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INTRODUCTION 
 

Maelstrom (MAEL), located in 1q24, is an evolutionarily 

conserved gene first found in Drosophila oocyte [1].  

The full-length MAEL protein contains a high-mobility 

group (HMG) domain for DNA binding as well as a novel 

MAEL-specific domain with a single-stranded RNA 

(ssRNA)-specific endonuclease activity [2–4]. MAEL 

expression has been discovered by Northern blot in only 

the testis of normal human tissues [5], while it has  

been found to be aberrant in numerous cancer cell  

lines [5, 6]. Unlike in germ cells, where MAEL is a  

nuage component involved in posttranscriptional piRNA-

mediated transposon silencing [7], MAEL has been 

identified as a component of stress granule (SG) in tumor 

cells [8], relating to the cellular response to abnormal 

physiological or pathological conditions, such as hypoxia, 

oxidative stress, and chemotherapeutic drugs [9]. 

www.aging-us.com AGING 2024, Vol. 16, No. 3 

Research Paper 

MAEL in human cancers and implications in prognostication and 
predicting benefit from immunotherapy over VEGFR/mTOR 
inhibitors in clear cell renal cell carcinoma: a bioinformatic analysis 
 

Jin Tao1,*, Jinshan Cui1,*, Yu Xu2,*, Yafeng Fan1,*, Guodong Hong1, Qiaoxia Zhou2,  
Guoqiang Wang2, Leo Li2, Yusheng Han2, Chunwei Xu3, Wenxian Wang4, Shangli Cai2,  
Xuepei Zhang1 
 
1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China 
2Burning Rock Biotech, Guangzhou, Guangdong, China 
3Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China 
4Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang 
Cancer Hospital), Hangzhou, Zhejiang, China 
*Equal contribution 
 
Correspondence to: Xuepei Zhang; email: zhangxuepei@263.net, https://orcid.org/0000-0003-0919-5871   
Keywords: MAEL, pan-cancer analysis, clear cell renal cell carcinoma, prognosis, immunotherapy 
Received: August 15, 2023 Accepted: December 13, 2023  Published: January 31, 2024 

 
Copyright: © 2024 Tao et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Maelstrom (MAEL), a novel cancer/testis-associated gene, may facilitate the initiation and progression of 
human malignancies, warranting comprehensive investigations. Single-cell and tissue-bulk transcriptomic data 
demonstrated higher MAEL expression in testis (spermatogonia/spermatocyte), kidney (proximal tubular cell), 
and brain (neuron/astrocyte), and corresponding cancers, including testicular germ cell tumor, glioma, papillary 
renal cell carcinoma, and clear cell renal cell carcinoma (ccRCC). Of these cancers, only in ccRCC did MAEL 
expression exhibit associations with both recurrence-free survival and overall survival. High MAEL expression 
was associated with an anti-inflammatory tumor immune microenvironment and VEGFR/mTOR activation in 
ccRCC tissues and high sensitivities to VEGFR/PI3K-AKT-mTOR inhibitors in ccRCC cell lines. Consistent with 
these, low rather than high MAEL expression indicated remarkable progression-free survival benefits from 
immune checkpoint inhibitor (ICI)-based immunotherapies over VEGFR/mTOR inhibitors in two large phase III 
trials (JAVELIN Renal 101 and CheckMate-025). MAEL is a biologically and clinically significant determinant with 
potential for prognostication after nephrectomy and patient selection for VEGFR/mTOR inhibitors and 
immunotherapy-based treatments. 
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As a novel cancer/testis-associated gene, MAEL is 

deemed to participate in stem cell self-renewal that 

favors tumor proliferation [10]. Emerging evidence  

has revealed its oncogenic mechanisms in cell lines 

concerning the cancers in breast [6], esophagus [11], 

stomach [12], colorectum [13], liver [6, 14], ovary [6, 

15], and bladder [16], in terms of inducing epithelial-

mesenchymal transition (EMT) [11–15], protecting 

genetic integrity [6], and recruiting myeloid-derived 

suppressor cells (MDSCs) that leads to an anti-inflam-

matory tumor immune microenvironment (TIME) [11]. 

Given the associations of MAEL with EMT/stemness 

and TIME, we hypothesized that MAEL might define  

a stemness-like and immune-suppressive phenotype 

associated with the resistance to immune checkpoint 

inhibitors (ICIs). 

 

In this study, we first delineated the expression 

landscape of MAEL in human normal tissues and 

cancers, finding high MAEL expression in normal 

tissues such as testis (spermatogonia/spermatocyte), 

kidney (proximal tubular cell), and brain (neuron/ 

astrocyte), as well as cancers including testicular  

germ cell tumor (TGCT), glioma, papillary renal cell 

carcinoma (pRCC), and clear cell renal cell carcinoma 

(ccRCC). Of these cancers, only in ccRCC did MAEL 

expression appear to be associated with both recurrence-

free survival (RFS) and overall survival (OS). In  

two large phase III trials, JAVELIN Renal 101 and 

CheckMate-025, high MAEL expression was linked 

with anti-inflammatory TIME and VEGFR/mTOR 

activation in ccRCC tissues, high sensitivities to 

VEGFR/PI3K-AKT-mTOR inhibitors in ccRCC cell 

lines, and poor progression-free survival (PFS) benefits 

from ICI-based immunotherapies over VEGFR/mTOR 

inhibitors. 

 

MATERIALS AND METHODS 
 

Study design and clinical cohorts 

 

In total, there are six parts in our study, including (i) 

MAEL expression in normal tissues (tissue bulk RNA-

seq, Human Protein Atlas [HPA]) and cells (single cell 

RNA-seq, data source: Supplementary Table 1) [17–

19], (ii) MAEL mRNA expression in 32 types of cancer 

cell lines (Cancer Cell Line Encyclopedia [CCLE]) and 

33 types of cancer tissues (The Cancer Genome Atlas 

[TCGA]) and its pan-cancer prognostic effects [20, 21], 

(iii) mRNA expression of the six transcripts of MAEL 

among 33 cancer types and its association with DNA 

methylation and copy number variations (CNVs) [22, 

23], (iv) protein expression of MAEL in ccRCC in the 

HPA database [18] and mRNA expression of MAEL in 

patient-derived xenografts (GSE83820 and GSE36895) 

[24, 25], (v) associations of MAEL expression with 

clinicopathological features, mutations, gene expression, 

and prognosis in The Cancer Genome Atlas-Kidney 

Renal Clear Cell Carcinoma (TCGA-KIRC) cohort 

(n=522) [26] and the International Cancer Genome 

Consortium (ICGC)-Pan-cancer analysis of whole 

genomes (PCAWG) Renal Cell Carcinoma-Europe 

(RECA-EU) cohort (n=64) [27, 28], (vi) association 

between MAEL expression and sensitivities to VEGFR/ 

mTOR inhibitors in the ccRCC cell lines of the 

Genomics of Drug Sensitivity in Cancer (GDSC,  

n=16) dataset [29] and patients with advanced ccRCC 

treated with first-line sunitinib (E-MTAB-3267, n=53) 

[30], and (vii) implications of MAEL expression in 

predicting the benefit from ICI-based therapies over 

VEGFR/mTOR inhibitors in the JAVELIN Renal 101 

trial (phase III, avelumab+axitinib vs. sunitinib, n=726) 

and the CheckMate-025 trial (phase III, nivolumab vs. 

everolimus, n=250) [31]. 

 

The basic features of these clinical cohorts, including 

sample sizes, outcomes, clinical settings, the platforms 

of RNA-seq and immunohistochemical (IHC) staining 

of programmed cell death-ligand 1 (PD-L1), and 

treatment, are displayed in Supplementary Table 2. 

This report follows the Strengthening the Reporting  

of Observational Studies in Epidemiology (STROBE) 

and the REporting recommendations for tumour 

MARKer prognostic studies (REMARK) reporting 

guidelines. 

 
Genomic analysis 

 

The genomic alterations of the TCGA-KIRC  

cohort were downloaded from the University of 

California Santa Cruz (UCSC) Xena database [32]. 

Tumor mutational burden (TMB) and intratumoral 

heterogeneity (ITH) were retrieved from the TCGA 

pan-cancer article [26]. The Catalogue Of Somatic 

Mutations In Cancer (COSMIC) database was used as 

a supplement to the TCGA-KIRC cohort for measuring 

the mutational rate of MAEL in ccRCCs. Silent 

mutations were excluded from our study. The genomic 

locations of the six transcripts of MAEL and their 

regulation regions (e.g., promoter and enhancer) were 

illustrated using the Ensembl [33]. 

 
Transcriptomic analysis 

 

MAEL expression in normal human tissue bulks and 

single cells was illustrated using the HPA (https://www. 

proteinatlas.org/ENSG00000143194-MAEL, for details, 

see Supplementary Methods) [17–19]. For tissue bulk 

RNA-seq, there are 107 samples of the nervous system 

(e.g., cerebral cortex) in the HPA dataset, and we used 

the median value to represent the MAEL expression in 

the nervous system. For single-cell RNA-seq, Uniform 

https://www.proteinatlas.org/ENSG00000143194-MAEL
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Manifold Approximation and Projection (UMAP) was 

used to visualize the different single-cell clusters, and 

the cell type of each cluster was determined by the 

expression of cell-type markers. 

 

The expression of the six isoforms of MAEL in cancer 

tissue bulks and the prognostic effects of MAEL 

expression in the 33 cancer types of the TCGA database 

were analyzed using the Gene Expression Profiling 

Interactive Analysis 2 (GEPIA2, http://gepia2.cancer-

pku.cn) [21]. The association between MAEL expression 

and its DNA methylation level was explored using  

the MEXPRESS (https://mexpress.be/index.html) [22, 

23]. The level of transcriptomic data was measured  

by log2(transcripts per kilobase million [TPM]+1) in the 

present study. 

 

Gene Ontology (GO) analysis was performed  

on the website (http://geneontology.org/) by using  

the annotation data set named Protein Analysis  

Through Evolutionary Relationships (PANTHER) GO-

slim biological process [34, 35]. 

 

For Gene Set Enrichment Analysis (GSEA), the 

javaGSEA Desktop Application (GSEA 4.0.1) was  

used to investigate the gene signatures significantly 

enriched in the ccRCC samples with higher or lower 

MAEL expression (cut-off: median value) [36]. The 

normalized enrichment score (NES) is the primary 

statistic for assessing the enrichment of gene sets. 

 
Pharmacogenomic analysis 

 

In total, 16 ccRCC cell lines with data on 

transcriptomics and sensitivities to anti-cancer agents 

were included for analysis. For each targeted agent,  

the half-maximal inhibitory concentration levels (IC50) 

of 16 ccRCC cell lines were scaled according to their 

geomean (formula: lg[IC50/geomean]). Two-way analysis 

of variance was used to assess the difference in 

sensitivities between the cell lines with high and low 

MAEL expression. 

 
Statistical analysis 

 

To assess the between-group difference, we used (i)  

the Fisher exact test for categorical variables, (ii) the 

Mann-Whitney test, t test with Welch correction, the 

Kruskal-Wallis test, or one-way analysis of variance for 

continuous variables, and (iii) the Kaplan-Meier (KM) 

curves, the Log-rank test, and the Cox proportional-

hazards regression model (hazard ratio [HR] and 95% 

confidence interval [CI]) for time-to-event variables. 

The variables with a p-value below 0.05 in the uni-

variable Cox regression were included in the following 

multivariable Cox model. The spearman or Pearson 

correlation was used to test the correlations between 

continuous variables. 

 

The statistical analyses were performed using IBM 

SPSS Statistics 22 or R 4.1.3. The nominal level of 

significance was set at 5%, and all 95% CIs were 2-

sided unless otherwise specified. The adjusted P-value 

(Q-value) was calculated using the Benjamini-Hochberg 

method. 

 

Data availability 

 

The authors declare that relevant data supporting  

the findings of this study are available within the  

paper and its Supplementary Files. Due to ethical and 

privacy concerns, we are unable to publish the patient-

level data in our study, of which readers may contact 

the corresponding authors for the access for non-

commercial purposes. 

 

RESULTS 
 

MAEL expression in normal tissues and single cells 

 

A previous study observed that human MAEL 

expression was exclusive in testis rather than other 

tissues, including brain, heart, liver, lung, spleen, 

kidney, and ovary as determined by Northern blot (5). 

Here, we analyzed the RNA-seq data of 32 kinds of 

human tissues. Besides testis, relatively higher MAEL 

expression was revealed in placenta, heart muscle, 

epididymis, kidney, and nervous system (e.g., brain and 

spinal cord; Figure 1A and Supplementary Table 3). 

 

We further analyzed the single-cell transcriptomes of 25 

kinds of human tissues and peripheral blood mono-

nuclear cells (PBMCs) to assess the expression level of 

MAEL in different cell types (Supplementary Table 4). 

As for the tissues with higher MAEL expression (testis, 

placenta, heart muscle, kidney, and brain), the UMAP 

plots and MAEL expression in each single cell cluster 

are shown in Figure 1B–1E and Supplementary Figure 

1, and the corresponding mRNA expression of cell- 

type markers in different single cell type clusters are 

displayed in Supplementary Figure 2–6, respectively.  

In short, MAEL was expressed relatively higher in  

early spermatids, spermatocytes, spermatogonia, and 

late spermatids in testis (Figure 1B), fibroblasts and 

endothelial cells in placenta (Figure 1C), smooth muscle 

cells and cardiomyocytes in heart muscle (Figure 1D), 

proximal tubular cells in kidney (Figure 1E), and astro-

cyte, excitatory neurons, and oligodendrocyte precursor 

cells in brain (Supplementary Figure 1). 

 

Of note, first, unlike the pattern in testis and placenta 

where MAEL was expressed “equivalently” in the 

http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
https://mexpress.be/index.html
http://geneontology.org/
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Figure 1. MAEL expression in normal tissues and single-cell clusters. (A) MAEL expression in normal tissues (tissue bulk RNA-seq, 
Human Protein Atlas). (B–E) UMAP plots and MAEL expression in the single cell clusters (single cell RNA-seq) of testis (GSE120508, B), 
placenta (E-MTAB-6701, C), heart muscle (GSE109816, D), and kidney (GSE131685, E). The depth of the color of each point reflects the 
relative expression of MAEL. Abbreviations: TPM=transcripts per kilobase million, UMAP=Uniform Manifold Approximation and Projection. 
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single-cell clusters with higher MAEL expression (e.g., 

c-7 in testis and c-15 in placenta, Figure 1B, 1C), 

MAEL was expressed “sporadically” in the proximal 

tubular cells in kidney (Figure 1E), suggesting that 

MAEL might function in a certain subset of proximal 

tubular cells, probably relevant to the homeostasis  

of proximal tubule. Second, MAEL expression was 

extremely low in immune tissues (lymph node, spleen, 

bone marrow, and thymus, Figure 1A) and the immune 

cell clusters in other tissues and peripheral blood 

(Supplementary Table 4), raising the possibility that 

MAEL might not be involved in the maturation and 

activation of immune cells. 

 

MAEL in cancer tissues and cancer cell lines 

 

Among the 33 cancer types in the TCGA  

database (abbreviations, see Supplementary Table 5), 

MAEL was expressed higher in TGCT, glioblastoma 

multiforme (GBM), brain lower-grade glioma (LGG), 

kidney renal papillary cell carcinoma (KIRP, also 

abbreviated as pRCC), and KIRC (also abbreviated as 

ccRCC; Figure 2A). These results were consistent with 

its expression in normal cell types. For instance, unlike 

pRCC and ccRCC originating from proximal tubular 

cells with high MAEL expression (Figure 1E), kidney 

chromophobe carcinoma (KICH) develops from distal 

tubular cells that did not express MAEL (Figure 1E) 

and had far lower expression of MAEL than KIRC and 

KIRP (Figure 2A). Similarly, in the CCLE database 

(abbreviations, see Supplementary Table 5), high MAEL 

expression was observed in nervous system tumors 

and KIRC (Figure 2B). 

 

As for prognostic value, the RFS and OS of two 

subgroups divided by the median MAEL mRNA level 

 

 
 

Figure 2. Pan-cancer analysis of MAEL. (A) MAEL expression among the 33 cancer types of the TCGA database (tissue bulk RNA-seq).  
(B) MAEL expression among the 32 types of cancer cell lines of the CCLE database. (C) Prognostic effect of MAEL expression among the 33 
cancer types of the TCGA database (high vs. low, cut-off: median). Abbreviations: CCLE=Cancer Cell Line Encyclopedia, TCGA=The Cancer 
Genome Atlas. 
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were compared among the 33 cancer types in the 

TCGA database. Consistent prognostic effects for 

predicting both RFS and OS (P<0.05) were observed 

in KIRC, acute myeloid leukemia (LAML), and skin 

cutaneous melanoma (SKCM, Figure 2C). 

 

Given the level of MAEL mRNA and its  

prognostic effect, MAEL may play a crucial role in 

KIRC, compared with other cancer types. We sought  

to further discover its linkages with clinicopathological 

features, DNA methylation, genomic alterations, path-

way activation, drug sensitivity, and immunotherapy 

efficacy in clear cell renal cell carcinomas. 

 

Expression of the six transcripts of MAEL and its 

potential regulatory mechanisms in ccRCCs 

 

MAEL, located in chromosome 1 (166,975,582-

167,022,214), has six transcripts, of which MAEL- 
204 and MAEL-205 are processed transcripts, and the 

other four transcripts (MAEL-206, MAEL-201, MAEL-

202, and MAEL-203) can be translated into proteins 

(Figure 3A; features of these isoforms are shown in 

Supplementary Table 6). In particular, MAEL-206 lacks 

the HMG domain compared with MAEL-201, 202, and 

203 (Figure 3A). 

 

The expression of these six transcripts in the 33 cancer 

types in the TCGA database is shown in Supplementary 

Figure 7. Among the five cancer types with the highest 

MAEL expression, TGCT had equivalent expression 

levels of MAEL-206 and MAEL-202, while the MAEL 

expression in the other four cancer types was dominated 

by MAEL-206 (>90%, Figure 3B), indicating the 

potential role of MAEL-206 in brain and kidney tumors.  

 

Given the distinct expression patterns of MAEL 

isoforms in KIRC and TGCT, we further explored the 

DNA methylation level of MAEL and its association 

with mRNA expression in these two cancers. First, in 

KIRCs where MAEL expression was dominated by 

MAEL-206, MAEL expression was negatively correlated 

with the methylation level of cg08348962 near the 

promoter of MAEL-206 (P=0.049), while this 

association was non-significant in TGCTs (P=0.24; 

Figure 3C and Supplementary Table 7, marked in blue). 

Second, compared with KIRCs, TGCTs had higher 

MAEL-202 expression and lower methylation levels in 

the regions near its promoters (Figure 3C, marked in 

green); the methylation levels of these regions were 

negatively correlated with MAEL expression in TCGTs 

instead of KIRCs (P<0.05 in TCGTs and P>0.20  

in KIRCs; Supplementary Table 7, marked in green). 
These results indicate that DNA methylation may, in 

part, explain the distinct expression patterns of MAEL 

isoforms in human cancers. 

In addition to DNA methylation, copy number and 

mutation may affect transcription. MAEL expression 

was positively correlated with copy number (P<0.001, 

Supplementary Table 7). No mutational event of MAEL 

was observed in the ccRCCs of the TCGA and the 

COSMIC databases, suggesting that its function in 

ccRCCs might be regulated by expression level instead 

of the mutant protein.  

 

Clinicopathological and prognostic correlates of 

MAEL in ccRCCs 

 

Age, sex, race, and pathological TNM stage were  

not significantly associated with MAEL expression, 

while the samples with a poor histological grade  

had lower MAEL expression (P=0.022, Figure 3D and 

Supplementary Table 7). We further calculated the 

prognostic effect between MAEL expression and OS at 

each cut-off value ranging from 20th to 80th percentiles 

and observed that high MAEL expression trended to be 

associated with long OS at most cut-off values (Figure 

3E). When the cut-off was empirically determined as 

the median value, the HR was 1.50 (low vs. high: 95% 

CI 1.11–2.03, P=0.008, Figure 3E). The prognostic 

effect of MAEL expression was independent of co-

variates including age, laterality, TNM stage, and 

histological grade (multivariable HR=1.54, 95% CI 

1.13–2.09, P=0.006, Figure 3F). A similar association 

with RFS was also observed (univariable HR=1.43, 

95% CI 1.00–2.04, P=0.050; multivariable HR=1.47, 

95% CI 1.03–2.11, P=0.034; Supplementary Figure 8). 

In a small cohort retrieved from the ICGC-PCAWG 

RECA-EU database (n=64) [27, 28], we also observed 

a prognostic trend with similar HR (low vs. high: 

HR=1.58, 95% CI 0.70–3.58, P=0.28; Supplementary 

Figure 9). 

 

MAEL protein expression in the cytoplasm of partial 

tumor cells was observed in two ccRCC samples  

of the HPA database using immunohistochemical  

staining (Supplementary Figure 10) [18]. This 

distribution profile is consistent with previous studies  

in hepatocellular carcinoma [14], ovarian cancer [15], 

bladder urothelial carcinoma [16], and colorectal 

adenocarcinoma [13]. Moreover, in the GSE83820 

dataset including five ccRCC samples and their PDXs, 

compared to the primary grafts, the MAEL expression 

was increased at early passages (passage 1 [P1] vs. P0: 

P=0.014; P2 vs. P0: P=0.086) and tended to return  

to the baseline level at P4 (Supplementary Figure 11). 

A similar trend was observed in another PDX dataset 

(GSE36895, Supplementary Figure 11). These results 

indicate the stable expression of MAEL in ccRCC  
and suggest that MAEL might be involved in clonal 

evolution and/or immune escape during the early 

phase of xenograft development. 
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Figure 3. Expression and prognostic effect of MAEL in ccRCC. (A) Location of MAEL in human genome. (B) mRNA expression of the six 

transcripts of MAEL in the KIRCs, KIRPs, LGGs, GBMs, and TGCTs of the TCGA database. (C) Association between mRNA expression and DNA 
methylation in the KIRCs and TGCTs of the TCGA database. (D, E) Associations of MAEL expression with copy number, clinicopathological 
features (D) and overall survival (E) in the TCGA-KIRC cohort. (F) Univariable and multivariable analysis of the prognostic effect of MAEL 
expression in the TCGA-KIRC cohort. Abbreviations: ccRCC=clear cell renal cell carcinoma, GBM=glioblastoma multiforme, KIRC=Kidney Renal 
Clear Cell Carcinoma, KIRP=kidney renal papillary cell carcinoma, LGG=brain lower grade glioma, TCGA=The Cancer Genome Atlas, 
TGCT=testicular germ cell tumors. 



www.aging-us.com 2097 AGING 

MAEL was expressed higher in ccRCCs than in normal 

kidneys (P=0.024, Supplementary Figure 12) indicating 

its oncogenic role in ccRCC, while higher MAEL 

expression was associated with a better prognosis.  

This observation might seem counterintuitive. However, 

different types of ccRCCs may depend on different 

oncogenes, and MAEL-dependent ccRCCs may progress 

more slowly than those dependent on other oncogenes, 

thus exhibiting a relatively better prognosis. 

 

Genomic, transcriptomic, and pharmacogenomic 

correlates of MAEL in ccRCCs 

 

In the TCGA-KIRC cohort, MAEL expression was not 

associated with mutational count (P=0.99) or fraction 

genome altered (P=0.27). As for commonly mutated 

genes, high MAEL expression was associated with the 

mutations in VHL, PBRM1, and SETD2 (P<0.05, Figure 

4A), suggesting its linkage with activated angiogenesis 

[37, 38]. 

 

We further analyzed the correlations between MAEL 

expression and other genes’ expression levels and 

identified 2,576 positively-correlated genes and 2,904 

negatively-correlated genes (Figure 4B and Supple-

mentary Table 8). The positively-correlated genes were 

enriched in the pathways concerning blood vessel 

development and Ras protein signal transduction 

(Q<0.05, Figure 4C) and excluded in the immune-

related pathways about B cell, immunoglobulin-

mediated immune response, lymphocyte activation, and 

complement activation (Q<0.05; Figure 4C, marked in 

bold). On the contrary, the negatively-correlated genes 

were enriched in the immune-related pathways relating 

to lymphocyte proliferation, inflammatory response, 

and cytokine (Q<0.05; Figure 4D, marked in bold). 

 

Inhibitors of vascular endothelial growth factor receptor 

(VEGFR, e.g., sunitinib and axitinib) and mTOR (e.g., 

everolimus) exhibit anti-tumor activity in ccRCCs [39–

41], largely due to the activation of angiogenesis and 

the PI3K-AKT-mTOR signaling [42–45]. Compared 

with the ccRCCs with low MAEL expression (below 

median), VEGF and mTOR signatures were enriched in 

those with high MAEL expression (VEGF: NES=2.28, 

P<0.001; mTOR: NES=1.68, P=0.013; Figure 4E). 

Among the 16 ccRCC cell lines in the CCLE database, 

the IC50 values of VEGFR and PI3K-AKT-mTOR inhi-

bitors were lower in those with high MAEL expression 

than those with low MAEL expression (above median; 

P<0.001, Figure 4F and Supplementary Table 9). In  

the E-MTAB-3267 cohort including 53 patients with 

advanced ccRCC [30], high MAEL expression trended 
to be linked with favorable PFS on first-line sunitinib 

(high vs. low: HR=0.56, 95% CI 0.30–1.06, P=0.064, 

Supplementary Figure 13). 

Taken together, MAEL expression was associated  

with inactivated anti-tumor immunity, activated path-

ways concerning VEGFR and PI3K-AKT-mTOR, and 

sensitivities to VEGFR/PI3K-AKT-mTOR inhibitors in 

ccRCCs. 

 

MAEL expression predicts the benefits from ICI-

based therapies over VEGFR/mTOR inhibitors in 

advanced/metastatic ccRCCs 

 

We further investigated the association of MAEL 

expression with the benefit from ICI-based therapies 

over VEGFR/mTOR inhibitors in two large phase III 

trials, the JAVELIN Renal 101 (avelumab plus axitinib 

vs. sunitinib) and the CheckMate-025 (nivolumab vs. 

everolimus). 

 

First, the 726 advanced/metastatic ccRCC patients 

with available RNA-seq data in the JAVELIN  

Renal 101 trial (clinicopathological features, see 

Figure 5A) were randomly separated into a training set 

(n=484) and a validation set (n=242) with a ratio of 

2:1. The difference in the association of a biomarker 

with survival across treatment arms is the essential 

proof of its predictive utility [46]. In the training set, 

for each cut-off value ranging from 20th to 80th 

percentiles, we calculated the treatment effect in the 

below cut-off and the above cut-off subgroups. The 

treatment effect was larger in the low MAEL group 

than the high MAEL group at all cut-offs (Figure 5B). 

The difference in treatment effect between these two 

subgroups reached its maximum at the cut-off of 67.4th 

percentile (interaction HR=0.54, 95% CI 0.32–0.93, 

P=0.027, Figure 5B). At this cut-off, the benefit from 

avelumab plus axitinib over sunitinib was considerable 

in the low MAEL expression group (HR=0.53, 95%  

CI 0.38–0.73, P<0.001) while negligible in the high 

MAEL expression group (HR=0.97, 95% CI 0.63–1.49, 

P=0.87, Figure 5C). Comparable results were observed 

in the validation set (low MAEL expression group: 

HR=0.61, 95% CI 0.40–0.92, P=0.016; high MAEL 

expression group: HR=1.01, 95% CI 0.47–2.15, 

P=0.98, Figure 5D). 

 

In the total set of all 726 patients, the interaction  

effect between MAEL expression and treatment effect  

was significant (interaction HR=0.56, 95% CI 0.36– 
0.88, P=0.012, Figure 5E). In the multivariable analysis  

using the data provided by the JAVELIN Renal 101 

researchers, the interaction effect remained significant 

(multivariable interaction HR=0.58, 95% CI 0.37–0.91, 

P=0.019, Table 1). Compared with the low MAEL 

expression group, the high MAEL expression group had 
more females (P=0.001) and the m1/4 cluster defined  

by the TCGA Research Network study (P<0.001) [47], 

lower CD8 densities in tumor center (P=0.044) and total 



www.aging-us.com 2098 AGING 

 
 

Figure 4. Associations of the MAEL expression with genomic alterations, gene expression, and sensitivities to VEGFR and 
PI3K-AKT-mTOR inhibitors. (A) Oncoprint illustrating the association between MAEL expression and genomic indices and alterations in the 
TCGA-KIRC cohort. (B) Diagram of identifying the genes with expression correlated with MAEL expression in the TCGA-KIRC cohort.  
(C, D) Gene Ontology results of the positively correlated genes (C) and negatively correlated genes (D). (E) Gene Set Enrichment Analysis 
results revealing the associations between MAEL expression (high vs. low, cut-off: median) and the enrichments of VEGF- and mTOR-related 
genes in the TCGA-KIRC cohort. (F) MAEL expression and its associations with the half-maximal inhibitory concentration levels in the 16 ccRCC 
cell lines. Abbreviations: IC50=half-maximal inhibitory concentration levels, TCGA-KIRC=The Cancer Genome Atlas-Kidney Renal Clear Cell 
Carcinoma. 
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Figure 5. MAEL expression predicts the benefit from ICI-based immunotherapies over VEGFR/mTOR inhibitors in 
advanced/metastatic ccRCCs. (A) Heatmap illustrating MAEL expression and clinicopathological features of the JAVELIN Renal 101 cohort. 
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(B) The associations of the cut-off value with the treatment effect in the above- and the below-cut-off groups in the training set of the 
JAVELIN Renal 101 cohort. (C–E) The treatment effect (avelumab plus axitinib vs. sunitinib) in the low and the high MAEL expression groups in 
the training set (C), the validation set (D), and the total set (E) of the JAVELIN Renal 101 cohort. (F) Heatmap illustrating MAEL expression and 
clinicopathological features of the CheckMate-025 cohort. (G) The associations of the cut-off value with the treatment effect in the above- 
and the below-cut-off groups of the CheckMate-025 cohort. (H) The treatment effect (nivolumab vs. everolimus) in the low and the high 
MAEL expression groups of the CheckMate-025 cohort. Abbreviations: CI=confidence interval, CR=complete response, HR=hazard ratio, 
IC=immune cell, ITH=intratumoral heterogeneity, NE=not evaluable, ORR=objective response rate, PD=progressive disease, PD-
L1=programmed cell death-ligand 1, PR=partial response, SD=stable disease, TCGA=The Cancer Genome Atlas, TMB=tumor mutational 
burden. 

area (P=0.040), higher TMB (P=0.028) and ITH 

(P=0.022), and lower expression of PDCD1 (P=0.010) 

and CTLA4 (P=0.038, Figure 5A). Of note, MAEL 

expression was not associated with the CD274 mRNA 

expression in tissue bulk (P=0.46) and the PD-L1 

protein expression on immune cells (P=0.57, Figure 

5A), indicating the irrelevance between the predictive 

utility of MAEL and PD-L1 expression. 

 
In the CheckMate-025 trial involving 250 

advanced/metastatic ccRCC patients with available 

RNA-seq data (Figure 5F), the curves of treatment 

effect in the “below cut-off” and “above cut-off” 

subgroups are shown in Figure 5G. The treatment 

effect was larger in the low MAEL group than the high 

MAEL group at all cut-offs (Figure 5G). At the cut-off 

(67.4th percentile) derived from the training set of the 

JAVELIN Renal 101 cohort, the interaction effect was 

significant (HR=0.55, 95% CI 0.37–0.97, P=0.039, 

Figure 5G). Nivolumab delivered a significantly 

higher ORR and longer PFS than everolimus in the 

low MAEL expression subgroup (ORR: 24.7% vs. 

4.6%, P<0.001; PFS: HR=0.62, 95% CI 0.45–0.87, 

P=0.004), but not in the high Notch-score subgroup 

(ORR: 12.8% vs. 2.3%, P=0.097; PFS: HR=1.17, 95% 

CI 0.73–1.87, P=0.51; Figure 5H). The interaction 

effect remained significant in the multivariable model 

(multivariable interaction HR=0.51, 95% CI 0.29–

0.91, P=0.023, Table 1). High MAEL expression was 

associated with few CD8+ T cells in tumor center 

(P=0.040), tumor margin (P=0.016), and total area 

(P=0.026), high TMB (P=0.013), and low expression 

of PDCD1 (P=0.003) and CTLA4 (P=0.049) rather 

than CD274 (P=0.12, Figure 5F). 

 
We further analyzed the association between MAEL 

expression and immune cell signatures in advanced/ 

metastatic ccRCCs. In the three cohorts (JAVELIN, 

CheckMate, and TCGA), high MAEL expression was 

consistently linked with low levels of the signatures 

concerning activated B, CD4+ T, CD8+ T, and 

dendritic cells, central memory CD4+ and CD8+ T 

cells, effector memory CD8+ T cell, immature B cell, 

macrophage, MDSC, natural killer T cell, regulatory  
T cell, and type I T helper cell (P<0.10, detailed 

statistics, see Figure 6A–6C), indicating an anti-

inflammatory microenvironment. 

Taken together, high MAEL expression was identified 

as an independent indicator of poor benefits from  

ICI-based therapies over VEGFR/mTOR inhibitors in 

advanced ccRCCs, potentially mediated by tumor-

infiltrating immune cells and the expression of PD-1 

and CTLA-4 rather than PD-L1.  

 

DISCUSSION 
 

In this study, we first delineated the expression 

landscape of MAEL in human normal tissues and 

cancers. Given that MAEL was highly expressed and 

was associated with both RFS and OS in ccRCCs, we 

investigated its implications in this cancer type in 

depth. High MAEL expression was associated with 

anti-inflammatory TIME, enhanced VEGFR and mTOR 

activities, and high sensitivities to VEGFR/PI3K-

AKT-mTOR inhibitors. In the two clinical trials, the 

PFS benefits from ICI-based therapies over VEGFR/ 

mTOR inhibitors were minimal in the high MAEL 

expression group but significant in the low MAEL 

expression group. 

 

In all tumors except TGCT, MAEL is dominated by 

the MAEL-206 isoform, which lacks the HMG domain 

in the N terminal compared to the full-length MAEL. 

This expression pattern may be partly controlled by 

the methylation levels of the promoters of different 

isoforms. So far, nearly all published MAEL-associated 

cancer studies have been conducted in non-TGCT cell 

lines using plasmids carrying the full-length human 

MAEL cDNA. It might be more appropriate to carefully 

discern the function of each MAEL isoform in cell line 

and animal studies. 

 

MAEL, as a potential oncogene, was expressed higher 

in ccRCCs than in normal kidneys, while high MAEL 

expression was identified as an independent indicator 

of favorable prognosis. This observation might seem 

counterintuitive. However, different types of ccRCCs 

may depend on different oncogenes, and MAEL-

dependent ccRCCs may progress more slowly than 

those dependent on other oncogenes, thus exhibiting  

a relatively better prognosis. This oncogenic and prog-
nostic pattern was also observed in other SG genes 

associated with MAEL, such as G3BP stress granule 

assembly factor 1/2 (G3BP1/2) [21, 48], suggesting that 
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Table 1. Predictive effect of the MAEL expression in multivariable models. 

Parameter 

JAVELIN Renal 101: progression-free survival 

Univariable analysis Multivariable analysis 

HR (95% CI) P-value HR (95% CI) P-value 

Age (≥65 vs. <65) 0.74 (0.60-0.93) 0.009 0.77 (0.61-0.96) 0.018 

Sex (male vs. female) 0.90 (0.71-1.14) 0.38   

PD-L1 mRNA (≥median vs. <median) 0.91 (0.74-1.12) 0.37   

PD-L1 IC score (dummy variable)  0.43   

  1-9 vs. 0 1.14 (0.90-1.44) 0.28   

  >=10 vs. 0 1.23 (0.87-1.74) 0.25   

CD8+ density (≥median vs. <median)     

  Tumor center 0.95 (0.77-1.18) 0.67   

  Tumor margin 1.03 (0.76-1.41) 0.83   

  Total 0.93 (0.75-1.16) 0.52   

TMB (≥median vs. <median) 0.95 (0.76-1.17) 0.61   

ITH (≥median vs. <median) 1.15 (0.93-1.42) 0.20   

TCGA subtype (dummy variable)  0.013  0.024 

  2 vs. 1 1.01 (0.73-1.40) 0.93 1.07 (0.77-1.48) 0.70 

  3 vs. 1 1.52 (1.15-2.01) 0.004 1.53 (1.15-2.03) 0.003 

  4 vs. 1 1.20 (0.87-1.65) 0.26 1.16 (0.85-1.60) 0.35 

  NA vs. 1 0.82 (0.38-1.77) 0.61 0.93 (0.43-2.04) 0.86 

Treatment (avelumab+axitinib vs. sunitinib) 0.98 (0.67-1.42) 0.91 0.98 (0.67-1.43) 0.92 

MAEL expression (low vs. high) 1.23 (0.91-1.67) 0.19 1.16 (0.85-1.58) 0.34 

Interaction between treatment and MAEL 

expression 
0.56 (0.36-0.88) 0.012 0.58 (0.37-0.91) 0.019 

Parameter 

CheckMate-009/010/025: progression-free survival 

Univariable analysis Multivariable analysis 

HR (95% CI) P-value HR (95% CI) P-value 

Age (≥65 vs. <65) 0.91 (0.69-1.19) 0.50   

Sex (male vs. female) 1.15 (0.85-1.55) 0.38   

PD-L1 mRNA (≥median vs. <median) 1.00 (0.77-1.30) 0.99   

MSKCC risk (dummy variable)  0.019  0.010 

  Intermediate vs. favorable 1.14 (0.84-1.53) 0.40 1.21 (0.90-1.64) 0.21 

  Poor vs. favorable 1.69 (1.17-2.46) 0.006 1.78 (1.22-2.59) 0.003 

CD8+ density     

  Tumor center (≥median vs. <median) 1.11 (0.65-1.89) 0.70   

  Tumor margin (≥median vs. <median) 1.21 (0.72-2.05) 0.48   

  Total (≥median vs. <median) 1.11 (0.65-1.89) 0.71   

Treatment lines (dummy variable)  0.73   

  3 vs. 2 1.11 (0.83-1.49) 0.47   

  4 vs. 2 1.14 (0.63-2.05) 0.67   

TMB (≥median vs. <median) 1.09 (0.79-1.51) 0.58   

ITH (≥median vs. <median) 1.05 (0.75-1.46) 0.79   

Treatment (nivolumab vs. everolimus) 1.15 (0.72-1.83) 0.57 1.17 (0.73-1.86) 0.51 

MAEL expression (low vs. high) 1.62 (1.10-2.39) 0.014 1.66 (1.13-2.45) 0.011 

Interaction between treatment and MAEL 

expression 
0.55 (0.31-0.97) 0.039 0.51 (0.29-0.91) 0.023 

Abbreviations: CI, confidence interval; HR, hazard ratio; IC, immune cell; ITH, intratumoral heterogeneity; MSKCC, memorial 
sloan-kettering cancer center; NA, not applicable; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; 
TMB, tumor mutational burden. 
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the MAEL/SG-dependent ccRCCs might progress more 

slowly compared with other ccRCCs. 

 

In ccRCC, high MAEL expression was associated with 

VEGFR/mTOR activation and an anti-inflammatory 

TIME, which can explain the high sensitivities to 

VEGFR/PI3K-AKT-mTOR inhibitors and the poor 

benefit from ICI-based therapies over VEGFR/mTOR 

inhibitors. The associations of MAEL with AKT 

activation and a suppressive TIME have been 

disclosed in the cell lines of hepatocellular carcinoma 

and esophageal squamous cell carcinoma [11, 14]. The 

interaction between a biomarker and treatment effect 

(difference in the association of a biomarker with 

survival across treatment arms) is the essential proof 

of its predictive utility [46]. The interaction effects 

between MAEL expression and treatment choice  

in the two phase III trials were both significant, 

implying that, compared to VEGFR/mTOR inhibitors, 

ICI-based immunotherapies might be recommended 

for the ccRCCs with low MAEL expression. Due to  

the lack of patient-level data, it is not available to 

validate our results in other trials, e.g., CheckMate-214 

and IMmotion151 [49, 50]. 

 

As for limitations, first, the molecular correlates  

of MAEL were analyzed using bioinformatic methods 

in our study. Biological validation using cell lines  

and xenograft models is warranted. Here, MAEL 

expression and its association with the sensitivity of 

VEGFR/mTOR inhibitors were observed in ccRCC 

cell lines. In addition, according to the single-cell data,  

 

 
 

Figure 6. Association between MAEL expression and immune cell signatures in advanced/metastatic ccRCCs. (A–C) Association 
between MAEL expression and immune cell signatures in the JAVELIN Renal 101 cohort (A), the CheckMate-025 cohort (B), and the stage IV 
ccRCC patients in the TCGA-KIRC cohort (C). Abbreviations: MDSC=myeloid-derived suppressor cell, TCGA-KIRC=The Cancer Genome Atlas-
Kidney Renal Clear Cell Carcinoma. 
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MAEL expression was undetectable in most of the 

peripheral blood mononuclear cells and the endothelial 

cells and fibroblasts in abdominal organs, suggesting 

that the results derived from tissue-bulk RNA data may 

reflect the characteristics of MAEL in ccRCC tumor 

cells instead of other cells, including endothelial cells, 

fibroblasts, and tumor-infiltrating immune cells. Second, 

the retrospective setting of our study may introduce 

biases, which can be minimized by the context of large 

randomized phase III trials and the implementation of 

multivariable analysis and independent validation. Third, 

the raw RNA-seq data from the public datasets are  

hard to obtain, so it’s impossible to comprehensively 

analyzed the predictive utility of each MAEL transcript. 

Fortunately, the MAEL expression in ccRCCs was 

dominated by MAEL-206 (proportion>90%) and there-

fore our results based on the total MAEL expression can 

effectively reflect the effects of the dominant MAEL-

202 in ccRCCs. Fourth, immune cell infiltration was 

estimated by ssGSEA in this study. Multiplex immuno-

fluorescence of immune cell markers and MAEL in 

ccRCC samples would be beneficial for exploring the 

differences in tumor-infiltrating immune cells around 

MAEL-expressing and MAEL-non-expressing tumor 

cells. Fifth, the ICI regimens analyzed are avelumab 

plus axitinib and nivolumab monotherapy, which may 

represent anti-PD-(L)1 plus VEGFR inhibitor and anti-

PD-(L)1 monotherapy, respectively. The combination 

of anti-PD-(L)1 and anti-CTLA-4 (e.g., CheckMate-

214) was not included in our study due to the lack of 

patient-level data. Despite this, a negative association 

between MAEL expression and CTLA-4 expression was 

observed in the two trials, suggesting the potential 

predictive utility of low MAEL expression for a large 

benefit from combination immunotherapy including 

anti-CTLA-4 over monotherapies of VEGFR/mTOR 

inhibitors. 

 

To our knowledge, this is the first comprehensive 

analysis of MAEL in human cancers. High MAEL 

expression was observed in TGCT, glioma, pRCC, and 

ccRCC. Especially in ccRCC, MAEL is a biologically 

and clinically significant determinant with potential for 

prognostication after nephrectomy and patient selection 

for VEGFR/mTOR inhibitors and ICI-based immuno-

therapies. ICIs provide limited advantages and might 

not be strongly recommended for ccRCCs with high 

MAEL expression, by which the cost-effectiveness of 

treatments in ccRCCs may be potentially improved. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Methods 
 

Human protein atlas (HPA) RNA-seq data of normal 

tissue and blood samples 

 

For normal tissue and blood samples, specimens  

were collected with consent from patients and all 

samples were anonymized in accordance with approval 

from the local ethics committee (ref #2011/473 and  

ref #2015/1552-32) and Swedish rules and legislation. 

All tissues were collected from the Uppsala Biobank 

and RNA samples were extracted from frozen tissue 

sections. Blood samples were enriched for PBMC and 

granulocytes, labeled with antibodies and separated into 

subpopulation by flow sorting. mRNA sequencing was 

performed on Illumina HiSeq2000 and 2500 machines 

(Illumina, San Diego, CA, USA) using the standard 

Illumina RNA-seq protocol with a read length of 2x100 

bases. Blood cells mRNA sequencing was performed  

on an Illumina NovaSeq 6000 System in four S4 lanes 

with a read length of 2x150 bases. Transcript abundance 

estimation was performed using Kallisto v0.46.2. The 

18 blood cell types are classified into six different 

lineages including B-cells, T-cells, NK-cells, monocytes, 

granulocytes, and dendritic cells. 

 

The HPA Human brain sample set contains 1324 

samples of >200 regions of the human brain. The 

analysis is a collaboration with Human Brain Tissue 

Bank (HBTB; Semmelweis University, Budapest) in 

accordance with approval from the Committee of 

Science and Research Ethic of the Ministry of Health 

Hungary (ETT TUKEB: 189/KO/02.6008/2002/ETT) 

and the Semmelweis University Regional Committee  

of Science and Research Ethic (No. 32/1992/TUKEB) 

to remove human brain tissue samples, collect, store  

and use them for research. Samples were collected by 

Prof. Palkovits and RNA was extracted from frozen 

brain punches. The human prefrontal cortex dataset 

includes 165 samples from 3 male and 3 female donors 

providing a detailed overview of protein expression  

in 17 subregions of the prefrontal cortex and 3 refe-

rence cortical regions was analyzed using the Illumina 

sequencing platform, all other samples were analyzed 

using the MGI DNBSEQ-T7 platform. 

 

For more detail, please see https://www.proteinatlas.org/ 

about/assays+annotation#hpa_rna. 

 
Single cell RNA-seq data 

 
The single cell RNA sequencing dataset is based on 

meta-analysis of literature on single cell RNA sequencing 

and single cell databases that include healthy human 

tissue. To avoid technical bias and to ensure that the 

single cell dataset can best represent the corresponding 

tissue, the following data selection criteria were applied: 

(1) Single cell transcriptomic datasets were limited to 

those based on the Chromium single cell gene expres-

sion platform from 10X Genomics (version 2 or 3); (2) 

Single cell RNA sequencing was performed on single 

cell suspension from tissues without pre-enrichment of 

cell types; (3) Only studies with >4,000 cells and 20 

million read counts were included; (4) Only dataset 

whose pseudo-bulk transcriptomic expression profile  

is highly correlated with the transcriptomic expression 

profile of the corresponding HPA tissue bulk sample 

were included. It should be noted that exceptions were 

made for lung (~7.3 million reads), pancreas (3,719 

cells) and rectum (3,898 cells) to include various cell 

types in the analysis. 

 

In total, single cell transcriptomics data for 25 tissues 

and peripheral blood mononuclear cells (PBMCs) were 

analyzed. These datasets were respectively retrieved 

from the Single Cell Expression Atlas, the Human Cell 

Atlas, the Gene Expression Omnibus, the Allen Brain 

Map, and the European Genome-phenome Archive. The 

complete list of references is shown in Supplementary 

Table 2. 

 
For each of the single cell transcriptomics datasets,  

the quantified raw sequencing data were downloaded 

from the corresponding depository database based on 

the accession number provided by the corresponding 

study in the available format (total cells, read, and 

feature counts, or count tables). Unfiltered data were 

used as input for downstream analysis with an in-house 

pipeline using Scanpy (version 1.4.4.post1) in Python 

3.7.3 for the 13 tissues and PBMC published in HPA 

v20 and Scanpy (version 1.7.2) in Python 3.8.5 for the 

12 tissues published in HPA v21. In the pipeline, the 

data were filtered using two criteria: a cell is considered 

as valid if at least 200 genes are detected and a gene  

is considered as valid if it is expressed in at least 10%  

of the cells. Specially, in the HPA v21, tissues which 

contain more than 10,000 cells used 1000 cells as their 

cutoff. Subsequently, the cell counts were normalized to 

have a total count per cell of 10000. The valid cells 

were then clustered using Louvain clustering function 

within Single-Cell Analysis in Python (Scanpy). Default 

values of parameters were used in clustering. More  

in detail, the features of cells were projected into a  
PCA space with 50 components using UMAP, and a  

k-nearest neighbours (KNN) graph was generated. 15 

neighbours were used in the network for Louvain, while 

https://www.proteinatlas.org/about/assays+annotation#hpa_rna
https://www.proteinatlas.org/about/assays+annotation#hpa_rna
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the resolution of clustering was set as 1.0. The total  

read counts for all genes in each cluster was calculated 

by adding up the read counts of each gene in all  

cells belonging to the corresponding cluster. Finally, the 

read counts were normalized to transcripts per million 

protein coding genes (pTPM) for each of the single cell 

clusters. When calculating the expression profile for 

pseudo-bulk samples based on single cell transcrip-

tomics, we added the read counts for all genes from  

all cells of the sample, and normalized it to pTPM in  

the same way as for the cluster ones. 

 

Each of the 444 different cell type clusters were 

manually annotated based on an extensive survey of 

>500 well-known tissue and cell type-specific markers, 

including both markers from the original publications, 

and additional markers used in pathology diagnostics. 

For each cluster, one main cell type was chosen by 

taking into consideration the expression of different 

markers. For a few clusters, no main cell type could be 

selected, and these clusters were not used for gene 

classification. The most relevant markers are presented 

in a heatmap on the Cell Type Atlas, in order to clarify 

cluster annotation to visitors. 

 

The cell type dendrogram presented on the Single  

Cell Type section shows the relationship between  

the single cell types based on genome-wide expression. 

The dendrogram is based on agglomerative clustering  

of 1 - Spearman's rho between cell types using Ward's 

criterion. The dendrogram was then transformed into a 

hierarchical graph, and link distances were normalized 

to emphasize graph connections rather than link distan-

ces. Link width is proportional to the distance from the 

root, and links are colored according to cell type group 

if only one cell type group is present among connected 

leaves. 

 

For more detail, please see https://www.proteinatlas.org/ 

about/assays+annotation#singlecell_rna. 

  

https://www.proteinatlas.org/about/assays+annotation#singlecell_rna
https://www.proteinatlas.org/about/assays+annotation#singlecell_rna
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Supplementary Figures 
 

 
 

Supplementary Figure 1. UMAP plot and MAEL expression in the single cell clusters of normal brain (Allen brain map). 
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Supplementary Figure 2. mRNA expression of MAEL and cell type markers in different single cell type clusters of normal 
testis (GSE120508). Color legend: fraction of the highest expression. 
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Supplementary Figure 3. mRNA expression of MAEL and cell type markers in different single cell type clusters of normal 
placenta (E-MTAB-6701). Color legend: fraction of the highest expression. 
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Supplementary Figure 4. mRNA expression of MAEL and cell type markers in different single cell type clusters of normal 
heart muscle (GSE109816). Color legend: fraction of the highest expression. 
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Supplementary Figure 5. mRNA expression of MAEL and cell type markers in different single cell type clusters of normal 
kidney (GSE131685). Color legend: fraction of the highest expression. 
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Supplementary Figure 6. mRNA expression of MAEL and cell type markers in different single cell type clusters of normal 
brain (Allen brain map). Color legend: fraction of the highest expression. 
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Supplementary Figure 7. mRNA expression of the six transcripts of MAEL among 33 types of cancer (unit: log2[TPM+1]). 

 

 
 

Supplementary Figure 8. Association between MAEL expression and recurrence-free survival in the clear cell renal cell 
carcinomas of the TCGA-KIRC cohort. 
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Supplementary Figure 9. Association between MAEL expression and overall survival in the clear cell renal cell carcinomas of 
the ICGC-PCAWG RECA-EU cohort. 

 

 
 

Supplementary Figure 10. Immunohistochemical staining of MAEL in ccRCC samples. 
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Supplementary Figure 11. Expression of MAEL in ccRCC xenograft models. 

 

 
 

Supplementary Figure 12. MAEL expression in clear cell renal cell carcinomas (TCGA-KIRC) and normal kidneys (TCGA-KIRC 
and GTEx). 
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Supplementary Figure 13. High MAEL expression was associated with favorable progression-free survival on first-line 
sunitinib in advanced clear cell renal cell carcinomas (E-MTAB-3267). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3, 4, 8, 9. 

 

Supplementary Table 1. Single cell transcriptomics datasets. 

Tissue Data source 
No. of  

M reads 
No. of cells 

Correlation with 

HPA bulk RNA 
Reference 

Colon GSE116222 12.9 11167 0.811 Parikh K et al. (2019)  

Eye GSE137537 22.6 20091  Menon M et al. (2019)  

Heart muscle GSE109816 396.7 9182 0.797 Wang L et al. (2020)  

Small intestine GSE125970 59.6 6167  Wang Y et al. (2020) 

Kidney GSE131685 56.2 25279 0.867 Liao J et al. (2020) 

Liver GSE115469 42 8439 0.837 MacParland SA et al. (2018)  

Lung GSE130148 6.9 4599 0.863 Vieira Braga FA et al. (2019)  

Placenta E-MTAB-6701 347 18547 0.879 Vento-Tormo R et al. (2018)  

Prostate GSE117403 177.4 35862 0.756 Henry GH et al. (2018) 

Rectum GSE125970 60.4 3898 0.756 Wang Y et al. (2020) 

PBMC GSE112845 19.4 4972 0.756 Chen J et al. (2018) 

Testis GSE120508 70.5 6490 0.756 Guo J et al. (2018) 

Pancreas GSE131886 92.3 3719 0.829 Qadir MMF et al. (2020)  

Skin GSE130973 56.4 15798 0.756 Solé-Boldo L et al. (2020)  

Brain  1357.2 76533 0.661 Allen brain map 

Bronchus  85.3 17521  Lukassen S et al. (2020)  

Endometrium GSE111976 624.1 71032 0.807 Wang W et al. (2020) 

Skeletal muscle GSE143704 77.8 22030 0.697 De Micheli AJ et al. (2020)  

Ovary GSE146512 259.2 43636 0.808 Man L et al. (2020)  

Adipose tissue GSE155960 418.5 83536 0.813 Hildreth AD et al. (2021)  

Esophagus 159929-GSM4850580 31.5 9117 0.84 He S et al. (2020) 

Lymph node GSE159929-GSM4850583 14.2 7771 0.849 He S et al. (2020) 

Bone marrow GSE159929-GSM4850584 8.6 3230 0.818 He S et al. (2020) 

Spleen GSE159929-GSM4850589 14.8 4512 0.804 He S et al. (2020) 

Stomach GSE159929-GSM4850590 18.9 5318 0.814 He S et al. (2020) 

Breast GSE164898 342.3 47662 0.839 Bhat-Nakshatri P et al. (2021) 
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Supplementary Table 2. Basic characteristics of the included dataset. 

  TCGA-KIRC 

ICGC-

PCAWG 

RECA-EU 

GDSC 
JAVELIN  

Renal 101 
CM-025 

E-MTAB-

3267 
GSE83820 GSE36895 

Number of patients/cell 

lines with mRNA data 
522 64 16 726 250 53 5 4 

Data used in the present 

study 

Mutation, copy 

number variation, 

mRNA, lncRNA,  

clinicopathological 

data, OS 

mRNA, OS mRNA, IC50 mRNA, PFS mRNA, PFS mRNA, PFS mRNA mRNA 

Sequencing method of 

transcriptomic 
RNA-seq RNA-seq 

RNA-seq 

(Illumina HiSeq 

2000 or HiSeq 

2500) 

RNA-seq (Illumina 

HiSeq 2500) 

RNA-seq 

(Illumina HiSeq 

2000 or HiSeq 

2500) 

Microarray 

(GPL6244) 

Microarray 

(GPL570) 

Microarray 

(GPL570) 

PD-L1 

immunohistochemical 

staining 

NA NA NA 
SP142, immune cell 

score 
NA NA NA NA 

Therapy NA NA Targeted agents 

Avelumab+Axitinib 

vs. Sunitinib (1st 

line) 

Nivolumab vs. 

Everolimus 

(2nd-3rd line) 

Sunitinib (1st 

line) 
NA NA 

Abbreviations: ICGC-PCAWG RECA-EU, International Cancer Genome Consortium-Pan-cancer analysis of whole genomes 
Renal Cell Carcinoma-Europe; OS, overall survival; PFS, progression-free survival. 

 

Supplementary Table 3. MAEL expression in normal tissues. 

 

Supplementary Table 4. Single cell transcriptomics. 
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Supplementary Table 5. Abbreviations in the TCGA and the CCLE databases. 

Abbreviations Full name TCGA CCLE 

ACC Adrenocortical carcinoma √  
ALL Acute lymphocytic leukemia  √ 

BLCA Bladder urothelial carcinoma √ √ 

BRCA Breast invasive carcinoma √ √ 

CESC 
Cervical squamous cell carcinoma and 

endocervical adenocarcinoma √ √ 

CLL Chronic lymphocytic leukemia  √ 

CHOL Cholangiocarcinoma √  
COAD Colon adenocarcinoma √ √ 

DLBC Diffuse large B cell lymphoma √ √ 

ESCA 
Esophageal carcinoma √ √ 

Ewings sarcoma  √ 

GBM Glioblastoma multiforme √ √ 

HNSC Head and neck squamous cell carcinoma √ √ 

KICH Kidney chromophobe √  
KIRC Kidney renal clear cell carcinoma √ √ 

KIRP Kidney renal papillary cell carcinoma √  
LAML Acute myeloid leukemia √ √ 

LCML Chronic myelogenous leukemia  √ 

LGG Brain lower grade glioma √ √ 

LIHC Liver hepatocellular carcinoma √ √ 

LUAD Lung adenocarcinoma √ √ 

LUSC Lung squamous cell carcinoma √ √ 

MB Medulloblastoma  √ 

MESO Mesothelioma √ √ 

MM Multiple myeloma  √ 

NB Neuroblastoma  √ 

NSCLC Non-small cell lung cancer  √ 

OV Ovarian serous cystadenocarcinoma √ √ 

PAAD Pancreatic adenocarcinoma √ √ 

PCPG Pheochromocytoma and paraganglioma √  
PRAD Prostate adenocarcinoma √ √ 

READ Rectal adenocarcinoma √ √ 

SARC Sarcoma √ √ 

SCLC Small cell lung cancer  √ 

SKCM Skin cutaneous melanoma √ √ 

STAD Stomach adenocarcinoma √ √ 

TGCT Testicular germ cell tumor √  
THCA Thyroid carcinoma √ √ 

THYM Thymoma √  
UCEC Uterine corpus endometrial carcinoma √ √ 

UCS Uterine carcinosarcoma √  
UVM Uveal melanoma √   
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Supplementary Table 6. Features of the six transcripts of MAEL. 

Transcript ID Name bp Protein Translation ID Biotype CCDS UniProt match RefSeq match 

ENST00000367870.6 MAEL-201 1831 403aa ENSP00000356844.2  Protein coding CCDS65712 Q96JY0-2 - 

ENST00000367872.9 MAEL-202 1737 434aa ENSP00000356846.4  Protein coding CCDS1257 Q96JY0-1 NM_032858.3 

ENST00000447624.1 MAEL-203 1013 316aa ENSP00000402143.1  Protein coding  X6RGB1 - 

ENST00000487826.1 MAEL-204 416 No protein -  Processed transcript  - - 

ENST00000491055.5 MAEL-205 2355 No protein -  Processed transcript  - - 

ENST00000622874.4 MAEL-206 1700 378aa ENSP00000482771.1  Protein coding CCDS72975 E9JVC4 - 

 

Supplementary Table 7. Associations of MAEL expression with clinicopathological features, copy number 
variations, and DNA methylation. 

Variable 
KIRC  TGCT 

P-value Pearson r  P-value Pearson r 

Age 0.426483266825387 -0.0324428362771666  0.752333563410853 0.0270047807184707 

Sex 0.0904257180696398 NA  NA NA 

Race 0.194246293049914 NA  0.872982066854064 NA 

Histological grade 0.021952312664529 NA  9.56399423005252E-07 0.40542915383908 

Pathological T 0.135787374901966 NA  0.177488104232116 NA 

Pathologic N 0.225732314323571 NA  0.958850252206529 NA 

Pathological M 0.103451317195837 NA  NA NA 

Tumor stage 0.0639348682885934 NA  0.229241921454448 NA 

Copy number variation 0.0000124053286982694 0.190110076688231  0.752916482313235 -0.0259154877503306 

cg13081288 0.000785685953360897 -0.180743238710894  0.0000628585334375174 -0.314957369168476 

cg08348962 0.0492590402535173 -0.108009393639065  0.243763849009391 -0.0938743944622001 

cg18323210 0.092512587133264 -0.0911124474315059  0.5440767694976 0.0489361999183405 

cg03758693 NA NA  NA NA 

cg11503720 0.352805528905452 0.0503959163684299  0.480610749333206 0.0568827237605001 

cg15965055 0.529796595162321 0.034090418549852  0.0315425603321009 0.172254607829556 

cg22603542 0.409987244359549 0.0446936912631353  0.186481189999048 -0.106325340667379 

cg07725889 NA NA  NA NA 

cg10117884 0.897947345270261 0.00696064119958166  3.94858256423742E-09 -0.452757600333627 

cg18894878 0.920711985278922 -0.00540209688290252  6.52822637100908E-16 -0.610024898231754 

cg27053975 0.435695401537689 0.0422856006668722  2.99438405154888E-15 -0.596408048402836 

cg24453820 0.301857453783545 -0.0559901939447633  8.67166538012812E-17 -0.627691428644751 

cg23968893 0.896436555610462 -0.00706426328384486  1.84345878539201E-15 -0.60077299206138 

cg11336590 0.66528813578229 -0.0236158222038295  3.53364947237034E-19 -0.673975652934597 

cg19241352 0.0828312211934396 -0.0939273014761928  1.11483104794639E-18 -0.664515504411586 

cg13480774 0.709249632452788 0.0202341815113491  1.49945009591534E-15 -0.602623339738763 

cg24586196 0.212520272989992 -0.0675823337211926  2.40573208547595E-16 -0.618813017897356 

cg00001349 0.28226677455352 -0.0583064319125126  1.2178606809646E-12 -0.539768091814994 

cg13249256 0.283087524604477 -0.0582072645293623  6.21117501997563E-19 -0.669344119897905 

cg17757848 0.84317847389987 -0.0107363993229523  2.95924429682114E-19 -0.675427522082466 

cg13212575 0.969169533256836 0.00209763722753289  3.17730546470227E-16 -0.616374517921076 

cg26308818 0.596084245542656 0.0287606442778004  3.39217204532824E-07 -0.396023176042178 

 

Supplementary Table 8. Correlation between the mRNA expression of MAEL and other genes. 

 

Supplementary Table 9. Original IC50 and transformed IC50 of the 16 ccRCC cell lines. 


