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INTRODUCTION 
 

Gastric cancer (GC) is the fifth most common cancer 

and the third leading cause of death worldwide [1]. 

Although treatment strategies for GC have been 
significantly improved, the overall survival rate is still 

poor due to its high rate of recurrence, metastasis and 

poor response to chemotherapy and radiotherapy [2, 3]. 

Epstein‒Barr virus (EBV) was the first tumorigenic 

DNA virus to be identified, and approximately 90%  

of the population has latent EBV infection, which  

is also associated with gastric cancer in addition to  

the development of Hodgkin's lymphoma and naso-
pharyngeal carcinoma [4]. Studies have found that 

EBV-associated gastric cancer (EBVaGC) accounts 

for approximately 10% of gastric cancers worldwide 
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ABSTRACT 
 

Approximately 10% of gastric cancers are associated with Epstein‒Barr virus (EBV). Tremella fuciformis 
polysaccharides (TFPs) are characterized by antioxidative and anti-inflammatory effects in different diseases. 
However, whether TFP improves EBV-associated gastric cancer (EBVaGC) has never been explored. The 
effects of TFP on EBV-infected GC cell viability were determined using a CCK-8 assay and flow cytometry. 
Western blotting and RT‒qPCR were performed to explore the expression of ferroptosis-related proteins. The 
CCK-8 assay showed that TFP decreased EBV-infected GC cell viability in a dose- and time-dependent manner. 
Flow cytometry assays indicated that TFP significantly induced EBV-infected GC cell death. TFP also reduced 
the migratory capacity of EBV-infected GC cells. Furthermore, treatment with TFP significantly increased the 
mRNA levels of PTGS2 and Chac1 in EBV-infected GC cells. Western blot assays indicated that TFP suppressed 
the expression of NRF2, HO-1, GPX4 and xCT in EBV-infected GC cells. More importantly, overexpression of 
NRF2 could obviously rescue TFP-induced downregulation of GPX4 and xCT in EBV-infected GC cells. In 
summary, we showed novel data that TFP induced ferroptosis in EBV-infected GC cells by inhibiting 
NRF2/HO-1 signaling. The current findings may shed light on the potential clinical application of TFP in the 
treatment of EBVaGC. 
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and that EBV infection is positively associated with 

the risk of gastric cancer [4, 5]. More than 95% of 

patients with gastric cancer are found to have a typical 

history of Helicobacter pylori (H. pylori) infection, 

and EBV infection can promote the development of 

gastric cancer caused by H. pylori infection [6]. A 

recent study found that when normal gastric epithelial 

cells are infected with EBV, the intracellular micro-

environment undergoes significant changes thereby 

promoting GC [7]. EBV has been reported to interact 

with H. pylori to increase gankyrin as well as down-

stream alterations in cancer gene expression, which in 

turn promotes malignant proliferation and migration 

of gastric cancer cells [8]. Therefore, to improve the 

prognosis of patients with EBVaGC, researchers need 

to further study the underlying molecular mechanisms 

and potential therapeutic methods. 

 
Ferroptosis is a newly identified form of cell death that 

is induced via iron overload and elevation of lipid 

reactive oxygen species (ROS) [9–11]. In contrast to 

apoptosis, autophagy, and necrosis, ferroptosis can be 

induced by specific inducers, including eradicators of 

Ras and ST (erastin) and Ras selective lethal 3 (RSL3) 

[12]. Morphologically, cells undergoing ferroptosis have 

intact cytosolic membranes, normal-sized nuclei, no 

chromatin condensation, dense mitochondria, and 

residual cristae. Biochemically, cells undergoing 

ferroptosis exhibit elevated Fe2+ levels, increased ROS 

levels, inactivation or depletion of glutathione 

peroxidase 4 (GPX4), inhibition of cystine/glutamate 

transporter protein SLC7A11 (also xCT, system xc-), 

and accumulation of lipid metabolites [6]. The 

transcription factor nuclear factor erythroid 2-related 

factor 2 (NRF2) is a key member of endogenous 

antioxidant defense systems [13, 14]. Upregulation of 

NRF2 expression inhibits ferroptosis, and reduction of 

NRF2 promotes ferroptosis [15]. It has been 

demonstrated that NRF2 promotes the transcription of 

xCT and GPX4, which are important negative 

regulators of ferroptosis [16–18]. Other downstream 

antioxidant enzyme-encoding genes, such as HO-1, are 

also regulated by NRF2 [18]. Appropriate doses of HO-

1 have been shown to enable bilirubin to scavenge 

oxygen radicals to resist lipid peroxidation [19]. 

Therefore, NRF2-HO-1/GPX4/xCT-associated ferropto-

sis is an important tumor suppressor mechanism and 

may be a potential therapeutic approach for EBVaGC. 

 
Tremella fuciformis polysaccharides (TFP) are the 

active ingredients of Tremella fuciformis, which is  

a traditionally edible mushroom [20]. Increasing 

evidence has indicated important antioxidative and 

anti-inflammatory effects of TFP in different diseases 

[20, 21]. For instance, TFP suppresses LPS-induced 

oxidative stress and inflammation by inactivating 

NFκB signaling in macrophages [20]. TFP also 

protects against dextran sulfate sodium (DSS)-induced 

colitis in mice by inducing an anti-inflammatory 

response [21]. TFP has been found to improve a 

variety of digestive disorders [22, 23]. In methionine-

choline-deficient non-alcoholic disease NAFLD mice, 

TFP alleviates NAFLD by attenuating hepatic lipid 

accumulation and reducing expression of inflammation-

related genes [22]. TFP also promotes repair of the 

intestinal and mucus barriers ameliorating ulcerative 

colitis [23]. However, whether TFP improves GC or 

EBVaGC has not been reported. 

 

In the present study, we first explored the role of TFP in 

the progression of EBVaGC in in vitro EBV-infected 

GC cells. By elucidating the potential mechanism, we 

sought to gain novel insights into whether and how TFP 

suppresses EBV-infected GC cells. 

 

RESULTS 
 

EBV-infected AGS and MKN45 cells are sensitive to 

erastin-induced ferroptosis 

 

The CCK-8 assay showed that erastin significantly 

decreased EBV-infected AGS and MKN45 cell viability, 

but preincubation with Fer-1 reversed the erastin-

induced reduction in EBV-infected AGS and MKN45 

cell viability (Figure 1A). Furthermore, we found that 

the levels of MDA and Fe2+ were increased after erastin 

treatment in both EBV-infected AGS and MKN45  

cells, while erastin decreased GSH contents in both 

EBV-infected AGS and MKN45 cells (Figure 1B–1D). 

In comparison, preincubation with Fer-1 obviously 

abolished the effects induced by erastin in both EBV-

infected AGS and MKN45 cells (Figure 1B–1D).  

These observations indicated that EBV-infected AGS 

and MKN45 cells were sensitive to erastin-induced 

ferroptosis. 

 

TFP decreased EBV-infected AGS and MKN45 cell 

viability in a dose- and time-dependent manner 

 

To determine whether TFP inhibits the growth of 

gastric cancer cells, a CCK-8 assay was carried out. 

Our data demonstrated that TFP exhibited strong 

growth inhibitory effects on EBV-infected AGS and 

MKN45 cells (Figure 2A, 2B). The IC50 values for 

EBV-infected AGS and MKN45 cells were 43.76 

μg/mL and 22.56 μg/mL, respectively (Figure 2A, 2B). 

We then explored the effects of 40 μg/mL and 20 

μg/mL TFP on EBV-infected AGS and MKN45 cells 

at different time points. The results showed that 40 

μg/mL and 20 μg/mL TFP suppressed EBV-infected 

AGS and MKN45 cell viability at 12 h, 24 h, 48 h and 

72 h (Figure 2C, 2D). Collectively, TFP inhibited the 
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growth of both EBV-infected AGS and MKN45 cells 

in a dose- and time-dependent manner. 

 

TFP induced cell death and suppressed cell 

migration in EBV-infected AGS and MKN45 cells 

 

After incubation with TFP for 24 h, the effects of TFP 

on cell death were explored using flow cytometry. As 

shown in Figure 3A, 3B, TFP significantly enhanced  

the number of dead AGS (24.5±3.8 vs. 8.7±2.1) and 

MKN45 (3.9±2.8 vs. 36.5±5.6) cells compared with the 

number of dead control cells. Meanwhile, TFP induced 

a remarkable reduction in the number of migratory AGS 

(143±18 vs. 256±27) and MKN45 (75±9 vs. 137±15) 

cells relative to the vehicle-treated controls (Figure  

3C, 3D). 

 

TFP induced ferroptosis in EBV-infected AGS and 

MKN45 cells 

 

To explore the specific mechanism of TFP-induced 

cell death, we preincubated EBV-infected AGS and 

MNK45 cells with different reagents, including Fer-1 

(a ferroptosis inhibitor), Z-VAD-FMK (an apoptosis 

inhibitor), necrostatin-1 (Nec-1, a necrosis inhibitor), 

and 3-methyladenine (3-MA, an autophagy inhibitor). 

 

 
 

Figure 1. EBV-infected AGS and MKN45 cells are sensitive to erastin-induced ferroptosis. EBV-infected AGS and MKN45 cells were 

preincubated with 1 μM Fer-1 for 1 h and then treated with or without 10 μM erastin for 24 h. (A) CCK-8 assay demonstrated that erastin 
reduced EBV-infected AGS and MKN45 cell viability, but Fer-1 partially abolished these effects. The erastin-induced upregulation of MDA (B) 
and Fe2+ (C) levels was reversed by Fer-1 pretreatment in both EBV-infected AGS and MKN45 cells. (D) Erastin decreased intracellular GSH 
levels, but Fer-1 elevated GSH levels in EBV-infected AGS and MKN45 cells. *p<0.05, **p<0.01, ***p<0.001 vs. DMSO; #p<0.05, ##p<0.01, 
###p<0.001 vs. erastin. 
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The CCK-8 assay indicated that TFP elevated EBV- 

infected AGS and MKN45 cell death by approximately 

50% and 47%, but preincubation with Fer-1 reduced 

TFP-induced cell death to approximately 23% and 26% 

in EBV-infected AGS and MKN45 cells (Figure 4A, 

4B). However, Z-VAD-FMK, Nec-1 and 3-MA did not 

significantly change TFP-induced cell death in either 

EBV-infected AGS or MKN45 cells (Figure 4A, 4B). 

We also tested the effects of TFP on the mRNA levels 

of Ptgs2 and Chac1, two important ferroptosis markers, 

in both EBV-infected AGS and MNK45 cells. RT‒PCR 

analysis indicated that the mRNA levels of PTGS2  

and Chac1 were increased after TFP treatment, but  

Fer-1 preincubation abolished these effects in both 

EBV-infected AGS and MNK45 cells (Figure 4C, 4D). 

Compared to the control group, the levels of Fe2+ and 

MDA were enhanced in the TFP-treated group, while 

preincubation with Fer-1 partially reversed these effects 

in both EBV-infected AGS and MNK45 cells (Figure 

4E, 4F). TFP-induced reduction of GSH could also be 

abolished by Fer-1 in both EBV-infected AGS and 

MNK45 cells (Figure 4G). These findings suggested 

that ferroptosis was a major contributor to TFP-induced 

cell death. 

 

TFP suppressed NRF2/HO-1 activation in both 

EBV-infected AGS and MKN45 cells 

 

To determine the underlying mechanism by which TFP 

induces ferroptosis, we tested the effects of TFP on 

ROS production in EBV-infected AGS and MKN45 

cells. DCFH-DA staining showed that TFP treatment 

promoted ROS accumulation in EBV-infected AGS and 

MKN45 cells (Figure 5A). Consistently, erastin also 

induced ROS production in both EBV-infected AGS 

and MKN45 cells (Figure 5A). Moreover, cotreatment 

with TFP and erastin demonstrated a synergistic effect 

in EBV-infected AGS and MKN45 cells (Figure 5 

A). Studies have indicated that NRF2/HO-1 signaling 

plays a key role in ferroptosis in gastric cancer [24, 25]. 

 

 
 

Figure 2. TFP decreased EBV-infected AGS and MKN45 cell viability in a dose- and time-dependent manner. EBV-infected AGS 
and MKN45 cells were treated with 0, 5, 10, 25, 50, 100, or 200 μg/mL TFP or 0, 1, 2, 4, 6, 8, 16, 32, or 64 μg/mL TFP for 24 h. CCK-8 assays 
showed that TFP significantly decreased AGS (A) and MKN45 (B) cell viability. EBV-infected AGS and MKN45 cells were treated with 40 μg/mL 
and 20 μg/mL TFP for 12 h, 24 h, 48 h and 72 h. CCK-8 assays demonstrated that TFP decreased AGS (C) and MKN45 (D) cell viability in a time-
dependent manner. ***p<0.001 vs. con. 
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Figure 3. TFP induced cell death and suppressed cell migration in EBV-infected AGS and MKN45 cells. EBV-infected AGS and 

MKN45 cells were treated with 40 μg/mL and 20 μg/mL TFP for 24 h. Flow cytometry showed that TFP significantly elevated cell death in EBV-
transfected AGS (A) and MKN45 (B) cells. Transwell assays demonstrated that TFP suppressed EBV-transfected AGS (C) and MKN45 (D) cell 
migration. **p<0.01, ***p<0.001 vs. con. 



www.aging-us.com 1772 AGING 

 
 

Figure 4. TFP induced ferroptosis in EBV-infected AGS and MKN45 cells. EBV-infected AGS and MKN45 cells were preincubated with 
1 μM Fer-1, 20 μM Z-VAD-FMK, 20 μM Nec-1 and 20 μM 3-MA for 1 h and then treated with TFP for 24 h. CCK-8 assays showed that TFP 
elevated EBV-infected AGS (A) and MKN45 (B) cell death, but preincubation with Fer-1 reduced these effects. RT‒PCR analysis indicated that 
the mRNA levels of Ptgs2 and Chac1 were increased after TFP treatment, but Fer-1 preincubation abolished these effects in AGS (C) and 
MNK45 (D) cells. TFP enhanced the levels of Fe2+ (E) and MDA (F) in EBV-infected AGS and MKN45 cells, but Fer-1 preincubation abolished 
these effects. (G) TFP-induced reduction of GSH could also be abolished by Fer-1 in both EBV-infected AGS and MNK45 cells. **p<0.01, 
***p<0.001 vs. con; ##p<0.01, ###p<0.001 vs. TFP. 
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Figure 5. TFP suppressed NRF2/HO-1 activation in both EBV-infected AGS and MKN45 cells. EBV-infected AGS and MKN45 cells 

were preincubated with 40 μg/mL or 20 μg/mL TFP or 10 μM erastin for 24 h. (A) DCFH-DA staining showed that TFP elevated ROS production 
in EBV-infected AGS and MKN45 cells (bar=30 μm). Western blot assays showed that TFP significantly suppressed the expression of NRF2, 
HO-1, GPX4 and xCT in both AGS (B) and MKN45 (C) cells. *p<0.05, **p<0.01, ***p<0.001 vs. DMSO; #p<0.05, ##p<0.01 vs. erastin. 
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Western blot assays showed that TFP significantly 

suppressed the expression of NRF2, HO-1, GPX4 and 

xCT in both EBV-infected AGS and MKN45 cells 

(Figure 5B, 5C). Consistently, the combination of TFP 

and erastin also decreased the expression of HO-1, 

GPX4 and xCT in both EBV-infected AGS and MKN45 

cells (Figure 5B, 5C). 

 

TFP-induced ferroptosis was mediated via NRF2 in 

EBV-infected AGS and MKN45 cells 

 

We then overexpressed NRF2 in EBV-infected AGS 

and MKN45 cells. As shown in Figure 6A, 6B, 

transfection with ad-NRF2 significantly elevated the 

expression of NRF2 compared with that of ad-NC in 

EBV-infected AGS and MKN45 cells. Furthermore, 

upregulation of NRF2 elevated the expression of HO-1, 

GPX4 and xCT in EBV-infected AGS and MKN45 

cells (Figure 6A, 6B). Meanwhile, the suppression of 

GPX4 and xCT by TFP was obviously rescued by 

overexpressing NRF2 in gastric cancer cells (Figure 6A, 

6B). Furthermore, overexpression of NRF2 reduced 

intracellular Fe2+, SOD and MDA levels, even in the 

presence of TFP (Figure 6C, 6D, and 6E). In contrast, 

elevated NRF2 expression increased the level of GSH, 

and TFP pretreatment could not affect such effects in 

EBV-transfected GC cells (Figure 6F). These data 

indicated that TFP-induced ferroptosis was mediated via 

NRF2 in EBV-transfected GC cells. 

 

DISCUSSION 
 

EBV infection is closely related to the occurrence and 

development of some gastric cancers [26]. At present, 

there is no specific treatment for EBVaGC. Surgical 

resection or laparoscopic resection is still the main 

treatment of choice, and the procedure is the same as 

that for general gastric cancer, and there is no specific 

sensitive drug for postoperative chemotherapy [26, 27]. 

Compared to the current better measures and protocols 

for the prevention and treatment of Helicobacter pylori 
(HP) infection, strengthening the detection and treat-

ment of EBVaGC will bring greater benefits to some 

patients with gastric cancer and even other common 

malignancies [26, 27]. 

 

Ferroptosis is a form of cell death mediated by iron-

dependent oxidative stress that can be induced by 

erastin and RSL3 [28]. Here, we first explored whether 

the two cell lines, EBV-infected AGS and MKN45, 

were sensitive to ferroptosis. Our data showed that 

erastin treatment significantly reduced cell viability in 

EBV-infected AGS and MKN45 cells, but inhibition  

of ferroptosis via Fer-1 significantly augmented cell 

viability. Furthermore, erastin also decreased the levels 

of MDA and Fe2+ in EBV-infected AGS and MKN45 

cells. These observations indicated that EBV-infected 

AGS and MKN45 cells were sensitive to ferroptotic cell 

death. 

 

Tremella fuciformis is very popular in China due to  

its nutritive and tonic actions for treating exhaustion 

[29]. Its nonstarch polysaccharide component, TFP,  

is characterized by various pharmacological activities, 

including anticancer, hypoglycemic, anti-inflammatory, 

and antioxidant functions [30, 31]. However, whether 

TFP suppresses gastric cancer has never been explored. 

In the present study, we demonstrated an antitumor role 

of TFP in gastric cancer cells. The CCK-8 assay showed 

that TFP decreased EBV-infected AGS and MKN45 

cell viability in a dose- and time-dependent manner. 

Meanwhile, TFP significantly induced EBV-infected 

AGS and MKN45 cell death. The migratory capacity 

was also reduced when EBV-infected AGS and MKN45 

cells were treated with TFP. To our knowledge, this is 

the first study to demonstrate the anticancer role of TFP 

in gastric cancer cells. 

 
We further explored the underlying mechanism by 

which TFP induced EBV-infected gastric cancer cell 

death. In contrast to other inhibitors, Fer-1, a ferroptosis 

inhibitor, significantly reversed TFP-induced cell death. 

We propose that ferroptosis is a major contributor to 

TFP-induced gastric cancer cell death. Ferroptosis is 

recognized as a nonapoptotic regulated form of cell 

death and is characterized by iron-dependent lipid 

peroxidation [32]. Erastin is a classical ferroptosis 

inducer that mainly suppresses cystine uptake and 

depletes GSH by inhibiting xCT [33]. GSH is a major 

antioxidant that regulates biologic redox equilibrium 

and defends against oxidative injury, and it is also  

a necessary substrate for GPX4 [33, 34]. Once GPX4  

is depleted, redox homeostasis may be disturbed, and 

lipid hydroperoxides are elevated, thereby triggering 

ferroptosis [35]. In the current study, we validated that 

treatment with TFP significantly increased the mRNA 

levels of PTGS2 and Chac1 in EBV-infected AGS  

and MKN45 cells. Meanwhile, the MDA, Fe2+ and  

ROS levels were enhanced in EBV-infected AGS and 

MKN45 cells treated with TFP. In comparison, Fer-1,  

a lipid peroxidation inhibitor, significantly reversed 

TFP-induced upregulation of MDA, Fe2+ and ROS levels 

in gastric cancer cells. These findings suggested that 

TFP indeed induced ferroptosis in gastric cancer cells. 

 
NRF2/HO-1 signaling plays a key role in the 

endogenous antioxidative stress pathway [19]. Under 

normal conditions, NRF2 interacts with Keap1 and 

leads to its degradation [19]. Once oxidative stress  

is induced, NRF2 dissociates from Keap1 and trans-

locates into the nucleus, thereby activating downstream  

genes, including HO-1 [36]. Accumulating studies have 
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indicated that HO-1 is a key regulator of ferroptosis, and 

many drugs have been shown to suppress ferroptosis by 

activating NRF2/HO-1 signaling [36, 37]. For instance, 

gastrodin protects HT-22 cells from glutamate-induced 

ferroptosis by activating NRF2/HO-1 signaling [36]. 

Moreover, melatonin has also been shown to suppress 

ferroptosis and enhance the osteogenic capacity of 

osteoblasts by activating Nrf2/HO-1 signaling both in 

vivo and in vitro [37]. In this study, the results indicated 

that TFP suppressed the expression of NRF2, HO-1, 

GPX4 and xCT in both AGS and MKN47 cells. More 

importantly, overexpression of NRF2 could obviously 

rescue TFP-induced downregulation of GPX4 and xCT in 

gastric cancer cells. An in vivo assay also demonstrated 

that TFP treatment reduced in vivo tumor weight and 

volume. Meanwhile, the MDA and Fe2+ levels were 

 

 
 

Figure 6. TFP-induced ferroptosis was mediated via NRF2 in gastric cancer cells. EBV-infected AGS and MKN45 cells were 
preincubated with TFP for 2 h. After that, Ad-NRF2 and Ad-NC were transfected into EBV-infected AGS and MKN45 cells for 24 h. Transfection 



www.aging-us.com 1776 AGING 

with ad-NRF2 abolished TFP-induced suppression of HO-1, GPX4 and xCT in AGS (A) and MKN45 (B) cells. Overexpression of NRF2 reduced 
intracellular Fe2+ (C), SOD (D) and MDA (E) levels, even in the presence of TFP, in EBV-infected AGS and MKN45 cells. (F) Elevated NRF2 
expression increased the level of GSH, and TFP pretreatment could not affect such effects in EBV-transfected GC cells. *p<0.05, **p<0.01, 
***p<0.001 vs. con. 
 

decreased by TFP treatment. Western blot assays  

also showed that the protein levels of NRF2, HO-1, 

GPX4 and xCT were suppressed by TFP compared with 

those of controls. These findings suggested that TFP-

induced ferroptosis is mainly mediated by inactivating 

NRF2/HO-1 signaling.  

 

However, there are limitations in the present study. First, 

we did not do animal experiments to explore whether 

TFP inhibits tumor growth in mice in vivo. Second, 

whether other modes of death, such as apoptosis, necrosis 

and autophagy, are involved in TFP-induced EBV-GC 

cell death deserves further study. Third, TFP is an 

important component of Tremella fuciformis, accounting 

for approximately 60-70% of the dry weight of psyllium 

[38]. Our current results confirm that TFP can inhibit the 

malignant phenotype of EBVaGC in vitro, but the use of 

TFP alone may not be effective in preventing EBVaGC, 

mainly because EBVaGC is the result of a complex, 

multi-gene co-regulation. Moreover, there are no clinical 

studies supporting the therapeutic efficacy of TFP in 

gastrointestinal diseases. Therefore, more studies are 

needed to confirm the anti-EBVaGC effect of TFP in the 

future. 

 

Collectively, the present study showed novel data  

that TFP was a strong inducer of ferroptosis in EBV-

infected gastric cancer cells and that such effects were 

achieved by inhibiting NRF2/HO-1 signaling (Figure 7).  
 

 
 

Figure 7. Diagram of the molecular mechanism by which 
TFP inhibits EBVaGC. 

EBVaGC is a gastric cancer subtype with unique 

pathologic features based on its high expression of 

immune checkpoint proteins and high lymphocytic 

infiltration characteristics. In this study, we found  

for the first time that TFP is expected to be a new 

therapeutic strategy for EBVaGC. However, clinical 

studies of TFP for the treatment of EBVaGC are not yet 

available, and its specific efficacy needs to be further 

verified. 
 

MATERIALS AND METHODS 
 

Cell culture 

 

MKN45 and AGS cells were purchased from Procell 

(Wuhan City, China, https://www.procell.com.cn/). 

Cell authentication was performed using STR 

profiling. MKN45 cells were cultured in RPMI-1640 

medium, and AGS cells were cultured in Ham’s F-12 

medium. AGS and MKN45 cells were infected with 

EBV-Akata recombinant virus carrying the neomycin-

resistance gene and selected by G418 (Roche 

Diagnostics, Basel, Switzerland) at 200 μg/mL, as 

previously reported [39]. All culture medium was 

supplemented with 0.1 mg/mL streptomycin (GE 

Healthcare, Logan, UT, USA), 100 units/mL penicillin 

(GE Healthcare, Logan, UT, USA), and 10% fetal 

bovine serum (FBS, Gibco, Waltham, MA, USA) at 

37° C in a humidified atmosphere with 5% CO2. 

 

Construction of adenovirus vectors 

 

Adenovirus vectors overexpressing NRF2 (ad-NRF2) 

or blank vector were constructed by WZ Biosciences 

Inc. (http://www.wzbio.com.cn/, Jinan, Shandong, 

China). 
 

Cell counting kit-8 (CCK-8) assay 
 

Cell viability was determined using the CCK-8 assay in 

EBV-infected AGS and MKN45 cells. In brief, EBV-

infected AGS and MKN45 cells were seeded in 96- 

well plates at a density of 3,000 cells/well for 24 h. 

Then, the cells were incubated with TFP (ST8770, 

Solarbio, Beijing, China) at a density of 0, 5, 10, 25, 50, 

100, and 200 μg/mL and 0, 1, 2, 4, 6, 8, 16, 32 and 64 

μg/mL in EBV-infected AGS and MKN45 cells for 24 

h, respectively. Then, 10 μL of CCK-8 solution was 

added to each well for 4 h, and cell viability was 

determined at OD450 nm by applying an ELISA browser 

(Bio-Tek EL 800, Winooski, VT, USA). 

https://www.procell.com.cn/
http://www.wzbio.com.cn/
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Quantification of malondialdehyde (MDA), 

glutathione (GSH) and Fe2+ 

 

EBV-transfected AGS and MKN45 cells were seeded  

in six-well plates at a density of 5×105 cells/well 

overnight. The cells were preincubated with 1 μM 

ferrostatin-1 (Fer-1, HY-100579, MCE, USA) for 1 h. 

After that, the cells were treated with 20 and 40 μg/mL 

TFP or 10 μM erastin (HY-15763, MCE) for 24 h. The 

cells were collected, and intracellular MDA, GSH and 

Fe2+ levels were quantified using a Lipid Peroxidation 

MDA Assay Kit (S0131, Beyotime Biotechnology, 

Beijing, China), GSH assay kit (BC1175, Solarbio, 

Beijing, China) and iron assay kit (ab83366, Abcam, 

Cambridge, UK), according to the instructions. 

 

Flow cytometry assay 

 

Dead cells were quantified using an Annexin V-FITC/7-

AAD assay kit (P-CA-202, Procell, Wuhan, China). 

EBV-transfected AGS and MKN45 cells were seeded  

in six-well plates at a density of 5×105 cells/well 

overnight. The cells were treated with 20 and 40 μg/mL 

TFP for 24 h. Then, the cells were collected and re-

suspended in 500 μL binding buffer. Subsequently, 5 μL 

Annexin V-APC and 5 μL 7-AAD were added and 

mixed at room temperature for 10 min. Dead cells  

were quantified using an FC500 flow cytometry instru-

ment equipped with CXP software (Beckman Coulter, 

Bethesda, MA, USA). According to the instructions, Q2 

represented necrosis and late apoptotic cells, while Q3 

represented early apoptotic cells. Hence, only cells in 

the Q2 region were calculated in the present study. 

 

Transwell assay 

 

Transwell assays were used to determine the migration 

capacity of EBV-transfected AGS and MKN45 cells 

based on Transwell plates (Corning Inc., Corning, NY, 

USA) according to the manufacturer’s instructions. 

Briefly, EBV-infected AGS and MKN45 cells were 

seeded in upper chambers at a density of 105 cells/well 

overnight. The cells were treated with 20 and 40 μg/mL 

TFP for 24 h. In the lower chamber, fresh medium 

containing 20% FBS was added. After incubation for  

24 h at 37° C, the migratory cells were stained with 

0.1% crystal violet (Solarbio, Beijing, China) at room 

temperature for 20 min. Five visual fields were randomly 

selected to observe the number of cells under a 

microscope (Olympus Corporation, Tokyo, Japan). 

 

2,7-Dichlorodihydrofluorescein diacetate (DCFH-

DA) staining 

 

EBV-infected AGS and MKN45 cells were seeded in 

six-well plates at a density of 5×105 cells/well overnight. 

The cells were treated with 20 and 40 μg/mL  

TFP and/or 10 μM erastin for 24 h. After that, the cells 

were incubated with 1 mL of DCFH-DA (1:1000, 

D6470, Solarbio, Beijing, China) at 37° C for 20 min. 

Subsequently, the cells were washed with fresh culture 

medium without FBS three times (5 min/time) at room 

temperature. Intracellular ROS were observed under a 

fluorescence microscope (Olympus Corporation, Tokyo, 

Japan). 

 

Western blot 

 

Total proteins were isolated from EBV-infected AGS or 

MKN45 cells using RIPA buffer (Solarbio, Beijing, 

China). The protein concentration was determined using 

a BCA assay kit (Pierce; Thermo Fisher Scientific, Inc., 

Waltham, MA, USA). The protein was isolated using 

12% SDS‒PAGE and transferred onto PVDF membranes 

(Millipore, Burlington, MA, USA). The membranes 

were blocked with 5% milk (Pierce; Thermo Fisher 

Scientific, Inc.) and washed with PBST three times (5 

min/time). The membranes were incubated with the 

following primary antibodies at 4° C overnight: NRF2 

(12721, 1:1000, Cell Signaling Technology, Inc., USA), 

HO-1 (26416, 1:1000, Cell Signaling Technology, Inc.), 

GPX4 (52455, 1:1000, Cell Signaling Technology, 

Inc.), xCT (ab175186, 1:1,000; Abcam, Cambridge, 

UK), and GAPDH (5174, 1:5,000; Cell Signaling 

Technology, Inc.). The membranes were then incubated 

with horseradish peroxidase (HRP)-conjugated goat 

anti-rabbit IgG (both 1:5,000; cat. no. ZB-2301; Beijing 

Zhongshan Golden Bridge Biotechnology Co., Beijing, 

China) for 2 h at room temperature, followed by  

three washes with TBST. Enhanced chemiluminescence 

(EMD Millipore, Billerica, MA, USA) was used to 

determine the protein concentrations according to the 

manufacturer’s protocol. Signals were detected using an 

Ultra High Sensitivity ECL Substrate Kit (ab133409; 

Abcam, Cambridge, UK), and quantitative analysis was 

performed using UVP 7.0 software (UVP LLC, Upland, 

CA, USA). Relative protein expression was normalized 

to GAPDH. All experiments were repeated three times. 

ImageJ 1.43b software (National Institutes of Health, 

Bethesda, MD, USA) was used for densitometry analysis. 

 

RT‒qPCR 

 

Total RNA was isolated from EBV-infected AGS or 

MKN45 cells using TRIzol reagent (Solarbio, Beijing, 

China). Total RNA (1.0 μg) was reverse-transcribed to 

first-strand cDNA using Moloney murine leukemia 

virus reverse transcriptase (NEB, Ipswich, MA, USA) 

according to the manufacturer’s instructions. The 
primers were as follows: PTGS2-F: GAGGGATCTG 

TGGATGCTTCG; PTGS2-R: AAACCCACAGTGCT 

TGACAC; Chac-1-F: GGAACTTGACCAGATTCCC 



www.aging-us.com 1778 AGING 

CC; Chac-1-R: AGAGGATCGAGGCTCTTGGA; 

GAPDH-F: TTCAACAGCGACACCCACTC; GADPH-

R: TGGTGGTCCAGGGGTCTTAC. Quantitative real-

time PCR was carried out using the iQ5 Optical 

System (Bio-Rad Laboratories, Hercules, CA, USA)  

in combination with SYBR Green (Roche Applied 

Science, Mannheim, Germany). The procedures were 

as follows: 95° C for 30 s and 40 cycles at 95° C for 

30 s, 60° C for 30 s, and 72° C for 30 s. GAPDH was 

used as an internal control, and the data presented are 

the average of three independent experiments. Relative 

mRNA expression was normalized to GAPDH using 

the 2-∆∆Cq method [40]. 
 

Statistical analysis 
 

Data are expressed as the mean ± SD, and the statistical 

analysis was conducted using GraphPad Prism 7. The 

unpaired Student’s t test was used to compare two 

groups, and one-way ANOVA followed by post hoc 

analysis was used to compare multiple groups. P < 0.05 

was considered statistically significant. 
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