p) of PWAS. Proteome-wide significance level 
was set at p < 4.36×10-5 (adjusted by Bonferroni multiple testing correction method) for the Banner dataset. Proteome-wide significance level 
in the ROSMAP dataset was set at p < 3.39×10-5 (adjusted by Bonferroni multiple testing correction method). Proteome-wide significance 
level in the ROSMAP dataset was set at p < 3.71×10-5 (adjusted by Bonferroni multiple testing correction method). Genes that were 
proteome-wide significant (CD38, GPNMB) in both brain proteomes are shown in red. Chr, chromosome. 
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KANSL1-AS1, CR936218.1, CR936218.2 had the 

posterior probability greater than 0.9 in the brain tissues 

or digestive system. 

 

The multi-trait approach could overall identify loci 

associated with PD, and our study revealed a significant 

association between the expression levels of 104 genes 

and PD using the PD MTAG database in those 22 

tissues (Supplementary Tables 15–17). Using the PD 

MTAG results, we found that 38 of the 104 were likely 

to be causal genes for PD risk (Supplementary Table 

18). The 22 of the 38 putative causal genes were not 

previously reported in earlier TWAS (Supplementary 

Table 19). Combining the results of PD and PD MTAG, 

we identified 26 new putative causal genes that were 

not previously reported in previous TWAS studies 

(Table 2 and Supplementary Figure 4). 

 

Comparison of PWAS, SMR, TWAS and FOCUS 

highlighted high confidence risk genes for PD 

 

In summary, we identified 16 genes whose genetically 

regulated protein abundance levels were associated  

with PD risk by PWAS or SMR. Next, we explored  

the overlap of risk genes at the protein and RNA 

levels. Comparing PWAS, SMR, TWAS and FOCUS 

highlighted high confidence risk genes associated with 

PD. Through a succession of comparisons between the 

PWAS, SMR, TWAS and FOCUS results, 5 (CD38, 
GPNMB, RAB29, TMEM175, TTC19) of the 16 

proteome-wide significant genes were supported by 

TWAS and FOCUS, suggesting that these genes hold 

the potential to become therapeutic targets for PD. 

 

Gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

 

Seventy-nine genes related to PD risk identified by 

TWAS in the CNS were mainly enriched in the 

lysosomal pathway and SNARE interactions in the 

vesicular transport pathway by KEGG enrichment 

analysis (Supplementary Figure 5 and Supplementary 

Table 20). GO analysis explored the associated 

biological processes, molecular functions, and cellular 

components of the gene set. Detailed results of 22 

tissues (Supplementary Figure 6 and Supplementary 

Table 21), digestive system (Supplementary Figure  

7 and Supplementary Table 22), and whole blood 

(Supplementary Figure 8 and Supplementary Table 23) 

enrichment analysis are presented in the additional 

material. The associated genes in the CNS and their 

interactors mainly regulate neuron projection develop-

ment, cell projection organization, and the synaptic 
vesicle cycle. However, the associated genes in the 

digestive system and their interactors mainly regulate 

receptor recycling and exocytosis. The associated genes 

in whole blood and their interactors mainly regulate 

the thrombin-activated receptor signaling pathway and 

receptor recycling (Figure 3). 

 

DISCUSSION 
 

In this study, we performed PWAS and SMR analysis 

by integrating PD GWAS with proteome and pQTL 

data from human brain, plasma and CSF. We identified 

16 genes whose genetically regulated protein abundance 

levels are associated with PD risk. Our study provides 

novel genetic insights into the pathogenic mechanisms 

of PD at the protein abundance level. Through TWAS 

and FOCUS analysis, we further identified 95 genes 

with transcriptional expression levels significantly 

associated with PD, and identified 27 potential causal 

genes by FOCUS analysis. Combining the results of PD 

and PD MTAG, we identified 26 new potential causal 

genes that were not previously reported in TWAS 

studies (Table 2). 
 

Five genes including CD38, GPNMB, RAB29, 
TMEM175, and TTC19 demonstrated significant 

associations with PD on both protein and mRNA level, 

suggesting that these genes are promising therapeutic 

targets with their gene-regulated expression and protein 

abundance together significantly correlated with PD. 

One of the five shared genes, GPNMB is widely 

expressed in whole brain regions and is important for 

brain aging. In a recent study, GPNMB was identified 

confer risk for PD through interaction with α-synuclein. 

Plasma GPNMB levels were also increased in PD 

patients, and PD patients with higher plasma GPNMB 

levels were more severe [35]. In our FOCUS analysis, 

for genomic locus 7:22508611-7:23469560, GPNMB 

was the only gene with a posterior probability of 0.931 

in the 90%-credible gene set and further supported  

that GPNMB is a conformed risk gene for PD [36].  

In FOCUS analysis, RAB29 is indicated as a putative 

causal gene for PD in a total of 20 tissues, including  

the central nervous system and the digestive system. 

Multiple genetic studies have indicated that the small 

GTPase Rab29 is involved in the pathogenic 

mechanism of PD [37]. Through GO enrichment 

analysis of PD related genes in the CNS, it was 

discovered that RAB29 is enriched in multiple 

pathways, including neuron projection development, 

cell projection organization, neuron differentiation, and 

more. However, by gene enrichment analysis of 

Parkinson’s disease-related genes in the digestive 

system, RAB29 was mainly enriched in the receptor 

cycling pathway. By the FOCUS approach, MMRN1 is 

likely a causal gene for PD risk in 16 tissues including 
the central nervous system and digestive system. Our 

study provides genetic support that the pathological 

process of PD involves all levels of the brain-gut axis. 
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Table 2. Twenty-six identified gene has not been reported to be associated with PD in previous TWAS studies. 

REGION GENE Type TISSUE 

PD GWAS PDMTAG 

TWAS-P TWAS-Z 
FOCUS-

pip 
TWAS-P TWAS-Z 

FOCUS-

pip 

1q21.3 EFNA3b protein Stomach - - - 8.28E-08 4.85 0.938 

1q22 FAM189Bb protein Brain_Cerebellum - - - 1.69E-08 5.24 0.948 

 GBAab protein Spleen 1.29E-08 6.13 1 1.37E-10 6.95 1 

2q24.3 STK39ab protein Brain_Caudate_basal_ganglia 1.13E-07 -5.09 0.98 1.51E-07 -5.05 0.976 

  protein Brain_Nucleus_accumbens_basal_ganglia 1.98E-07 -4.82 0.928 3.27E-07 -4.77 0.911 

  protein Brain_Putamen_basal_ganglia 2.91E-07 -4.94 0.958 2.95E-07 -4.93 0.958 

3q27.1 LAMP3b protein Brain_Putamen_basal_ganglia - - - 8.94E-09 -5 0.914 

4p15.32 FAM200Bab protein Brain_Cerebellar_Hemisphere 2.06E-09 6.06 1 2.65E-08 5.64 0.998 

4p16.3 DGKQab protein Brain_Cerebellar_Hemisphere - - - 6.42E-24 -10.4 1 

  protein Brain_Amygdala 4.68E-08 -5.21 1 - - - 

  protein Brain_Hippocampus 4.68E-08 -5.21 0.997 - - - 

  protein Brain_Cerebellum - - - 5.60E-23 -10 1 

  protein Brain_Substantia_nigra 6.10E-12 -5.21 1 - - - 

  protein Brain_Spinal_cord_cervical_c-1 4.30E-12 -5.25 1 9.40E-09 -5.48 1 

  protein Colon_Sigmoid 9.37E-13 -7.26 1 2.37E-19 -8.59 1 

  protein Colon_Transverse 1.09E-11 -7.31 1 2.71E-17 -7.92 1 

  protein Liver 8.32E-13 -7.18 1 9.35E-19 -8.39 1 

  protein Pancreas 1.25E-12 -6.76 1 2.55E-15 -7.78 1 

  protein Pituitary 8.91E-13 -6.14 1 1.07E-11 -6.8 1 

  protein Small_Intestine_Terminal_Ileum - - - 1.12E-21 -8.97 1 

  protein Spleen 3.89E-12 -8.19 1 6.88E-21 -9.22 1 

  protein Whole_Blood 6.03E-10 -7.19 1 1.44E-14 -8.03 1 

4q21.1 CDKL2ab protein Stomach 3.92E-09 5.93 0.934 3.59E-09 6.05 0.957 

5q12.1 NDUFAF2ab protein Brain_Cortex 1.11E-08 5.5 0.996 4.41E-09 5.65 0.998 

  protein Brain_Hippocampus 1.30E-08 5.46 0.997 5.27E-09 5.6 0.999 

  protein Brain_Nucleus_accumbens_basal_ganglia 6.97E-09 5.6 0.999 2.75E-09 5.75 0.999 

  protein Brain_Putamen_basal_ganglia 4.95E-09 5.68 0.999 1.92E-09 5.83 1 

  protein Brain_Substantia_nigra 2.15E-08 5.34 0.994 8.93E-09 5.48 0.997 

  protein Pancreas - - - 1.90E-07 5.67 0.994 

6p21.32 HLA-DQB1b protein Brain_Cortex - - - 1.49E-06 -4.77 0.909 

  protein Stomach - - - 1.49E-06 -4.77 0.911 

11q25 IGSF9Bb protein Brain_Cerebellar_Hemisphere - - - 2.96E-07 -4.88 0.945 

  protein Brain_Hippocampus - - - 2.38E-07 -4.92 0.954 

  protein Small_Intestine_Terminal_Ileum - - - 4.18E-07 -4.82 0.927 

12q24.31 CCDC62ab protein Brain_Cerebellar_Hemisphere 2.10E-08 5.76 0.999 1.11E-09 5.64 0.999 

  protein Brain_Cerebellum - - - 4.98E-09 5.41 0.996 

16p11.2 FBXL19b protein Brain_Substantia_nigra - - - 1.17E-10 -6.18 0.966 

17p12 TTC19a protein Whole_Blood 3.13E-07 -4.88 0.924 - - - 

17p12 ADORA2Bb protein Brain_Substantia_nigra - - - 8.42E-08 5.04 0.969 

  protein Colon_Transverse - - - 1.31E-07 5 0.964 

17q21.31 ARHGAP27ab protein Brain_Caudate_basal_ganglia 1.10E-19 -9.26 1 1.75E-20 -9.53 0.985 

17q21.32 CRHR1a protein Colon_Sigmoid 1.50E-21 -9.38 0.971 - - - 

17q21.32 WNT3ab protein Colon_Transverse 8.50E-20 -8.51 0.962 1.48E-21 -8.8 0.985 

  protein Whole_Blood 5.73E-16 -6.89 1 - - - 

3q27.1 MCCC1-AS1ab lncRNA Brain_Cerebellar_Hemisphere 2.36E-07 -4.1 0.937 - - - 

  lncRNA Brain_Cortex 5.80E-08 -4.71 0.963 6.13E-07 -4.12 0.915 

  lncRNA Brain_Frontal_Cortex_BA9 8.33E-08 -4.57 0.995 - - - 

  lncRNA Brain_Nucleus_accumbens_basal_ganglia 8.67E-08 -4.56 0.947 - - - 

4q22.1 SNCA-AS1b lncRNA Brain_Cerebellar_Hemisphere - - - 3.13E-06 -5.32 0.944 

7p15.3 KLHL7-DTb lncRNA Brain_Cerebellum - - - 2.75E-07 -4.79 0.919 

17q21.31 MAPT-IT1b lncRNA Brain_Substantia_nigra - - - 1.93E-22 -9.63 0.963 

17q21.31 KANSL1-AS1b lncRNA Brain_Spinal_cord_cervical_c-1 - - - 5.00E-23 -9.68 0.981 
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  lncRNA Liver - - - 6.67E-21 -9.24 0.992 

17q21.31 CR936218.1a lncRNA Stomach 3.87E-20 9.03 0.996 - - - 

17q21.32 CR936218.2a lncRNA Liver 7.73E-21 8.21 1 - - - 

 MAPT-AS1a lncRNA Brain_Amygdala 4.51E-08 9.38 0.944 - - - 

aThe posterior probabilities of FOCUS >0.9 only in PD GWAS. 
bThe posterior probabilities of FOCUS >0.9 only in PD MTAG. 
abthe posterior probabilities of FOCUS >0.9 both in PD GWAS and PD MTAG. 

 

Another important PWAS and TWAS shared  

gene is TMEM175. TMEM175 is a widely expressed 

lysosomal membrane protein that serves as a proton-

activated, proton-selective channel, mediating lyso-

somal H+ efflux. TMEM175 deficiency is associated 

with impaired intracellular protein hydrolysis activity 

and the aggregation of α-synuclein [38, 39]. We  

also noticed enrichment of specific lysosome related 

pathways in the TWAS analysis in 79 identified genes 

based on CNS prediction models and 95 identified 

genes based on all tissues (Supplementary Figures 5, 

6), supported the hypothesis that the genes associated 

with PD identified in this study are a subset of genes 

with similar biological functions and interactions, of 

which the lysosomal pathway play a crucial role in the 

pathogenesis of PD [40, 41]. 

 

 
 

Figure 3. GO and KEGG pathway enrichment analyses. (A) GO and KEGG pathways are statistically significant of 95 genes associated 
with PD risk in TWAS. (B) GO and KEGG pathways are statistically significant of 79 genes associated with PD risk (TWAS) in fourteen tissues of 
central nervous systems. (C) GO pathways are statistically significant of 59 genes associated with PD risk (TWAS) in seven digestive system 
tissues. (D) GO pathways are statistically significant of 26 genes associated with PD risk (TWAS) in the whole blood. BP, biological processes; 
MF, molecular functions; CC, cellular components. 
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Interestingly, we found that the prioritization of causal 

genes tends to vary in different tissues. We observed 

tissue-specific association directions among 10 genes, 

including CRHR1, HSD3B7, LRRC37A, MAPT, MAPT-

IT1, PLEKHM1, PRSS53, SNCA, STX4, VKORC1, and 

ZSWIM7. For example, SNCA shows negative Z values 

in brain tissue, but positive Z values in the spleen. This 

may suggest that causal genes play different biological 

roles in the pathogenesis of PD across various tissues, 

warranting warrants further investigation. 

 

Currently, the brain–spleen-gut axis is a crucial 

communication network for maintaining the body’s 

balance [42, 43]. Specifically, the spleen can influence 

the functionality of the brain through immune 

regulation. Studies have indicated that, in Alzheimer’s 

Disease mouse models, spleen macrophages directly 

clear peripheral Aβ [44]. PD affects all aspects of the 

brain–spleen-gut axis, interestingly, while the most 

common PD risk gene GBA has not been identified  

in previous TWAS studies using the brain model,  

we found that the expression level of GBA in spleen 

showed significant correlation with PD. Spleen is also 

affected in Gaucher’s disease with accumulation of 

glucocerebroside due to loss of function mutations of 

GBA. These results may suggest that the mechanism of 

GBA deficiency leading to PD may occur in not only 

central nervous system but also peripheral organs such 

as spleen, and more experimental evidence needs to 

clarify this hypothesis. 

 

In the PD MTAG analysis, we identified more  

risk genes supporting the validity that MTAG  

boosts the statistical power to detect the novel disease 

associated genes for PD. Combined with the results  

of PD and PD MTAG, 26 novel PD associated  

genes have been identified (Table 2), including eight 

long noncoding RNA (lncRNA), MCCC1-AS1, SNCA-

AS1, KLHL7-DT, MAPT-IT1, KANSL1-AS1, MAPT-

AS1, CR936218.1, and CR936218.2 and 18 protein-

coding genes. Recently, an increasing number of 

studies have reported the involvement of lncRNA in 

the pathogenesis of PD. Circulating lncRNA levels 

may serve as biomarkers for PD [45]. LncRNAs  

play an important role in the pathogenesis of PD, 

affecting dopaminergic neuron survival, autophagy, 

mitochondrial function, and inflammatory responses  

in different ways [46]. In the other 18 encoding  

genes, some encoded proteins are associated with 

mitochondrial. TTC19 serves as a subunit of mito-

chondrial respiratory chain Complex III, and it  

is an essential component for the assembly and 

activation of complex III [47]. Patients with loss of 
function mutations in TTC19 develop progressive 

encephalopathy associated with a deficiency in 

complex III. In addition, NDUFAF2 was identified as 

a potential complex I assembly factor [48].  

The loss of function of NDUFAF2 could cause 

mitochondrial encephalopathy, and there are some 

cases of complex I-associated mutations resulting  

in Parkinsonism or substantia nigra pars compacta-

selective neurodegeneration regulation. More evidence 

from cellular and animal models are further needed to 

clarify the relationship between new identified genes 

and PD. 

 

Some potential limitations still need to be 

acknowledged when interpreting our findings. Firstly, 

only part of the PWAS and SMR genes were supported 

by TWAS and observed that the number of risk genes 

identified by PWAS and SMR are less than TWAS, 

that could partly be explained by the uncorrelated 

changes in mRNA and protein expression levels [28], 

and limited individual samples used for protein weights 

generation. Secondly, this study employed genetic and 

statistical analysis methods for the identification of 

risk genes. Further experimental work is required  

to better elucidate whether the identified genes play  

a causal role in the pathogenesis of PD. Further 

verification is required for genes that have shown 

inconsistent association directions in this study and  

in previous studies. Thirdly, due to the utilization  

of European linkage disequilibrium structures in the 

Fusion software run under default settings, the PWAS, 

SMR, TWAS and FOCUS analyses in this study are 

limited to individuals of European ancestry. We need 

to conduct more studies with different ancestries to 

verify our results. Finally, we listed the P-values of 

significant genes obtained by TWAS method using PD 

MTAG or PD GWAS data sets (Supplementary Table 

24). We found that risk genes identified by TWAS 

tended to have smaller p-values using PDMTAG  

data, but there were few contrary results. Despite the 

limited size of the MTAG data, we have endeavored  

to highlight the unique contributions of our study and 

the potential for PWAS to complement and enrich the 

findings of TWAS. We sincerely hope that our study, 

despite its apparent limitations, will be seen as a 

valuable addition to the ongoing efforts to understand 

Parkinson’s disease. 

 

In summary, we identified 16 genes whose genetically 

regulated protein abundance levels in the human brain, 

CSF or plasma are associated with PD risk. We under-

took a large-scale analysis of PD and correlated traits, 

through TWAS and FOCUS studies, we discovered 26 

causal genes related to PD that had not been reported 

in previous TWAS studies. This study reveals the 

pathogenesis of PD from genetics, transcriptome, 
proteomics and other levels, and lays the foundation 

for further research on related molecular mechanisms 

and intervention targets. 
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MATERIALS AND METHODS 
 

Datasets used in this study 

 

GWAS dataset 

This study was analyzed and investigated using  

three GWAS data, which included information on  

the rsID, base pair position, and P-value of SNPs,  

and all case-control individuals were from European 

populations. 

 

The PD GWAS dataset used in this study was  

sourced from the International Parkinson’s Disease 

Genomics Consortium, which conducted a large-scale 

meta-analysis by combining 14 GWAS datasets, 

including 33,674 PD cases and 449,056 controls [10].  

PD GWAS data was obtained from public websites 

(https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/). The LBD 

GWAS dataset was from 2,591 individuals diagnosed 

with LBD and 4,027 healthy controls with participants 

recruited from 44 institutions and diagnosed with 

Lewy body dementia according to established consen-

sus criteria (https://www.ebi.ac.uk/gwas/publications/ 

33589841) [49]. The GWAS of iRBD data comprised 

1,061 cases and 8,386 controls [50]. This iRBD  

cohort includes a large number of French, French-

Canadian, Italian, and British origin, as well as other 

smaller cohorts from different European populations 

(https://www.tinyurl.com/iRBDsumStats). 

 

pQTL data 

We used the previous studies generated human brain 

proteomes in this study (Supplementary Table 25). 

Briefly, a study performed a proteome analysis using 

brain tissues from the dorsolateral prefrontal cortex 

(dlPFC) of 376 human subjects from Religious Order 

Study and Rush Memory and Aging Project (ROSMAP 

dataset) [51]. 1475 proteins were used for PWAS 

(https://doi.org/10.7303/syn23627957). In addition, this 

study further validated the result by using the brain 

proteome from the Banner dataset [52]. After quality 

control, brain proteomes of 152 participants were 

available for proteome analysis. Following the analysis, 

1139 proteins showed significant associations with 

genetic variations (https://doi.org/10.7303/syn23627957) 

[53]. Another study analyzed 4,657 plasma proteins  

data from 7,213 European American participants in  

the ARIC study. In our research, we used the 

consequences of 2,004 proteins of European American 

(EA) ancestry for PWAS. A recent study measured  

the abundance of 1,305 proteins in CSF (n=971), 

plasma (n=636), and brain (n=458) samples [54]. We 

conducted rigorous quality control on the proteomic 

data. After QC, 8 CSF proteins and 16 plasma proteins 

showed significant cis associations with genetic 

variation (weights). 

GTEx eQTL data 

The most complete eQTL database to date is GTEx, 

which performs simultaneous transcriptome sequencing 

and genotyping of multiple tissues from normal humans 

with the aim of establishing associations between 

genotype and gene expression levels. GTEx version  

8 (V8) covers 17,382 samples sequenced from 54 

human tissues from 948 donors. GTEx uses both the 

gene expression data and the genotype data for eQTL 

analysis to determine the relationship between each 

gene and its expression level, and stores the results on 

its website (https://www.gtexportal.org/home/). Zhou et 

al. used joint-tissue imputation (JTI) method to integrate 

GTEx eQTL data [32]. Previous training of predictive 

expression models (PrediXcan, UTMOST), under-

utilized the extensive biological similarity between 

tissues of GTEx data. JTI expression prediction model 

is a model that uses data from multiple tissue  

samples to predict the expression of a single tissue 

sample. JTI combines the information from multiple 

similar tissues that can improve the accuracy and 

reliability of TWAS analysis, and thereby better 

revealing the association between genes and pheno-

types and providing new ideas for the prevention and 

treatment of related diseases. We downloaded the JTI 

gene expression prediction model data, which includes 

eQTL summary statistics and SNP-SNP covariance 

matrix at (https://zenodo.org/record/3842289). 

 
Methods and software 

 

Multi-trait analysis of GWAS (MTAG) 

MTAG conducts a joint analysis of multiple traits by 

integrating the genetic correlation structure of several 

similar traits into a single ‘meta-analysis,’ thereby 

improving the efficiency of discovering associated 

genes. The MTAG method allows for the pooling of 

data from multiple GWAS studies without increasing 

additional computational costs, leading to an increased 

sample size. This, in turn, enhances the ability to detect 

genetic variations and reduces the risk of false positives 

or negatives arising from genetic correlations [22]. We 

incorporated 2 GWAS (LBD, iRBD) of traits correlated 

with PD in MTAG to identify additional SNPs asso-

ciated with PD risk (https://github.com/ JonJala/mtag). 

 
Proteome-wide association studies (PWAS) 

We used the Fusion package to perform PWAS 

(http://nilanjanchatterjeelab.org/pwas) [55]. Briefly,  

we obtained GWAS data and protein expression 

prediction models for human brain (ROSMAP/Banner), 

plasma and CSF [53]. Utilizing the ROSMAP/Banner/ 

plasma/CSF protein abundance-weighted prediction 

model, we predicted the protein expression levels of 

each gene in different tissues. Finally, we performed 

association analysis using the FUSION software on 

https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/
https://www.ebi.ac.uk/gwas/publications/%2033589841
https://www.ebi.ac.uk/gwas/publications/%2033589841
https://www.tinyurl.com/iRBDsumStats
https://doi.org/10.7303/syn23627957
https://doi.org/10.7303/syn23627957
https://www.gtexportal.org/home/
https://zenodo.org/record/3842289
https://github.com/%20JonJala/mtag
http://nilanjanchatterjeelab.org/pwas
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protein abundance and disease phenotype data to 

determine the associations between predicted protein 

abundance and PD. We corrected the results of PWAS 

using the Bonferroni method (0.05/the number of genes 

included in PWAS). 

 
Summary data-based mendelian randomization  
(SMR) 
This study further employed the Summary data-based 

Mendelian Randomization method to validate and 

complement the results obtained from PWAS. The 

analysis was conducted using the SMR analysis 

program available on the SMR website (downloaded 

from https://yanglab.westlake.edu.cn/software/smr) [31]. 

We utilized the SMR method to perform linear 

regression on large-scale GWAS and pQTL data, 

conducting causal relationship validation in a large 

sample size, which contributes to increased statis- 

tical power. We employed the HEIDI method, a  

tool for testing heterogeneity in result association 

statistics. We used an unadjusted P ≤ 0.01 to indicate 

that the presence of heterogeneity affected the SMR 

results. 

 
Gene-based association analysis using S-PrediXcan 

 
In this study, TWAS was performed using S-PrediXcan 

software [56, 57] (https://github.com/hakyimlab/ 

MetaXcan). Firstly, GWAS data and JTI gene expres-

sion prediction model were obtained. Secondly, the 

effect sizes of SNPs in GWAS were converted to the 

effect sizes of gene expression. Finally, the predicted 

gene expression was analyzed in correlation with the 

phenotypes, and the correlation results were obtained 

between each gene and the phenotypes. 

 
The JTI expression prediction model is a model that 

utilizes data from multiple tissue samples to predict 

the expression of a single tissue sample. JTI combines 

information from multiple similar tissues can improve 

the accuracy and reliability of TWAS analysis, thereby 

better revealing the association between genes and 

phenotypes and providing new ideas for the prevention 

and treatment of related diseases. We used 22 tissue-

specific expression models (PredictDB; http://predictdb. 

org) to represent the nervous system (amygdala, 

anterior cingulate cortex BA24, caudate basal ganglia, 

cerebellar hemisphere, cerebellum, cortex, frontal cortex 

BA9, hippocampus, hypothalamus, nucleus accumbens 

basal ganglia, putamen basal ganglia, spinal cord 

cervical c-1, substantia nigra, pituitary), digestive 

system (sigmoid, transverse, liver, pancreas, small 

intestine terminal ileum, spleen, stomach) and the 
whole blood. We corrected the results of TWAS using 

the Bonferroni method (0.05/the number of genes 

included in TWAS). 

Fine-mapping of TWAS associations 
 

Fine-mapping Of Causal Gene Sets, FOCUS, is based 

on two assumptions [33, 34]: 
 

1. The credible set assumption: variation in gene 

expression is usually due to a set of jointly acting 

genetic variants that are concentrated within some 

specific region (i.e., the credible set). 
 

2. Causal hypothesis: only a small fraction of the 

genetic variants within the plausible set are actually 

responsible for the change in expression (i.e., causal 

variants), while the rest of the genetic variants may 

simply be closely associated with the causal variants. 
 

Due to the presence of linkage disequilibrium among 

SNPs used to construct expression weights, transcriptome 

imputation methods (such as S-PrediXcan) may be prone 

to false-positive gene-trait associations. To address  

co-regulation in TWAS, FOCUS was used to identify  

those genetic variants that may have a functional impact 

on gene expression by fine-tuning these regions 

(https://github.com/bogdanlab/focus/). 
 

By integrating GWAS data, gene expression prediction 

weight data (JTI) created based on eQTL data from 

multiple tissues, and linkage disequilibrium data for all 

SNPs in regions susceptible to genetic mutations, we 

predicted causal genes contained in 90% confidence 

intervals, computed the Posterior Inclusion Probability 

(PIP) for each gene in the region of a genetic mutation 

associated with disease. The PIP is a probability value 

used to measure the degree of association between each 

SNP and the phenotype. The PIP value ranges from 0 to 

1, with higher values indicating a stronger association 

between the SNP and the phenotype. The significance 

thresholds in the present study were set to genes within 

the 90% confidence interval and a posteriori probability 

values ≥ 0.9 [33, 34]. 
 

GO and KEGG pathway enrichment analyses 
 

We conducted GO and KEGG pathway enrichment 

analyses using the R package ‘clusterProfiler’ to explore 

the potential functional pathways of susceptibility genes 

(https://yulab-smu.top/biomedical-knowledge-mining-

book/). GO is a standardized system for describing  

the functions of genes and their encoded products, 

which usually involves three levels: molecular function 

(MF), cellular component (CC), and biological process 

(BP) [58]. Through GO enrichment analysis, we can 

have a preliminary understanding of the biological 

functions, pathways or cellular localizations in which 

genes associated with Parkinson’s disease are enriched. 

The R package “clusterProfiler” (https://yulab-smu. 

top/biomedical-knowledge-mining-book/) was utilized 

https://yanglab.westlake.edu.cn/software/smr
https://github.com/hakyimlab/MetaXcan
https://github.com/hakyimlab/MetaXcan
https://github.com/bogdanlab/focus/
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://yulab-smu.top/biomedical-knowledge-mining-book/
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to perform GO and KEGG pathway enrichment analysis 

to explore the potential functions pathways of suscep-

tibility genes. 
 

Data sharing 
 

PD GWAS summary statistics by Nalls et al. can be 

downloaded under https://gwas.mrcieu.ac.uk/datasets/ 

ieu-b-7/. LBD GWAS summary statistics by Chia et al. 

can be downloaded under https://www.ebi.ac.uk/gwas/ 

home [49]. iRBD GWAS summary statistics by Lynne 

Krohn et al. can be downloaded under www.tinyurl. 

com/iRBDsumStats [50]. The ROSMAP dataset and 

Banner dataset (weights and pQTL) are available from 

https://doi.org/10.7303/syn23627957 by Wingo et al. 

[53]. The JTI prediction models GTEx models can be 

downloaded from Zenodo (https://doi.org/10.5281/ 

zenodo.3842289). The Plasma dataset is available from 

http://nilanjanchatterjeelab.org/pwas. For the three tissues 

(CSF, brain, plasma) in the Knight ADRC dataset,  

both summary statistics and individual-level data are 

available from https://www.niagads.org/datasets/ng00102. 

The code can be found on https://github.com/Anony 

mousxyee/Joint-Analysis-of-PWAS--TWAS--and-Multi-

Trait-Analysis-to-Identify-Novel-PD-Risk-Gene. 
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Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Manhattan plots for individual GWAS and MTAG. 
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Supplementary Figure 2. Prioritizing genes at a GWAS locus using SMR analysis. (A) Shown are results at the CD38 locus for PD. (B) 
Shown are results at the GPNMB locus for PD. Top plot, brown dots represent the P-values for SNPs from the latest GWAS meta-analysis for 
PD. The top and bottom plots include all the SNPs available in the region in the GWAS and pQTL summary data, respectively, rather than only 
the SNPs common to both data sets. Top plot is the gene that passed the SMR and HEIDI tests. 
 

 
 

Supplementary Figure 3. Venn plots of the PD significant genes. (A, B) Venn plots of PD risk genes identified in central nervous 

system, digestive system and blood system by TWAS (JTI models). (A) was PD GWAS. (B) was in PD MTAG. Each round represents a study. 
Numbers in each overlapped area mean numbers of differently expression genes in each area. The intersection in the middle represents 
genes which are significantly differentially expressed in three studies consistently. 
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Supplementary Figure 4. FOCUS plot for each gene in one region. (A) The plot contains the predicted expression correlation, TWAS 

summary statistics and PIP for each gene in the genomic locus 3:181511166-3:183769683 in the brain cerebellum. (B) The plot contains the 
predicted expression correlation, TWAS summary statistics and PIP for each gene in the genomic locus 3:181511166-3:183769683 in the 
stomach. (C) The plot contains the predicted expression correlation, TWAS summary statistics and PIP for each gene in the genomic 
locus16:29036613-16:31382470 in the brain substantia nigra. (D) The plot contains the predicted expression correlation, TWAS summary 
statistics and PIP for each gene in the genomic locus 17:15020965-17:16411522 in the whole blood. 



www.aging-us.com 1574 AGING 

 
 

Supplementary Figure 5. Interaction network analyses of the 79 genes associated with PD risk in TWAS using fourteen 
tissues of central nervous systems. Each blue node represents a functional pathway or cell type and the red node represents a gene. The 

connections represent the interaction between a functional pathways or cell type with a gene.  
 

 
 

Supplementary Figure 6. Pathway interaction network diagram of 95 genes found by TWAS in 22 tissues. 



www.aging-us.com 1575 AGING 

 
 

Supplementary Figure 7. Pathway interaction network diagram of 26 genes found by TWAS in the whole blood. 

 

 
 

Supplementary Figure 8. Pathway interaction network diagram of 59 genes found by TWAS in 7 tissues in digestive system. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 3–5, 8, 10–24. 

 

Supplementary Table 1. Comparison of three previous TWAS studies. 

 GWAS datasets 
Transcriptomics 

panels 
Methods Significance genes 

PMID: 

30824768 

9581 cases 

and33245 controls 

DLPFC and monocyte 

expression data  
TWAS(fusion) 

TMED5,RAB7L1,RAB4A,TMEM163,NMD3,CD38,MMRN1,GPNM

B,DFNA5,CTSB,PDLIM2,FRA10AC1,GPR180,ATG14 ,NUDT14 

,HSD3B7,MED13,MEI1 ,GBP7, PTPN22, CLASP2, GNB4, NCK1, 

BST1, IDUA, SNCA, TMEM175,TRIML1, CAMLG, GGCT, 

GPNMB, PILRB, CTSB, MTMR9, CC2D2B, MAPK8IP1, LRRK2, 

GPR65, METTL3, NUDT14 , PSMC6, MAPK3, VKORC1, TNFSF13, 

CD33, SPPL2B, MAP1LC3A , 

PMID: 

33523105 

26035 cases and 

403190 controls 

Braineac eQTL 

Data(10 brain regions) 

GTEx eQTL Data(13 

brain regions) 

TWAS(fusion) WDR6,CD38,GPNMB,RAB29, and TMEM163 

PMID: 

34504106 

15,056 PD cases, 

18,618 UK 

Biobank proxy-

cases, and 449,056 

controls 

GTEx V8(13 brain 

regions) 
TWAS(fusion) 

LRRC37A2,LRRC37A,MMRN1,ARL17A,PLEKHM1,FMNL1,CD38,

RNF40,SPPL2C,VKORC1,CCDC189,GPNMB,NUPL2,MAP3K14,ZS

WIM7,GAK,CENPV,CPLX1, 

This study  

33,674 PD cases 

and 449,056 

controls. 

ROSMAP/Banner/plas

ma/CSF 

PWAS/SMR/T

WAS 

16 genes protein abundance levels associated with PD risk. 

95 gene expression levels associated with PD risk 

 

 

Supplementary Table 2. Statistical summary of GWAS and MTAG results. 

 PD PDMTAG LBD LBDMTAG RBD RBDMTAG 

Lead SNPs 32 33 5 17 10 10 

Ind. Sig. SNPs 91 90 10 25 16 39 

X2 1.15 1.157 1.009 1.104 1.007 1.037 

Sample size 482730 504827 7372 89741 9447 46816 

 

Supplementary Table 3. The PWAS of PD integrating the ROS/MAP proteomes with the PD GWAS. 

 

Supplementary Table 4. The PWAS of PD integrating the Banner proteomes with the PD GWAS. 
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Supplementary Table 5. The PWAS of PD integrating the plasma proteomes with the PD GWAS. 

 

Supplementary Table 6. The PWAS of PD integrating the CSF with the PD GWAS. 

ID CHR P0 P1 BEST.GWAS.ID BEST.GWAS. Z EQTL.ID EQTL.GWAS. Z TWAS.Z TWAS.P 

PRDX6 1 173000000 174000000 rs2096147 -4.3 rs1234315 0.739 -0.739 0.46 

CPE 4 166000000 167000000 NA NA NA NA NA NA 

PRSS1 7 142000000 143000000 rs6979469 -2.61 rs3752404 0.639 -0.639 0.523 

EPHB6 7 142000000 143000000 rs6979469 -2.74 rs2272255 -0.443 0.443 0.658 

PDCD1LG2 9 5010545 6010545 rs10815236 -3.61 rs10975371 0.714 0.714 0.475 

CD274 9 4950503 5950503 NA NA NA NA NA NA 

 

Supplementary Table 7. The PWAS of PD integrating the plasma (Yang et al.) with the PD GWAS. 

ID CHR P0 P1 BEST.GWAS.ID BEST.GWAS. Z EQTL.ID TWAS.Z TWAS.P 

TNFSF18 1 172509100 173509100 NA NA NA NA NA 

TNFSF4 1 172652873 173652873 rs2096147 -4.3 rs10158707 -1.112 0.266 

PRDX6 1 172946405 173946405 rs2096147 -4.3 rs10158707 0.208 0.835 

CD207 2 70557347 71557347 rs3771444 -3.67 rs3821261 -0.161 0.872 

GZMA 5 53898476 54898476 rs1423249 2.81 rs7721054 1.19 0.234 

TNFSF15 9 117046915 118046915 rs2104771 -3.31 rs2636897 0.878 0.38 

CNTN1 12 40586244 41586244 rs1491932 -4.79 rs12370996 1.43 0.153 

LDLR 19 10700038 11700038 rs3745682 -2.84 rs4804149 -0.811 0.417 

ICAM3 19 9944452 10944452 rs3087689 -3.12 rs5030390 1.134 0.257 

CD209 19 7304879 8304879 rs11672993 3.46 rs2303112 0.221 0.825 

RETN 19 7233930 8233930 rs11672993 3.46 rs2303112 0.341 0.733 

FCER2 19 7253644 8253644 rs11672993 3.46 rs2303112 0.455 0.649 

CDC37 19 10001810 11001810 rs3087689 -3.12 rs5030390 0.659 0.51 

ICAM1 19 9881511 10881511 rs3087689 -3.12 rs5030390 1.069 0.285 
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Supplementary Table 8. PWAS and TWAS identified PD-associated genes of PD MTAG. 

 

Supplementary Table 9. Internal performance of gene expression genetic prediction models of fourteen tissues 
of central nervous systems, seven tissues of the digestive system and the whole blood tissue. 

Model 
Prediction performance 

(R2) 
All Protein lncRNAs miRNA 

JTI -Brain_Amygdala ≥0.01 6,542 4,803 1,739 0 

 ≥0.04 5,734 4,176 1,558 0 

 ≥0.09 3,300 2,332 968 0 

 ≥0.16 1,770 1,203 567 0 

JTI-Brain_Anterior_cingulate_cortex_BA24 ≥0.01 7,735 5,740 1,995 0 

 ≥0.04 6,552 4,814 1,738 0 

 ≥0.09 3,910 2,778 1,132 0 

 ≥0.16 2,191 1,509 682 0 

JTI-Brain_Caudate_basal_ganglia ≥0.01 10,121 7,626 2,494 1 

 ≥0.04 7,777 5,807 1,970 0 

 ≥0.09 4,625 3,418 1,207 0 

 ≥0.16 2,598 1,867 731 0 

JTI-Brain_Cerebellar_Hemisphere ≥0.01 10,827 8,326 2,499 2 

 ≥0.04 8,903 6,858 2,043 2 

 ≥0.09 5,744 4,393 1,350 1 

 ≥0.16 3,571 2,724 846 1 

JTI-Brain_Cerebellum ≥0.01 11,813 9,077 2,732 4 

 ≥0.04 9,279 7,174 2,103 2 

 ≥0.09 6,005 4,646 1,358 1 

 ≥0.16 3,697 2,835 861 1 

JTI-Brain_Cortex ≥0.01 10,508 7,942 2,566 0 

 ≥0.04 7,987 6,000 1,987 0 

 ≥0.09 4,850 3,592 1,258 0 

 ≥0.16 2,829 2,053 776 0 

JTI-Brain_Frontal_Cortex_BA9 ≥0.01 9,288 6,965 2,323 0 

 ≥0.04 7,358 5,476 1,882 0 

 ≥0.09 4,468 3,256 1,212 0 

 ≥0.16 2,547 1,809 738 0 

JTI-Brain_Hippocampus ≥0.01 8,159 6,074 2,084 1 

 ≥0.04 6,497 4,804 1,692 1 

 ≥0.09 3,648 2,650 997 1 

 ≥0.16 1,943 1,361 582 0 

JTI-Brain_Hypothalamus ≥0.01 8,651 6,375 2,274 2 

 ≥0.04 6,639 4,868 1,770 1 

 ≥0.09 3,659 2,601 1,057 1 

 ≥0.16 1,952 1,344 608 0 

JTI-Brain_Nucleus_accumbens_basal_ganglia ≥0.01 10,054 7,510 2,544 0 

 ≥0.04 7,488 5,536 1,952 0 

 ≥0.09 4,332 3,138 1,194 0 

 ≥0.16 2,423 1,715 708 0 

JTI-Brain_Putamen_basal_ganglia ≥0.01 9,089 6,956 2,133 0 

 ≥0.04 7,339 5,599 1,740 0 

 ≥0.09 4,404 3,311 1,093 0 
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 ≥0.16 2,462 1,783 679 0 

JTI-Brain_Spinal_cord_cervical_c-1 ≥0.01 7,868 5,881 1,987 0 

 ≥0.04 6,996 5,188 1,808 0 

 ≥0.09 3,959 2,861 1,098 0 

 ≥0.16 2,196 1,561 635 0 

JTI-Brain_Substantia_nigra ≥0.01 6,616 4,880 1,735 1 

 ≥0.04 6,163 4,535 1,628 0 

 ≥0.09 3,534 2,500 1,034 0 

 ≥0.16 1,860 1,266 594 0 

JTI-Colon_Sigmoid ≥0.01 12,370 9,572 2,797 1 

 ≥0.04 7,816 6,008 1,807 1 

 ≥0.09 4,505 3,403 1,101 1 

 ≥0.16 2,526 1,867 659 0 

JTI-Colon_Transverse ≥0.01 12,827 9,791 3,032 4 

 ≥0.04 7,630 5,806 1,822 2 

 ≥0.09 4,265 3,225 1,038 2 

 ≥0.16 2,303 1,712 589 2 

JTI-Liver ≥0.01 8,288 6,467 1,819 2 

 ≥0.04 5,623 4,329 1,292 2 

 ≥0.09 3,000 2,271 728 1 

 ≥0.16 1,552 1,148 403 1 

JTI-Pancreas ≥0.01 10,964 8,800 2,162 2 

 ≥0.04 7,155 5,761 1,393 1 

 ≥0.09 4,181 3,339 841 1 

 ≥0.16 2,421 1,936 485 0 

JTI-Pituitary ≥0.01 11,226 8,220 3,002 4 

 ≥0.04 7,685 5,538 2,146 1 

 ≥0.09 4,382 3,100 1,281 1 

 ≥0.16 2,496 1,758 737 1 

JTI-Pituitary ≥0.01 11,603 8,819 2,782 2 

 ≥0.04 8,565 6,514 2,050 1 

 ≥0.09 5,116 3,865 1,250 1 

 ≥0.16 2,979 2,232 746 1 

JTI-Stomach ≥0.01 11,366 8,831 2,534 1 

 ≥0.04 6,622 5,111 1,510 1 

 ≥0.09 3,538 2,718 819 1 

 ≥0.16 1,899 1,436 463 0 

JTI-Whole_Blood ≥0.01 10,350 8,595 1,753 2 

 ≥0.04 6,177 5,155 1,022 0 

 ≥0.09 3,666 3,043 623 0 

 ≥0.16 2,110 1,765 345 0 

JTI-Nerve_Tibial ≥0.01 15,096 11,582 3,512 2 

 ≥0.04 9,981 7,803 2,177 1 

 ≥0.09 6,300 4,948 1,351 1 

 ≥0.16 3,812 2,962 849 1 

JTI-Small_Intestine_Terminal_Ileum ≥0.01 9,420 7,048 1 2371 

 ≥0.04 7,119 5,277 1,841 1 

 ≥0.09 3,853 2,814 1,038 1 

  ≥0.16 1976 1407 568 1 

Protein, Protein coding genes; lncRNAs, long non-coding RNAs; miRNAs, microRNAs. 
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Supplementary Table 10. Full results of TWAS (using SNP expression weights from JTI) for PD risk across 22 
tissues (PD GWAS). 

 

Supplementary Table 11. Sixty-seven expression-trait associations for genes identified in the present PD TWAS 
and FOCUS fine mapping analysis results of the 67 genes across 22 train tissues. 

 

Supplementary Table 12. Twenty-eight expression-trait associations for genes identified in the present and 
previous TWAS (PD GWAS). 

 

Supplementary Table 13. Fine-mapping of causal gene sets (FOCUS) of PD GWAS summary statistics. 

 

Supplementary Table 14. Fine-mapping results of PD GWAS based on TWAS-identified genes for PD risk and the 
fourteen genes have not been previously identified in TWAS. 

 

Supplementary Table 15. Full results of TWAS (using SNP expression weights from JTI) for PD risk across 22 
tissues (PD MTAG). 

 

Supplementary Table 16. Seventy-eight expression-trait associations for genes identified in the present PD 
TWAS and FOCUS fine mapping analysis results of the 78 genes across 22 train tissues (PDMTAG). 

 

Supplementary Table 17. Twenty-six expression-trait associations for genes identified in the present and 
previous TWAS (PD MTAG). 

 

Supplementary Table 18. Fine-mapping of causal gene sets (FOCUS) of PD MTAG summary statistics. 

 

Supplementary Table 19. Fine-mapping results of PD MTAG based on TWAS-identified genes for PD risk and the 
22 genes have not been previously identified in TWAS. 

 

Supplementary Table 20. Pathway analysis of central nervous systems S-PrediXcan results (PD GWAS). 

 

Supplementary Table 21. Pathway analysis of 22 tissues S-PrediXcan results (PD GWAS). 

 

Supplementary Table 22. Pathway analysis of the digestive system S-PrediXcan results. 

 

Supplementary Table 23. Pathway analysis of the whole blood tissue S-PrediXcan results. 

 

Supplementary Table 24. Comparison of TWAS results from PD MTAG and PD GWAS. 

 

Supplementary Table 25. Characteristics of discovery (ROS/MAP) proteomic dataset. 

 Female N Male N Age at death pQTL N Weights N  

ROSMAP 262 114 89.4(6.4) 8356 1475 
Banner 87 65 85.5 (7.1) 8168 1139 

 


