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ABSTRACT 
 

Background: Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous cancer characterized 
by difficulties in early diagnosis and outcome prediction. Aberrant glycosylated structures produced by the 
aberrant expression of glycosyltransferases are prevalent in HNSCC. In this study, we aim to construct 
glycosyltransferase-related gene signatures with diagnostic and prognostic value to better stratify patients with 
HNSCC and improve their diagnosis and prognosis. 
Methods: Bioinformatic tools were used to process data of patients with HNSCC from The Cancer Genome Atlas 
(TCGA) database. The prognostic model was formatted using univariate and multivariate Cox regression 
methods, while the diagnostic signature was constructed using support vector machine (SVM) and LASSO 
analysis. The results were verified using the Gene Expression Omnibus (GEO) cohort. The tumor 
microenvironment and benefits of immune checkpoint inhibitor (ICI) therapy in subgroups defined by 
glycosyltransferase-related genes were analyzed. Molecular biology experiments, including western blotting, 
cell counting kit (CCK)-8, colony formation, wound healing, and Transwell assays, were conducted to confirm 
the oncogenic function of beta-1,4-galactosyltransferase 3 (B4GALT3) in HNSCC. 
Results: We established a five-gene prognostic signature and a 15-gene diagnostic model. Based on the median 
risk score, patients with low risk had longer overall survival than those in the high-risk group, which was 
consistent with the results of the GEO cohort. The concrete results suggested that high-risk samples were 
related to a high tumor protein (TP)53 mutation rate, high infiltration of resting memory cluster of 
differentiation (CD)4 T cells, resting natural killer (NK) cells, and M0 macrophages, and benefited from ICI 
therapy. In contrast, the low-risk subgroup was associated with a low TP53 mutation rate; and high infiltration 
of naive B cells, plasma cells, CD8 T cells, and resting mast cells; and benefited less from ICI therapy. In addition, 
the diagnostic model had an area under curve (AUC) value of 0.997 and 0.978 in the training dataset and 
validation cohort, respectively, indicating the high diagnostic potential of the model. Ultimately, the depletion 
of B4GALT3 significantly hindered the proliferation, migration, and invasion of HNSCC cells. 
Conclusions: We established two new biomarkers that could provide clinicians with diagnostic, prognostic, and 
treatment guidance for patients with HNSCC. 
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INTRODUCTION 
 

Head and neck squamous cell carcinomas  

(HNSCC) occur in the mucosal epithelium of the oral 

cavity, pharynx, and larynx and are the most common 

malignancies of the head and neck [1]. The incidence of 

HNSCC is increasing and is anticipated to increase by 

30% by 2030 [1, 2]. According to the clinical stage, 

HNSCC is normally treated with surgical resection, 

followed by adjuvant radiotherapy or chemoradiotherapy. 

Despite the substantial development of combined-

modality therapy, the five-year survival rate of patients 

with HNSCC has been lower than 50%, primarily due to 

the difficulty in early diagnosis, significant molecular 

heterogeneity between tumors, and resistance to chemo-

therapy and radiotherapy [3]. Therefore, early diagnosis 

and appropriate stratification of patients with HNSCC 

may be key to aiding individualized treatment decisions 

and improving survival rates. 

 

Glycosylation, a series of reactions that produce 

complicated carbohydrate structures (glycans) attached 

to the backbone of a polypeptide, is a major post-

translational modification in cellular development [4]. 

This process primarily involves the sequential action  

of different families of glycosylases, such as glycosyl-

transferases and glycosidases, whose expression and 

function are tightly regulated in each cell [5]. Tumor 

cells typically express high levels of characteristic 

glycan structures, and differential changes in the 

cellular glycan structure are primarily associated with 

altered expression patterns of glycosyltransferase genes 

[6]. There is evidence that alterations in the glycan 

structure may play a significant role in the classification 

and subtypes of malignancies. Deep modification of 

glycosyltransferase gene expression produces aberrant 

glycosylation and deregulates the glycosylation of cancer 

cells, leading to an aggressive phenotype. This is a sign 

of tumor cell metamorphosis [7–10]. 

 
Various glycoproteins have been identified as  

potential therapeutic targets for HNSCC. Sialic acid,  

an abnormally glycosylated mucin with significantly 

elevated levels in patients with HNSCC, is strongly 

associated with tumor progression and metastasis [11–

13]. Bergler et al. indicated that the epidermal growth 

factor receptor, which carries a sialoglycan structure  

in the extracellular region, is highly expressed in 

HNSCC [14]. Previous findings have suggested that  

the expression of epidermal growth factors may be 

associated with more aggressive and metastatic tumors 

[15]. Hence, sialic acid bound to the surface of cancer 

cells may be a useful target for anticancer therapy  

[16]. Mucin 1 (MUC1) is a transmembrane glycoprotein 

that has been proven to be a probable biomarker  

for predicting the prognosis of invasive HNSCC [17]. 

MUC1 enhanced double-strand-break repair and resis-

tance to ionizing radiation (IR)-induced apoptosis in 

HNSCC cells. Radiation resistance and sensitivity have 

also been observed in HNSCC cells with high and low 

MUC1 expression, respectively [18]. Therefore, MUC1 

may be a potential target for improving the efficacy of 

integrated treatments in patients with HNSCC. 

 

In summary, the relevance of glycoproteins to HNSCC 

cell invasion and metastasis cannot be ignored.  

In this study, we stratified patients with HNSCC  

according to glycosyltransferase gene expression profiles  

involved in glycoconjugate biosynthesis. To optimize 

the therapeutic system for HNSCC, we constructed a 

glycosyltransferase-related diagnostic and prognostic 

signature using bioinformatics. The diagnostic and 

prognostic values of these glycosyltransferase genes 

have been confirmed in public databases, providing 

novel possible markers for clinical diagnosis and 

treatment decisions in patients with HNSCC. 

 

MATERIALS AND METHODS 
 

Public datasets collection 

 

RNA-seq data and relevant clinical characteristics of 

patients with HNSCC from The Cancer Genome Atlas 

(TCGA) database were downloaded as the training 

cohort. Simultaneously, we used data from GSE41613 

as the test cohort for the prognostic model and the 

matrix files of GSE127165 as validation data for  

the diagnostic model. The GSE41613 and GSE127165 

datasets contained clinical information and gene 

expression profiles of patients with HNSCC obtained 

from the Gene Expression Omnibus (GEO) database. 

We identified 169 glycosyltransferase-related genes in  

a study by Mohamed Abd-El-Halim et al. [19] and 

downloaded them for further analysis (Supplementary 

Table 1). All the data used in our study are publicly 

available. 

 

Identification and validation of prognostic gene 

signature 

 

In the TCGA cohort, the R package “limma” was used 

to recognize the differentially expressed genes (DEGs) 

by comparing the different gene expression levels  

of tumor and normal cells. The thresholds were set  

as |log2FC| > 0.5 along with a false discovery rate < 

0.05. Univariate Cox analysis was performed on  

these DEGs, and valuable genes (P<0.05) were further 

analyzed using multivariate analysis. The risk score  

was calculated using the following formula: Risk  

score = expression level of gene-1 × coefficient of  

gene-1 + expression level of gene-2 × coefficient of 

gene-2 +. . .+ expression level of gene-n × coefficient of 
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gene-n [20]. Glycosyltransferase-related genes screened  

using the aforementioned methods were used to build  

a prognostic signature of patients with HNSCC. The 

expression levels of each gene were multiplied by the 

corresponding Cox coefficient and added to calculate 

the risk score for all clinical cases. HNSCC samples 

were then segmented into high- and low-risk subgroups 

using the median risk score. The prognostic power of 

the model was evaluated using Kaplan-Meier (K-M) 

survival curves with time-dependent receiver operating 

characteristic (ROC) curves. The same process was 

completed for the GSE41613 dataset to validate the 

signature stability. Finally, to estimate the independent 

prognostic value of the glycosyltransferase-related gene 

signature, univariate and multivariate Cox regression 

analyses were performed. 

 

Functional enrichment analysis and mutation gene 

analysis 

 

To better comprehend the biological functions of  

the target genes, the “clusterProfiler” package was  

used to perform gene set enrichment analysis (GSEA) 

of the two subgroups based on the Kyoto Encyclopedia 

of Genes and Genomes. In addition, somatic mutation 

information was collected from the cBioPortal database 

and gene mutation analysis was performed on both 

subgroups using the “Maftools” package. 

 

Evaluation of immune cell infiltration and 

immunotherapy 

 

To explore the correlation between the 

glycosyltransferase-related gene model and immune cell 

levels, the CIBERSORT (https://cibersort.stanford.edu/) 

algorithm was used to handle the expression data of 

each case to assess the proportion of different immune 

cells in the two risk groups of the TCGA cohort [21]. In 

addition, we analyzed the association of the prognostic 

risk score with immune checkpoint (IC) expression 

levels and immunotherapy scores. 

 

Construction and evaluation of diagnostic model 

 

In the TCGA cohort, two machine learning algorithms, 

the least absolute shrinkage and selection operator 

(LASSO) and support vector machine (SVM), were 

used to select genes with diagnostic value. SVM is a 

machine-learning technique widely used for tumor gene 

expression profile analysis and tumor marker detection 

in different types of cancers [22]. LASSO regression 

can reduce the number of estimated parameters while 

maintaining a high prediction accuracy, thereby reducing 
data overfitting and making the model easy to visualize 

and interpret [23]. The intersection genes of the two 

algorithms were used to construct predictive diagnostic 

models. ROC curve was used to examine the 

effectiveness of the model. As with the prognostic 

model, we used matrix data from GEO for model 

validation. 

 

Cell culture 

 

FaDu cells were obtained from the American Type 

Culture Collection (USA), and TU177 cells were 

procured from Otwo Biotech, Inc. (Shenzhen, China). 

These cells were cultured in a 37° C incubator with  

a 5% CO2 atmosphere using DMEM or RPMI-1640 

medium supplemented with 1% penicillin-streptomycin 

and 10% fetal bovine serum. 

 

Lentiviral infection 

 

TU177 cells were stably transduced with lenti- 

viral vectors (GV248, GenePharma, Shanghai, China) 

carrying specific short hairpin RNAs (shRNAs) targeting 

B4GALT3. The shRNA sequences used were as follows: 

shB4GALT3-1, 5’-GGGATGAACTCACTGACATAC-

3’, shB4GALT3-2, 5’-GGACGCAAGATGGGATGA 

ACT-3’, and control scrambled shRNA (shSc), 5’-TTC 

TCCGAACGTGTCACGT-3’. Cell lines overexpressing 

B4GALT3 were established using the lentiviral vector 

GV492 containing the complete B4GALT3 sequence 

(GenePharma). 

 

Western blot analysis 

 

Immunoblotting was performed according to standard 

procedures [24]. Briefly, cell lysates were prepared 

using NuPAGE 4-12% Bis-Tris gels and subsequently 

transferred onto PVDF membranes (Millipore, USA). 

Before the application of primary antibodies, the mem-

branes were blocked with 5% nonfat milk solution to 

prevent nonspecific binding of antibodies. Following 

overnight incubation at 4° C with primary antibodies 

and subsequent one-hour incubation with secondary 

antibodies, chemiluminescence was used to visualize 

the results. The commercial antibody anti-B4GALT3 

(11041-1-AP, Proteintech, China) was used in these 

experiments. 

 

In vitro functional assays 

 

In vitro functional assessments, including CCK-8 assay 

(TargetMol; Shanghai, China), colony formation, wound 

healing, and Transwell assays, were employed to assess 

the functional roles of B4GALT3. 

 
Statistical analysis 

 

R software and various packages were used for the 

statistical analyses. Univariate and multivariate Cox 

https://cibersort.stanford.edu/
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regression analyses were used to screen the prognostic 

genes and independent prognostic parameters. Survival 

analysis was performed using the K-M analysis with  

the log-rank test. Spearman’s correlation analysis was 

performed to analyze the relationships. The Wilcoxon 

test was used for comparison between subgroups. 

 

Data availability statement 

 

Publicly available datasets were analyzed in this study. 

The raw data of this study are derived from the TCGA 

database (https://portal.gdc.cancer.gov/) and the GEO 

data portal (https://www.ncbi.nlm.nih.gov/geo/), which 

are publicly available databases. 

 

RESULTS 
 

Glycosyltransferase-related DEGs were identified 

 

In the TCGA cohort, we analyzed the differential 

expression of 169 glycosyltransferase-related genes in 

502 tumors and 44 normal tissues and obtained a total 

of 58 DEGs (Figure 1A), of which 42 were upregulated 

and 16 were downregulated (Figure 1B). 

 

Establishment and validation of the 

glycosyltransferase-related gene prognostic signature 

 

Univariate Cox analysis was performed on the 

candidate genes obtained in the above process, and  

a total of 12 genes exhibited statistically significant 

differences (P<0.05) (Supplementary Figure 1). To 

further identify independent prognostic genes in patients 

with HNSCC, multivariate Cox analysis was performed 

on 12 glycosyltransferase-related genes. As shown in 

Table 1, five significant genes (B4GALT3, PYGL, 

GALNT14, FUT2, and GALNT16) were screened to 

construct a prognostic signature. The risk score of all 

tumor samples was counted as follows: Risk score  

= (0.974* B4GALT3) + (0.418* PYGL) + (0.195* 

GALNT14) + (−0.413* FUT2) + (−0.886* GALNT16). 

 
Using the median risk score as the cut-off value, all 

patients with HNSCC were classified into high- and 

low-risk subgroups (Figure 2A), and high-risk samples 

exhibited poorer overall survival (OS) in comparison to 

low-risk samples (log-rank P < 0.001, Figure 2B). ROC 

curves were used to assess the capability of the 

signature and the AUC at one, three, and five years in 

Figure 2C shows moderate sensitivity and specificity of 

the prognostic signature. Additionally, validation was 

performed using the GSE41613 dataset. The same 

formula was used to compute the risk score, and the 97 

patients were classified into two subgroups based on the 

median risk score (Figure 2D). The K-M curve and 

AUC of the ROC curves showed significance similar  

to that of the TCGA cohort (Figure 2E, 2F). These 

results demonstrate the reliability and stability of the 

prognostic signature. 

 
Independent analysis of prognostic signature 

 
Risk scores and other clinicopathological characteristics 

(age, sex, grade, and stage) were combined for 

 

 

 

Figure 1. Differentially expressed glycosyltransferase-related genes. (A) Volcano map of differential genes, the red nodes represent 
upregulated genes while the blue nodes represent downregulated genes. (B) Heatmaps showing differentially expressed genes in the TCGA 
dataset. The color indicates the level of expression of the gene (red represents upregulation, blue represents downregulation). 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 1754 AGING 

Table 1. Five genes identified by multivariate Cox regression 
analysis used to construct prognostic models in the TCGA 
cohort. 

Gene Coefficient HR 95%CI P-value 

B4GALT3 0.974 2.647 1.003-6.988 0.049 

PYGL 0.418 1.519 1.085-2.128 0.015 

GALNT14 0.195 1.216 0.953-1.550 0.115 

FUT2 -0.431 0.650 0.511-0.828 <0.001 

GALNT16 -0.866 0.421 0.193-0.915 0.029 

 

independent analyses. Univariate and multivariate Cox 

analysis suggested that risk score was a significantly 

independent prognostic factor for OS (TCGA cohort 

univariate: hazard ratio (HR) = 1.990, 95% confidence 

interval (CI) = 1.529−2.589, P < 0.001, Figure 3A; 

TCGA cohort multivariate: HR = 2.184, 95% CI = 

1.631−2.926, P < 0.001, Figure 3B). This was confirmed 

again in the GSE41613 validation cohort (Figure 3C, 

3D). 

 

GSEA analysis and mutant landscape 

 

The results of GSEA revealed that the high-risk 

subgroup samples were usually enriched in transcrip-

tion and protein regulation-related pathways, such as 

glycosaminoglycan biosynthesis of chondroitin sulfate, 

proteasomes, and ribosomes (Figure 4A). Groups with 

low risk tended to activate arachidonic acid metabolism, 

cell adhesion molecules (CAMs), chemokine signaling 

pathways, and primary immunodeficiency pathways, 

among others (Figure 4B). 

 

Next, we performed gene mutation analysis according 

to the glycosyltransferase-related gene signature and 

observed that the mutation count in the high subgroup 

was higher than that in the low subgroup. Moreover,  

the top 20 mutated genes in the high- (Figure 4C), and 

low-risk (Figure 4D) samples were contradistinguished. 

Additionally, we observed that missense variations were 

the most common mutation type, and all samples were 

dominated by mutations in TP53, titin (TTN), and FAT 

atypical cadherin 1 (FAT1) in both groups. 

 

The associations with immune microenvironment 

and ICI therapy 

 

To further explore the differences in immune cells 

between the two subgroups, the CIBERSORT method 

was used to quantify the immune infiltration scores, and 

the Wilcoxon test was performed for comparison. We 

found that low-risk samples were enriched in naive  

B cells, plasma cells, CD8 T cells, regulatory T cells 

(Tregs), and resting mast cells, whereas resting memory 

CD4 T cells, resting NK cells, M0 macrophages,  

and activated dendritic cells were more abundant  

in high-risk samples (Figure 5A). We then calculated  

the Spearman correlation coefficient between the risk 

score and common immune checkpoint, the outcomes 

suggested that the risk score was positively correlated to 

fibroblast activation protein (FAP) and lysyl oxidase-

like 2 (LOXL2), and negatively correlated with cytotoxic 

T lymphocyte-associated protein 4 (CTLA4), ICOS, and 

programmed cell death protein 1 (PDCD1) (Figure 5B). 

 

In addition, we used the tumor immune dysfunction  

and exclusion (TIDE) and microsatellite instability 

(MSI) scores to evaluate the potential value of immuno-

therapy. In our study, the high-risk group had lower 

TIDE and MSI scores, which suggested that this group 

may benefit significantly from immunotherapy than the 

low-risk group (Figure 5C). Finally, the low-risk group 

had lower T cell exclusion scores and higher T cell 

dysfunction. 

 

Diagnostic model construction 

 

After evaluating the prognostic value, we performed gene 

selection for diagnosis. 37 glycosyltransferase-related 

genes were extracted by SVM and 18 genes were 

screened by LASSO analysis, and after intersecting the 

two algorithms, we obtained 15 genes with diagnostic 

value (Supplementary Table 2). A diagnostic model was 

constructed based on the corresponding coefficients.  

In the TCGA cohort, the AUC value of the ROC curve 

was 0.997 (95CI%: 0.948–0.999), which suggested 

excellent diagnostic efficiency of the model (Figure 6). 

In addition, the above diagnostic model was also 

verified in GSE127165 (AUC:0.978, 95CI%: 0.947–

0.991). 

 

B4GALT3 promotes tumor progression in vitro 

 

To elucidate the biological functions of B4GALT3  

in HNSCC, we created a stable TU177 cell line with  

a B4GALT3 knockdown. In contrast, we ectopically 

overexpressed the B4GALT3 gene in the FaDu cells. 
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Figure 2. Construction of prognostic signature of five glycosyltransferase-related genes. (A–C) The prognostic signature was 

constructed in the TCGA dataset. (A) The distribution of risk score, OS status, and the heatmap of the expression profiles of signature genes, 
(B) K-M survival curves based on the prognostic signature, and (C) the AUCs of glycosyltransfer related gene signature. (D–F) Evaluate the 
performance of the prognostic signature in the GSE41613 dataset. (D) The distribution of risk score, OS status, and the heatmap of the 
expression profiles of signature genes, (E) K-M survival curves based on the prognostic signature, and (F) the AUCs of glycosyltransfer related 
gene signature. 
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Western blotting was performed to assess the effective-

ness of B4GALT3 knockdown and overexpression  

in these cell lines (Figure 7A). CCK-8 and colony 

formation assays revealed a notable decrease in the  

cell viability and colony-forming ability of TU177  

cells upon knockdown of B4GALT3 (Figure 7B, 7D, 

7E). Conversely, the overexpression of B4GALT3 in 

FaDu cells stimulated cell proliferation and enhanced 

colony formation (Figure 7C, 7F, 7G). Subsequently, we 

investigated whether B4GALT3 plays a role in HNSCC 

cell motility. Wound healing and Transwell assays 

revealed a significant enhancement in cell migration and 

invasion following B4GALT3 overexpression, whereas 

these migratory and invasive properties decreased upon 

B4GALT3 knockdown (Figure 7H–7O). 

 

DISCUSSION 
 

Owing to the high molecular heterogeneity and 

anatomical location invisibility, early diagnosis and 

individualized treatment of patients with HNSCC have 

been great challenges [3]. With the rapid development 

of bioinformatics, several studies focus on finding key 

genes or biomarkers for assessing tumor prognosis and 

guiding treatment based on bioinformatics, and certain 

milestones have been achieved [25, 26]. However, 

previous bioinformatics studies were either limited to  

a single database or only focused on tumor outcomes, 

resulting in a lack of effective biomarkers that could 

simultaneously predict the diagnosis and prognosis of 

HNSCC. Many studies have begun to focus on the 

relationship between glycosyltransferases and their 

expression in tumors [27, 28]. However, there are few 

reports on the relationship between glycosyltransferases 

and HNSCC development. Therefore, we attempted  

to investigate the relevance of glycosyltransferase genes 

in the diagnosis and prognosis of HNSCC using 

bioinformatics technology and initially explored and 

established new biomarkers for the early diagnosis and 

prognosis prediction of HNSCC. 

 
In the present study, we first identified five 

glycosyltransferase-related DEGs in the TCGA cohort 

using differential expression analysis and Cox regression 

and built a prognostic signature based on their respective 

correlation coefficients. Based on the median risk score, 

patients with HNSCC were classified into high- and low-

risk subgroups. A comparison of the relationship between 

 

 
 

Figure 3. The independence identification of the risk model. Univariate and multivariate Cox regression analysis has been performed 

in the TCGA cohort (A, B) and GSE41613 cohort (C, D). 
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OS and the subgroups revealed that the OS of the low-

risk group was longer. In addition, independent analyses 

suggested that the prognostic model was an independent 

prognostic factor for HNSCC. The validation process 

using the GSE41613 cohort confirmed the reliability of 

the results. 

 

The prognostic glycosyltransferase-related gene 

signature comprised five genes: B4GALT3, PYGL, 

GALNT14, FUT2, and GALNT16. B4GALT3 is  

an enzyme in charge of the production of poly- 

N-acetyllactosamine and plays a crucial role in the 

occurrence, development, and metastasis of cancers. We 

knocked down and overexpressed B4GALT3 in both 

HNSCC cell lines. Depletion of B4GALT3 attenuated 

cell proliferation, migration, and invasion, whereas 

overexpression of B4GALT3 had the opposite effect. 

The B4GALT3 gene is upregulated in glioblastoma and 

cervical cancer and is considered to be related to tumor 

cell proliferation and invasion, suggesting a poor 

prognosis [29, 30]. Similar to B4GALT3, PYGL is 

upregulated in multiple tumors. Its expression level is 

positively correlated with glioma malignancy, and its 

high expression is an independent predictor of poor 

 

 
 

Figure 4. Molecular characteristics of high- and low-risk groups. (A) Gene sets enriched in the high-risk group. (B) Gene sets enriched 
in the low-risk group. The mutation profile of the top 20 mutation genes in high-risk patients (C) and low-risk patients (D). 
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prognosis in glioma patients [31]. In addition, 

fucosyltransferase2 (FUT2) overexpression enhances 

cell migration and invasion in vitro and metastasis of 

breast cancer in vivo and may be used as a therapeutic 

target for breast cancer [32]. Both GALNT14 and 16  

are members of the N-acetylgalactosaminyltransferase 

family. In breast cancer, GALNT14 modulates tumor 

multidrug resistance and promotes cancer invasion  

by altering cell proliferation, motility, and EMT gene 

expression levels [33, 34], while gene polymorphisms 

of GALNT16 are strongly associated with cancer 

susceptibility [35]. In summary, our findings 

demonstrated that these genes can serve as potential 

biomarkers for predicting the outcome of HNSCC. 

 

Next, to gain further correlations between the prognostic 

model and the tumor microenvironment, gene mutations, 

and immune cell infiltration were compared between  

the two subgroups. We found that the TP53 mutation 

rate was the highest in both groups, and the high-risk 

group was higher than the low-risk group. As the most 

common single genetic event in cancer, TP53 mutation 

 

 
 

Figure 5. Correlation of tumor microenvironment (TME) landscape and ICI therapy with risk score. (A) The proportions of TME 

cells in high- and low-risk groups. Significant statistical differences between the two subgroups were assessed using the Wilcoxon test.  
(B) Linear regression among immune checkpoints (CTLA4, FAP, ICOS, LOXL2, and PDCD1) and risk scores, and the numbers placed on the right 
of the plot represent coefficients. (C) TIDE, MSI, and T cell exclusion and dysfunction score in two groups. (*p < 0.05, ** p < 0.01,  
*** p < 0.001, **** p < 0.0001). 
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is related to poorer prognosis in several malignant 

tumors, which aligns with our findings [36, 37]. In 

addition, resting memory CD4 T cells, resting NK cells, 

M0 macrophages, and activated dendritic cells were 

more enriched in the high-risk subgroup, while naive  

B cells, plasma cells, CD8 T cells, and resting mast 

cells were more common in the low-risk subgroup. 

Previous studies have revealed that a large infiltration of 

T cells, particularly CD8 T cells, is generally associated 

with a favorable outcome for the tumor, while elevated 

levels of M0 macrophages are linked to a less favorable 

prognosis [38–40]. Some genes that constitute the 

prognostic model have been reported to be related to  

the tumor microenvironment. For example, B4GALT3 

knockout mice demonstrated inhibited growth of highly 

immunogenic tumors accompanied by a significant 

elevation in the infiltration of CD8 T cells within  

the tumor microenvironment [41]. The number of 

macrophages significantly decreased in 231-LM2  

cells when GALNT14 expression was suppressed, 

whereas it markedly increased upon GALNT14 over-

expression [42]. 

 

 
 

Figure 6. Establishment of multigene diagnostic signature. A total of 15 genes have been selected through SVM and LASSO analysis, 
and the AUC of the ROC curve is 0.997 (TCGA) and 0.978 (GSE127165). 
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Figure 7. B4GALT3 promotes the proliferation and migration of HNSCC cells. (A) The expression of B4GALT3 has been assessed by 

western blotting. (B, C) CCK-8 assay has been performed to evaluate the growth rates of the indicated cells. The proliferative and migratory 
abilities of the indicated cells have been measured by colony formation (D–G) and wound healing assays (H–K), respectively. (L–O) Cell 
migration and invasion abilities of the indicated cells have been measured using Transwell assays. 
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ICI therapy has proven to be a useful treatment for 

carcinoma [43–45], and we observed that the risk  

score was negatively correlated with the immune check-

points CTLA4, ICOS, and PDCD1, suggesting that the 

sensitivity to immunotherapy may differ among sub-

groups. The TIDE algorithm can effectively distinguish 

tumor immune escape and predict the efficacy of ICI 

therapy. In general, a higher TIDE score indicated an 

unfavorable response to immunotherapy [46]. In our 

study, the TIDE scores were lower in the high-risk group, 

suggesting lower levels of immune escape and higher 

ICI treatment efficiency in these samples. Notably, the 

complex interactions between cancer cells and the tumor 

microenvironment are closely related to the develop-

ment of tumorigenesis and immunotherapy efficacy. 

Clarifying the tumor microenvironment of all patients 

with HNSCC can help us recognize which individuals 

are more likely to benefit from immunotherapy to 

develop individualized treatment strategies. 
 

This study has certain limitations. First, the study  

was primarily conducted in public databases, and our 

outcomes were verified only in GEO datasets; further 

validation in additional clinical cases is required. 

Second, the genes included in this study were limited 

to glycosyltransferases, and the tumor immune micro-

environment was complex, restricting the effectiveness 

of the prognostic model. However, these issues did not 

affect the results of this study. 
 

CONCLUSIONS 
 

In summary, we performed the first integrated  

analysis of glycosyltransferase-related genes in  

HNSCC and discussed their significance in diagnosis  

and prognosis. These results are conducive to future 

prospective experimental studies. More importantly, 

we established two new biomarkers that could provide 

clinicians with diagnostic, prognostic, and treatment 

guidance for patients with HNSCC. 
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Supplementary Figure 1. The HR values of univariate Cox regression analysis. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

 

Supplementary Table 1. List of 169 glycosyltransferase related genes. 

 

Supplementary Table 2. List of genes used to construct the 
diagnostic model. 
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