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INTRODUCTION 
 

Lung cancer (LC) is a carcinoma with high incidence 

and mortality rates [1]. Lung adenocarcinoma (LUAD) 

is an essential component of the pathobiological types 

of LC and is extremely heterogeneous [2]. With the 

continuous improvement of LUAD diagnostic and 

treatment protocols in the past decade, the survival rate 

has improved; however, the OS for LUAD patients is 

still unsatisfactory [3]. Even worse, commonly used 

clinical assessment metrics (including TNM staging) 

cannot accurately predict LUAD prognosis. Presently, 

biomarkers are a sensitive indicator used to identify 

patient survival, and multibiomarker prognostic 

signatures have better predictive power than a single 

biomarker [4, 5]. Hence, determining reliable multi-

biomarker prognostic features that predict the prognosis 

of LUAD patients is extremely important. 
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ABSTRACT 
 

Background: Methods for predicting the outcome of lung adenocarcinoma (LUAD) in the clinic are limited. 
Anoikis is an important route to programmed cell death in LUAD, and the prognostic value of a model 
constructed with anoikis-related lncRNAs (ARlncRNAs) in LUAD is unclear. 
Methods: Transcriptome and basic information for LUAD patients was obtained from the Cancer Genome Atlas. 
Coexpression and Cox regression analyses were utilized to identify prognostically significant ARlncRNAs and 
construct a prognostic signature. Furthermore, the signature was combined with clinical characteristics to 
create a nomogram. Finally, we performed principal component, enrichment, tumor mutation burden (TMB), 
tumor microenvironment (TME) and drug sensitivity analyses to evaluate the basic research and clinical merit 
of the signature. 
Results: The prognostic signature developed with eleven ARlncRNAs can accurately predict that high-risk group 
patients have a worse prognosis, as proven by the receiver operating characteristic (ROC) curve (AUC: 0.718). 
Independent prognostic analyses indicated that the risk score is a significant independent prognostic element 
for LUAD (P<0.001). In the high-risk group, enrichment analysis demonstrated that glucose metabolism and 
DNA replication were the main enrichment pathways. TMB analysis indicated that the high-risk group had a 
high TMB (P<0.05). Drug sensitivity analyses can recognize drugs that are sensitive to different risk groups. 
Finally, 11 ARlncRNAs of this signature were verified by RT‒qPCR analysis. 
Conclusions: A novel prognostic signature developed with 11 ARlncRNAs can accurately predict the OS of LUAD 
patients and offer clinical guidance value for immunotherapy and chemotherapy treatment. 
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Programmed apoptosis is one of the major pathways of 

apoptosis in LUAD, in which anoikis plays an important 

role. Anoikis is a special type of programmed apoptosis 

that affects processes of cancer invasion and metastasis by 

disturbing mitochondria or automating cell surface death 

receptors, leading to apoptosis (Figure 1) [6, 7]. In recent 

years. Numerous studies have shown the discovery of 

anoikis as an important mechanism for cancer invasion 

and metastasis in gastric, breast, prostate and lung cancers 

[8–10]; for example, upregulation of the PDK4 gene leads 

to chemoresistance in LC and promotes cancer cell 

proliferation [10]. Despite the key role of anoikis genes in 

tumorigenesis and progression, the impact of anoikis on 

LUAD prognosis has rarely been studied. Moreover, long 

noncoding RNAs (lncRNAs) are engaged in cancer cell 

proliferation, migration and invasion processes [11]. 

Interestingly, lncRNAs have been reported to be closely 

correlated with anoikis in tumor cells. For example, the 

anti-apoptotic effect of MRPL23-AS1 in cystic carcinoma 

of the salivary gland was observed in vitro [12]. In 

ovarian cancer, lncRNA HOTAIR regulates the anti-

apoptotic ability of neoplastic cells by influencing EZH2 

[13]. The above studies indicate that anoikis-related 

lncRNAs (ARlncRNAs) have an essential effect on the 

progression of cancer. To date, no research on 

ARlncRNAs in LUAD prognosis has been conducted. 

Therefore, it is necessary to investigate the association 

between ARlncRNAs and the OS of LUAD. 

 

In the current study, we identified significantly 

prognostic ARlncRNAs for developing a novel 

prognostic signature in LUAD patients and then verified 

its predictive ability. Furthermore, we analyzed the 

sensitivity of different risk groups to common drugs, 

which offers clinical guidance value for immunotherapy 

and chemotherapy therapies. 

 

 
 

Figure 1. Signaling pathways activated in anoikis. Lack of the extracellular matrix (ECM) contact or improper ECM contact prevents the 

activation of pro-survival signals resulting in reduced anti-apoptotic pathways, thus activating anoikis from death receptors and 
mitochondria. Increased expression of extrinsic Fas receptors also activates the extrinsic pathway. 
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MATERIALS AND METHODS 
 

Data acquisition 

 

Clinical information and gene expression messages of 

555 (506 LUAD samples) samples were downloaded 

from The Cancer Genome Atlas (TCGA) on September 

3, 2022 (https://portal.gdc.cancer.gov/). Thirty-five 

LUAD samples with no survival time, survival 

condition or complete gene information were further 

excluded, and 471 patients with full clinical information 

were enrolled in the TCGA-LUAD cohort. Then, the 

cohort was randomly assigned to training (236 samples) 

and test (235 samples) cohorts at a ratio of 1:1 (Table 

1). Construct a prognostic signature using the most 

valuable ARlncRNAs filtered from the training cohort 

data. TCGA-LUAD and test cohorts were utilized to 

test the predictability and clinical applicability of the 

signature. The data processing flow is detailed in Figure 

2. Statistical analyses were performed with R software 

(version 4.2.3). 

 

Identification of ARlncRNAs 

 

Twenty-seven anoikis-related genes were acquired from 

the Molecular Signatures Database (MSigDB) [14]. 

Coexpression analysis in the “limma” R package was 

used to screen potential ARlncRNAs between anoikis-

related genes and lncRNAs (|R| >0.4; P < 0.001). 

 

Development of the ARlncRNA prognostic signature 

 

Combining significant ARlncRNAs with the clinical 

data of LUAD patients in the training group, univariate 

Cox regression analysis was undertaken to identify 

ARlncRNAs correlated with OS. Next, least absolute 

shrinkage and selection operator (LASSO) and 

multivariate Cox regression were utilized to recognize 

statistically significant prognostic ARlncRNAs. Finally, 

we constructed a novel prognostic signature developed 

with the above prognostic ARlncRNAs by multivariate 

Cox regression and calculated risk scores per patient. 

Risk Score = (Exp lncRNA1 × β lncRNA1) + (Exp 

lncRNA2 × β lncRNA2) + (Exp lncRNA3 × β 

lncRNA3) + ...... + (Exp lncRNAn × β lncRNAn). The 

Exp represents was the expression of lncRNA and the β 

was the multivariate Cox regression analysis coefficient 

of lncRNA [15]. 

 

Evaluating the ARlncRNA prognostic signature and 

principal component analysis (PCA) 

 

Patients were assigned to high- and low-risk cohorts 

according to the risk score. Survival status maps and 

ARlncRNA expression heatmaps of patients from the 

two risk groups were mapped with the “pheatmap” R 

package. Kaplan‒Meier curves were generated to 

compare the OS of the two risk groups with the 

“survival” R package. In addition, a receiver operating 

characteristic (ROC) curve was generated by the 

“timeROC” R package to assess the 1-, 3- and 5-year 

predictive capability of the prognostic signature and 

calculate the area under the curve (AUC). Finally, PCA 

was applied to estimate the capability of distinguishing 

between high- and low-risk patients via the 

“scatterplot3” and “limma” R packages [16]. 

 

Independent prognostic analysis 

 

We investigated the prognostic value of the risk score 

and clinical characteristics in LUAD patients via 

univariate Cox regression. Meanwhile, correlation 

analysis was utilized for risk scores and the above 

clinical characteristics. The predictive accuracy of this 

signature was verified via the C-index and ROC curves. 

Then, a new nomogram model was developed with 

clinical characteristics and risk scores. A calibration 

curve is utilized to show the agreement between the 

predicted and actual outcomes. Decision curve analysis 

(DCA) was utilized to demonstrate the clinical 

applicability value of this model. 

 

Clinical subgroup validation 

 

The patients were assigned to different subgroups 

depending on clinicopathological characteristics in the 

training set. The subgroups were as follows: age (≤65; 

>65), sex (female; male), stage (stage I-II; stage III-IV), 

T stage (T1-2; T3-4), and N stage (N0; N1-3). The OS 

of patients in the high- and low-risk groups was 

compared via subgroup analysis, and the aim was to 

determine the optimal range of application of the 

signature. 

 

Gene set enrichment analysis (GSEA) and tumor 

mutation burden (TMB) analysis 

 

Enrichment pathways for the two risk groups were 

examined by six different methods (kegg, go, reactome, 

biocarta, wikipathways, pid) in GSEA4.3.2 software, 

and |NES|>1 and FDR<0.25 were deemed reliable. 

TMB differences between the two risk groups were 

analyzed via the “maftools” R package [17]. Comparing 

the OS of patients in the high and low TMB groups via 

survival analysis. 

 

Tumor microenvironment (TME) analysis 

 

We calculated the level of infiltration of important 
immune cells in two risk groups by seven methods 

(quentized, timer, epic, ciberspot, ciberspotabs, 

mcpcounter and xcell) [18], and the outcome was then 

https://portal.gdc.cancer.gov/
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Table 1. Clinicopathological characteristics of 471 LUAD patients in the 
TCGA database. 

Characteristic Total cohort Training cohort Test cohort P-value 

Total 471 (100%) 235 (50%) 236 (50%)  

Age                         1.000  

  ≤65     225 (47.77%) 111 (47.23%) 114 (48.31%)  

  >65 236 (50.11%) 117 (49.79%) 119 (50.42%)  

  Unknow 10 (2.12%) 7 (2.98%) 3 (1.27%)  

Gender    0.973  

  Female 256 (54.35%) 129 (54.89%) 127 (53.81%)  

  Male 215 (45.65%) 106 (45.11%) 109 (46.19%)  

Stage                     1.000  

  I 255 (54.14%) 129 (54.89%) 126 (53.39%)  

  II 108 (22.93%) 52 (22.13%) 56 (23.73%)  

  III 75 (15.92%) 35 (14.89%) 40 (16.95%)  

  IV 25 (5.31%) 13 (5.53%) 12 (5.08%)  

  Unknow 8 (1.70%) 6 (2.55%) 2 (0.85%)  

T stage          1.000  

  T1  160 (33.97%) 82 (34.89%) 78 (33.05%)  

  T2 250 (53.08%) 122 (51.91%) 128 (54.24%)  

  T3  39 (8.28%) 21 (8.94%) 18 (7.63%)  

  T4 19 (4.03%) 7 (2.98%) 12 (5.08%)  

  Unknow 3 (0.64%) 3 (1.28%) 0 (0.00%)  

N stage    1.000  

  N0 304 (64.54%) 147 (62.55%) 157 (66.53%)  

  N1 87 (18.47%) 44 (18.72%) 43 (18.22%)  

  N2 66 (14.01%) 31 (13.19%) 35 (14.83%)  

  N3 2 (0.42%) 2 (0.85%) 0 (0.00%)  

  Unknow 12 (2.55%) 11 (4.68%) 1 (0.42%)  

M stage                   0.989  

  M0 318 (67.52%) 156 (66.38%) 162 (68.64%)  

  M1 24 (5.10%) 12 (5.11%) 12 (5.08%)  

  Unknow 129 (27.39%) 67 (28.51%) 62 (26.27%)  

Abbreviation: LUAD, Lung adenocarcinoma; TCGA, The Cancer Genome Atlas. 

 

represented by heatmaps. In addition, immune cell 

infiltration rates were compared between the two risk 

group populations by Wilcoxon analysis. Finally, based 

on the data calculated by the ciberspotabs method, 

correlation analysis was utilized to evaluate the level of 

immune cell infiltration in correlation with the risk score. 

 

Drug sensitivity analysis 

 

Tumor immune dysfunction and exclusion (TIDE) 

data for LUAD were obtained via the website 

(http://tide.dfci.harvard.edu/) [19]. The relationship 

between risk scores and TIED was analyzed with the 

“ggpubr” and “limma” R packages (P < 0.05). 

Moreover, we analyzed the differentially expressed 

immune checkpoint genes among the two risk groups. 

Finally, analyses of the sensitivity to common drugs 

by the “pRRophetic” R package for both high- and 

low-risk groups (pFilter < 0.001 and corPvalue < 

0.001). 

 

Immunohistochemistry staining and real-time 

quantitative polymerase chain reaction (RT‒qPCR) 

 

Immunohistochemical outcomes of differentially 

expressed anoikis-related genes between normal and 

tumor specimens were accessed through the Human 

Protein Atlas (HPA) database (https://www. 

proteinatlas.org/). In our study, human normal bronchial 

epithelium cells (BEAS-2B) and LUAD cells (NCI-

http://tide.dfci.harvard.edu/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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H1395, NCI-H1975) were purchased from the Cell 

Bank of the Chinese Academy of Sciences (Shanghai, 

China). RNA was obtained from tissues with TRIzol 

reagent (Invitrogen, USA). HiScript II (Vazyme, China) 

was utilized to synthesize cDNA by reverse 

transcription. Primers for RT‒qPCR experiments of 11 

ARlncRNAs are shown in Supplementary Table 1. β-

actin was used as an internal reference. The expression 

levels of lncRNAs were calculated using 2ΔΔCT. 

 

Availability of data and materials 

 

The data sets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 

 

Consent for publication 

 

All authors gave their consent for publication. 

 

RESULTS 
 

Identification of ARlncRNAs and development of the 

prognostic signature 

 

The analysis process of this research is displayed in a 

flow chart (Figure 2). First, 2649 ARlncRNAs were 

screened by coexpression analysis of 16,876 lncRNAs 

associated with 27 anoikis-related genes. Then, co-

expression analysis results between anoikis-related 

genes and ARlncRNAs expressed by a Sankey diagram 

were obtained (Figure 3A). Next, combining the clinical 

data of patients in the training cohort, 148 ARlncRNAs 

associated with OS were identified among 2678 

ARlncRNAs by univariate Cox regression analysis 

(Supplementary Table 2). Furthermore, 16 ARlncRNAs 

were significantly associated with prognosis from the 

above lncRNAs using LASSO regression analysis 

(Figure 3B, 3C). Finally, we identified 11 significant 

prognostic ARlncRNAs in LUAD patients via 

multivariate Cox regression analysis (Figure 3D). A 

correlation heatmap showed the relationship between 11 

ARlncRNAs and anoikis-related genes (Figure 3E). The 

multivariate Cox regression analysis coefficient of 

ARlncRNAs is shown in Supplementary Table 3. Then, 

the risk scores of different patients will be counted 

according to the risk score formula, risk score = (Exp 

AL031602.2 × -0.71045017820589) + (Exp BZW1-

AS1 × 0.432038348321673) + (Exp AC021087.1 × -

0.476411291926875) + (Exp GLIS2-AS1 × -0.4540 

08732783369) + (Exp ABCA9-AS1 × 0.99 

9706491359515) + (Exp AL606489.1 × 0.25983525 

2523394) + (Exp ZNF571-AS1 × -0.34874860401809) 

+ (Exp LINC02310 × 0.75089202544965) + (Exp 

AL162632.3 × 1.31557357109109) + (Exp LINC01117 

× 0.338762422003907) + (Exp HAS2-AS1 × 0.7758463 

21855369). The Exp was the expression of lncRNA in 

different patients. According to the median risk score, 

patients were divided into the high-risk and the low-risk 

groups. The results of the risk scores and risk groups for 

each patient in the total, training and test cohorts are 

shown in Supplementary Tables 4–6. 

 

 
 

Figure 2. Overall flow diagram of the study. 
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Figure 3. Identification of significant prognosis ARlncRNAs. (A) Sankey diagram depicting the relationships between 27 anoikis-related 
genes and ARlncRNAs co-expression. (B) LASSO Cox regression analysis revealed 85 ARlncRNAs based LASSO cross validation plot. (C) LASSO 
coefficient of 85 ARlncRNAs. (D) Forest plot showed different ARlncRNAs for high and low risk, with red representing high-risk lncRNAs and 
green representing low-risk ARlncRNAs. (E) Correlation heatmap showed the relationship between 11 ARlncRNAs and anoikis-related genes 
for the signature. Red represents positive correlations and blue represents negative correlations. 
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Evaluating the ARlncRNA prognostic signature and 

PCA 

 

The TCGA-LUAD cohort was randomly assigned to 

training (236 samples) and test (235 samples) cohorts at 

a ratio of 1:1. We assigned the patients in each cohort to 

high- and low-risk cohorts according to the median risk 

score (Table 2), and the relationship between patients’ 

risk scores and groups is shown by risk curves (Figure 

4A). The risk survival status plot shows the poor 

survival of high-risk LUAD patients (Figure 4B). The 

AUCs for 1-, 3-, and 5-year OS were 0.718, 0.689, and 

0.692 (entire cohort); 0.787, 0.738, and 0.777 (training 

cohort); and 0.641, 0.641, and 0.596 (test cohort, Figure 

4C). Furthermore, a heatmap of the expression profile 

of 11 ARlncRNAs in the signature demonstrated that 

ARlncRNAs AL031602.2, AC021087.1, GLIS2-AS1, 

and ZNF571-AS1 were highly expressed in the low-risk 

group. Conversely, BZW1-AS1, ABCA9-AS1, 

AL606489.1, LINC02310, AL162632.3, LINC01117, 

and HAS2-AS1 were expressed at low levels (Figure 

4D). Survival analysis revealed that high-risk group 

patients were correlated with worse OS and 

progression-free survival in all three cohorts (Figure 

5A–5F). Finally, PCA results indicated that all genes, 

anoikis-related genes, and ARlncRNAs were unable to 

validly recognize high- and low-risk patients, and only 

risk ARlncRNAs could effectively recognize high- and 

low-risk patients (Figure 5G–5J). 

 

Independent prognostic analysis 

 

Cox regression analysis indicated that T stage 

(P=0.010), N stage and risk score (P<0.001) were 

independent prognostic factors (Table 3 and 

Supplementary Figure 1A, 1B). In addition, correlation 

analysis revealed that stage (P=0.0019), sex (P=0.001), 

T stage (P=0.00072), and N stage (P<0.0001) had 

significant relationships with risk scores, while age 

(P=0.88) was not significantly related to risk scores 

(Supplementary Figure 1C–1G). Finally, we developed 

a new nomogram with risk scores and clinical 

characteristics for predicting the OS of LUAD patients 

at 1, 3 and 5 years (Figure 6A). The ROC curve results 

showed that the risk score (AUC: 0.718) had better 

predictive ability than age (0.543), sex (0.598), stage 

(0.614), T stage (0.608) and N stage (0.619) (Figure 

6B), which was also indicated by the C-index curves 

(Figure 6C). The nomogram with risk score had more 

accurate predictive prognostic ability compared to no 

risk scores (AUC: 0.737 vs. 0.694, Figure 6B), which 

precisely forecasted the OS of patients in the test cohort 

(Supplementary Figure 2). Calibration curves show the 
agreement between the predicted and actual outcomes, 

and DCA demonstrated the clinical applicability value 

of this model (Figure 6D, 6E). 

Clinical subgroup validation 

 

The heatmap shows the expression of 11 ARlncRNAs 

in different clinical subgroups (Supplementary Figure 

3A). To determine the optimal range of application of 

this signature, survival analysis was performed for the 

two risk groups in the subgroups. Kaplan‒Meier curves 

showed that the high-risk group was related to worse 

OS in all subgroups (Supplementary Figure 4B–4F). 

Moreover, this difference was more significant in the 

age ≤ 65, stage I-II, T1-2 and N0 subgroups (P<0.001). 

 

GSEA and TMB analysis 

 

Enrichment results for six different pathway bases 

showed that glucose metabolism and DNA replication 

were the main enrichment pathways in the high-risk 

group. Notably, there was no significant enrichment 

pathway in the low-risk group (Figure 7). Depending on 

the results of the maftools algorithm, waterfall plots show 

that the mutation frequency of most genes was markedly 

increased in the high-risk group, such as TP53, TTN, 

MUC16, etc. (Figure 8A, 8B). Furthermore, the high-risk 

group was significantly linked to a high TMB. (Figure 

8C). Survival analysis based on TMB results showed that 

the high TMB group had good OS compared to the low 

TMB group (Figure 8D, 8E). 

 

Tumor microenvironment analysis 

 

Most immune cell infiltration levels were noticeably 

dissimilar in the two risk groups, as shown by the 

heatmap (Figure 9A). Wilcoxon analysis showed 

significantly lower infiltration rates of activated 

myeloid dendritic cells and B-cell memory in the high-

risk group. In contrast, the infiltration rates of M0 

macrophages and CD8+ T cells were significantly 

higher (Figure 9B). Moreover, immune function 

analysis demonstrated that 4 (HLA, MHC class I, 

parainflammation, type II IFN response) immune 

function pathways were significantly different between 

the two risk groups (Figure 9C). 

 

Immunotherapy and chemotherapy sensitivity 

 

According to the results of the TIED algorithm, tumor 

cells in the low-risk group appeared more easily to be 

immune escapees (Figure 10A). Gene expression 

analyses of immune checkpoints indicated that the 

highly expressed immune checkpoint genes were 

TNFRSF25, LGALS9, CD160, IDO2, TNFRSF14, 

TNFSF14, TNFSF15, CD40LG, CD200R1 and 

ADORA2A in the low-risk group and CD70, CD276 
and TNFSF4 in the high-risk group (Figure 10B). Drug 

sensitivity analyses revealed that low-risk group 

patients had 6 sensitive drugs, and the pharma- 
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Table 2. Clinicopathological characteristics of LUAD patients 
in two risk groups. 

Characteristic High-risk group Low-risk group 

Total 237 (50%) 234 (50%) 

Age                       

  ≤65     111 (46.84%) 114 (48.72%) 

  >65 121 (51.05%) 115 (49.15%) 

  Unknow 5 (2.11%) 5 (2.14%) 

Gender   

  Female 115 (48.52%) 141 (60.26%) 

  Male 122 (51.48%) 93 (39.74%) 

Stage                    

  I 104 (43.88%) 151 (64.53%) 

  II 66 (27.85%) 42 (17.95%) 

  III 45 (18.99%) 30 (12.82%) 

  IV 18 (7.59%) 7 (2.99%) 

  Unknow 4 (1.69%) 4 (1.71%) 

T stage         

  T1  59 (24.89%) 101 (43.16%) 

  T2 138 (58.23%) 112 (47.86%) 

  T3  28 (11.81%) 11 (4.70%) 

  T4 10 (4.22%) 9 (3.85%) 

  Unknow 2 (0.84%) 1 (0.43%) 

N stage   

  N0 133 (56.12%) 171 (73.08%) 

  N1 56 (23.63%) 31 (13.25%) 

  N2 41 (17.30%) 25 (10.68%) 

  N3 0 (0.00%) 2 (0.85%) 

  Unknow 7 (2.95%) 5 (2.14%) 

M stage                 

  M0 161 (67.93%) 157 (67.09%) 

  M1 17 (7.17%) 7 (2.99%) 

  Unknow 59 (24.89%) 70 (29.91%) 

Abbreviation: LUAD, Lung adenocarcinoma. 

 

cological action of these drugs is mainly by interdicting 

the PI3K/MTOR and ERK MAPK signaling pathways 

(Supplementary Table 7). The high-risk group had 59 

sensitive drugs, and the pharmacological effect was 

mainly mediated by blocking mitosis and the IGF1R 

signaling pathway (Supplementary Table 8 and Figure 

10C–10K). 

 

Immunohistochemistry staining and RT‒qPCR 

 

Protein expression maps of differentially expressed 

anoikis-associated genes in the HPA database showed 

that PDK4, CAV1, and MCL1 were expressed at 

relatively low levels in LUAD. In contrast, CEACAM5 

and CEACAM6 were relatively highly expressed 

(Supplementary Figure 4A). Primers for RT‒qPCR 

experiments of 11 ARlncRNAs are shown in 

Supplementary Table 1. RT‒qPCR measurements 

showed significant differential expression of the above 

11 ARlncRNAs in human normal bronchial epithelium 

cells (BEAS-2B) and LUAD cells (Supplementary 

Figure 4B). These results are in good agreement with 

the outcome of our analyses in the TCGA database. 

 

DISCUSSION 
 

LUAD is the most predominant pathobiological type of 
LC and is highly heterogeneous [1, 2]. With the 

continuous improvement of LUAD diagnostic and 

treatment protocols in the past decade, the OS for 
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Figure 4. Evaluation of the ARlncRNA prognostic signature in the total, training and test cohorts. (A) Risk score distribution of 

patients with LUAD based on ARlncRNAs. (B) Scatter plots showed the association between the overall survival and the risk score distribution. 
(C) 1-, 3-, and 5-years overall survival area under the ROC curve of the signature. (D) Heatmap represented the expression of 11 ARlncRNAs 
involved in the signature.  

 

 
 

Figure 5. Survival and PCA analysis of the prognostic signature. Kaplan-Meier curves to compare the overall survival and progression-

free survival of high-risk group and low-risk group in the (A, B) total, (C, D) training and (E, F) test cohort. Principal component analysis (PCA) 
based on (G) All genes, (H) Anoikis-related genes, (I) ARlncRNAs, and (J) Risk ARlncRNAs. 
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Table 3. Univariate and multivariate Cox regression analysis based on risk factors 
(Training cohort). 

Characteristic 
Univariate analysis  Multivariate analysis 

HR  HR (95% CI) P-value  HR  HR (95% CI) P-value 

Age 1.01  (0.99, 1.03) 0.227   1.010  (1.00, 1.03) 0.173  

Gender 1.16  (0.85, 1.56) 0.350   1.080  (0.79, 1.47) 0.618  

Stage 2.31  (1.67, 3.20) <0.001  1.160  (0.75, 1.79) 0.498  

T 2.44  (1.66, 3.58) <0.001  1.800  (1.15, 2.82) 0.010  

N 2.47  (1.82, 3.35) <0.001  2.220  (1.55, 3.20  <0.001 

Risk Score 1.05  (1.03, 1.06) <0.001  1.050  (1.04, 1.07) <0.001 

Abbreviations: CI, Confidence interval; HR, Hazard ratio. 

 

LUAD patients is still unsatisfactory [3]. Traditional 

TNM staging and clinical prediction models cannot 

effectively predict the OS of LUAD and guide therapy 

[5]. It is urgent to discover a new predictive model. 

anoikis is a special type of programmed apoptosis that 

occurs when cancer cells are separated from the extra-

cellular matrix (ECM), which influences tumorigenesis, 

metastasis and invasion [9]. Recently, lncRNAs have 

been reported to be closely correlated with anoikis in 

tumor cells [20]. Therefore, exploring the effect of 

ARlncRNAs on the prognosis of LUAD is necessary. 

The study identified significantly prognostic 

ARlncRNAs to develop a novel prognostic signature 

that can validly predict the OS of LUAD. In the 

 

 
 

Figure 6. Construction of nomogram and validation of its predictive ability. (A) The nomogram for predicting the overall survival of 

patients with LUAD at 1-, 3-, and 5- years. (B) ROC curves for the risk score and other clinical characteristics to predict the overall survival 
rates of patients with LUAD. (C) C-Index curve for the risk score and other clinical characteristics. (D) The calibration curve for evaluating the 
nomogram. (E) DCA curve of the nomogram. 
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high-risk group, enrichment analysis demonstrated that 

glucose metabolism and DNA replication were the main 

enrichment pathways. Patients in the high-risk group 

were immunosuppressed and had a high TMB. Two risk 

groups with different sensitivities to immunotherapy 

and different chemotherapeutic drugs. 

 

We developed a novel prognostic signature with 

accurate predictive ability based on 11 ARlncRNAs. 

Using lncRNAs to construct prognostic signatures is 

widely used in colorectal, esophageal and breast cancer 

[21]. The results of this study are similar to theirs. 

Poorer prognosis in the high-risk group and prognostic 

features accurately predict patient prognosis. To more 

accurately predict LUAD prognosis. We combined the 

signature with clinical characteristics to create a new 

nomogram, which has more accurate predictive ability 

than the nomogram without risk scores (AUC: 0.737 vs. 

0.694). Since we incorporated risk scores with high 

predictive prognostic power, our model also has 

advantages over traditional TNM stage (AUC: 0.737 vs. 

0.614), and has better predictive ability than other 

existing models [22, 23]. Two ARlncRNAs in the 

signature have been reported in the relevant literature. 

Zhao et al. demonstrated that LINC02310 significantly 

promoted the growth and proliferation of LUAD [24]. 

Experiments showed that HAS2-AS1 overexpression 

strongly reduced breast cancer cell viability, migration 

and invasion [25]. This is consistent with our study 

results. Mechanisms of action for other ARlncRNAs 

still need to be further explored. RT‒qPCR also 

confirmed the significant differential expression of the 

above 11 ARlncRNAs in normal and tumor cells. 

 

GSEA showed that glucose metabolism and DNA 

replication were the main enrichment pathways in the 

high-risk group. The EGFR signaling pathway enhances 

SCAP N-glycosylation to deactivate SREBP-1 by 

promoting glucose uptake, and SREBP-1 can promote 

the progressive metastasis of cancer [26]. The DNA 

replication process plays a vital role in cell division and 

cancer progression [27]. The TME is involved in 

tumorigenesis, growth and metastasis [28]. The immune 

hypothesis suggests that fewer immune cancer cells in 

immunocompetent hosts evade antitumor immune 

responses. This may lead to an increase in 

immunosuppressive cells and a decrease in immuno-

reactive cells [29]. The study’s immune infiltration 

analyses revealed that the high-risk group had higher 

NK cell infiltration but lower mast cell and helper  

T-cell infiltration than the low-risk group. This high 

level of immunosuppression and poor immune 

responsiveness may contribute to the poor prognosis of 

high-risk patients. Immune function analysis showed 

differences in HLA, MHC class I, parainflammatory, 

and type II IFN responses between the two risk groups. 

Previous studies have demonstrated that decreased 

expression of HLA protein on the surface of cancer 

cells is an important mechanism of immune escape of 

tumor cells [30]. Furthermore, TMB is usually 

 

 
 

Figure 7. Gene set enrichment analysis. The pathways of (A) KEGG, (B) GO, (C) BIOCARTA, (D) REACTOME, (E) WIKIPATHWAYS, and  

(F) PID enriched in the low- and high- risk group. 
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employed as a predictive indicator for immunotherapy 

in urothelial, lung and head and neck squamous cell 

cancers [31]. Our study found that the top two 

significantly different mutated genes between the high 

and low risk groups were TP53 and TTN. TP53 is the 

most mutable tumor suppressor gene, and its mutation 

not only increases the chance of carcinogenesis but also 

decreases antitumor activity [32]. TTN is also involved 

in the progression of many cancers. Jia et al. found that 

TTN regulates CDK5 through miR-142-5p to promote 

migration and invasion in LUAD [33]. This study found 

that patients with high TMB have a better prognosis. 

Studies have shown that patients may benefit more from 

immunotherapy with higher TMB [34]. However, in 

lung cancer patients with EGFR mutations, a higher 

TMB is associated with a poorer response to targeted 

therapy [35]. Additionally, for surgically resected early-

stage lung cancer patients, a higher TMB is correlated 

with longer survival, potentially allowing for the 

avoidance of postoperative adjuvant chemotherapy [36]. 

Our findings reconfirmed that the TMB affects the 

prognosis of patients with LUAD, which may provide 

guidance for immunotherapy, targeted therapy and 

chemotherapy. 

 

TIDE plays an essential role in tumor progression and is 

an essential tool for predicting the effectiveness of 

immunotherapy in oncology. Studies have demonstrated 

that oncology patients with lower TIDE can benefit 

significantly from immunotherapy [37]. Our study 

found lower TIDE scores in the high-risk group, which 

suggests that these patients are more sensitive to 

immunotherapy. Thus, we further explored the 

distinction in immunotherapy response among the two 

 

 
 

Figure 8. The relationship between TMB and the signature. (A, B) Waterfall plot revealed the top 15 mutation genes in LUAD for the 
two risk groups. (C) Differential TMB between two risk groups in LUAD. (D, E) Kaplan-Meier survival curves for the high and low TMB groups 
and a combined TMB-risk survival curve.  
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risk groups of LUAD patients. The expression of 

immune checkpoint genes was analyzed, and the 

results showed 12 differentially expressed immune 

checkpoint genes, 6 of which were highly expressed 

in high-risk populations, and the rest were highly 

expressed in low-risk populations. These genes could 

be potential targets for immunotherapy [38]. 

Furthermore, we collected common chemotherapeutic 

drugs, and the sensitivities of the two risk groups to 

these drugs were analyzed via the pRRophetic 

algorithm [39]. Our results revealed that the sensitive 

drugs in the high-risk group of patients mainly 

blocked mitosis and the IGF1R signaling pathway but 

were resistant to the PI3K/MTOR and ERK MAPK 

signaling pathways. This indicated that this prognostic 

signature can predict chemotherapy drug sensitivity in 

LUAD patients. Overall, the ARlncRNA prognostic 

signature can offer clinical guidance value for 

immunotherapy and chemotherapy treatment. 

 

The strengths of this study are as follows: This study is 

the first to analyze the relationship between 

ARlncRNAs and prognosis of LUAD patients and 

attempts to use ARlncRNAs as a biological 

prognosticator for predicting LUAD patients. Second, 

the model performed better in predicting patient 

prognosis compared with the traditional model, which 

indicates the potential clinical application of 

ARlncRNAs in LUAD prognosis prediction. Third, this 

study pioneered the use of six gene enrichment analysis 

methods and searched for common metabolic pathways, 

providing a deep understanding of the intrinsic 

mechanisms of LUAD. Fourth, immune function, 

immune checkpoint and TIED analysis revealed 

differences in the immune landscape between high and 

low risk groups, providing new ideas for future studies, 

and finally, validated using cell lines, which lends 

credibility to the study. Nonetheless, some limitations 

of this study should be mentioned. First, LUAD patients 

from a single data source TCGA database. Second, the 

molecular mechanism of ARlncRNAs in the OS of 

LUAD is unclear and will be explored in future studies. 

 

CONCLUSIONS 
 

We developed a novel signature with 11 ARlncRNAs 

that can precisely predict the OS of LUAD patients. 

Nomograms with risk scores have more accurate 

predictive prognostic power than those without risk 

scores. The high-risk group had gene enrichment mainly 

in glucose metabolism and DNA replication pathways, 

low immune response and high TMB. The novel 

signature can provide guidance for clinical immuno-

therapy and chemotherapy treatment. Due to these 

shortcomings, our study requires basic experimentation 

to discover the molecular mechanisms of ARlncRNAs 

in LUAD, and the selection of relevant sensitive drugs 

must be confirmed by clinical use. 

 

 
 

Figure 9. Tumor immune microenvironment analysis. (A) Heatmap for immune responses based on TIMER, CIBERSORT, CIBERSORT-

ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms among high and low risk groups. (B) ssGSEA algorithm shows immune cells 
scores between the two risk groups. (C) ssGSEA algorithm shows immune functions scores between the two risk groups. *P<0.05; **P<0.01; 
***P<0.001.  
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Figure 10. Immunotherapy and chemotherapy sensitivity. (A) Tumor immune dysfunction and exclusion (TIDE) algorithm analysis for 

the high-risk and low-risk groups. (B) Immune checkpoint genes expression level between high-risk and low-risk groups.  
(C–K) Chemosensitivity difference between high-risk and low-risk groups. *P<0.05; **P<0.01; ***P<0.001. 
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index; DCA: Decision curve analysis; ECM: The 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Independent prognostic analysis of the prognostic signature. (A) Univariate and (B) Multivariate Cox 

regression analysis to examine the value of clinical characteristics and risk score as independent prognostic predictors. Correlation analysis of 
risk score with age (C), gender (D), stage (E), T stage (F) and N stage (G). 
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Supplementary Figure 2. Nomograms for predicting 1-, 3-, 5-year overall survival for a randomly selected patient in test 
cohort. 

 

 
 

Supplementary Figure 3. Subgroup validation based on clinical features. (A) Heatmap for expression levels and correlation of risk 

signature with clinical factors. Kaplan-Meier survival analysis between high- and low-risk groups stratified by clinical characteristics: (B) age 
(≤65 and >65), (C) gender (female and male), (D) stage (I-II and III-IV), (E) T stage (T1-2 and T3-4) and (F) N stage (N0 and N1-3). 
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Supplementary Figure 4. Validation of apoptosis-related genes and ARlncRNAs expression levels. (A) Protein expression map of 

the top 5 differential apoptosis-related genes in normal and tumor tissues. (B) Expression levels of 11 ARlncRNAs in high and low risk groups. 
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Supplementary Table 
 

 

Please browse Full Text version to see the data of Supplementary Tables 4–6. 

 

Supplementary Table 1. Primers for RT-qPCR experiments of 11 ARlncRNAs. 

Gene  Forward primer Reverse primer 

AL031602.2 ATCTTCCCTGTCACCTCCCTT CTGGGACATTCACACGGATG 

BZW1-AS1 AGGACACAGGCCGAAGATTG CACACTCGGGAGACAACCG 

AC021087.1 CTCGAGCAGGGACGTATCAC AAAGGGCAAGATAACGGCCA 

GLIS2-AS1 TGCTAATTACTGCGGGGTCC AAACTGAGGAACGGAAGGCTC 

ABCA9-AS1 TCCAGTGTTCTGCACCAGTT  TGGCCCAACGTCTAATAGGG 

AL606489.1 TCCTTTATCGGGCAAGAGGC TGGGTGCAATGAGAGTGCAT 

ZNF571-AS1 CGCCATCCCCTTTTCCTCTT CGGTCCAAAGGTTCTCCGAA 

LINC02310 GGGATAAATCCTCCCTGCCC TCAGTTTTGCAGAAGGGGCT 

AL162632.3 TGGCCGTAAAGTAAAACCCT TCGGCCCAAAGGAGAAGAAA 

LINC01117 CCCCGTGCTCGTTACAATCT  CTCCGGGGTTACTGGAGTCT 

HAS2-AS1 CCCGGTTCTCACCCTCATAC GAATTCGTCACGGCAGTTCC 

Abbreviation: ARlncRNAs, anoikis-related lncRNAs; RT-qPCR, Reverse transcription 
quantitative-polymerase chain reaction. 

 

Supplementary Table 2. The 148 ARlncRNAs connected with the over survival of the LUAD patients 
screened after univariate Cox analysis in training cohort (P<0.05).  

Gene HR HR (95% CI) P-value Gene HR HR (95% CI) P-value 

MIR4435-2HG 1.68  (1.17,2.42) 0.005  AL445309.1 0.59  (0.39,0.91) 0.016  

AC103681.2 0.29  (0.10,0.81) 0.018  AC092718.4 1.45  (1.15,1.85) 0.002  

AC107308.1 1.30  (1.05,1.61) 0.016  Z97989.1 0.61  (0.38,0.98) 0.042  

TSPOAP1-AS1 0.65  (0.44,0.98) 0.039  AC026356.1 1.34  (1.03,1.76) 0.030  

AC039056.2 1.40  (1.05,1.88) 0.022  ABCA9-AS1 2.10  (1.14,3.87) 0.017  

LINC01863 0.68  (0.48,0.96) 0.027  C2orf27A 1.50  (1.06,2.13) 0.023  

CYP1B1-AS1 0.51  (0.27,0.96) 0.038  AC079313.2 2.46  (1.47,4.13) 0.001  

AL109615.4 0.71  (0.54,0.94) 0.017  SMILR 1.60  (1.19,2.15) 0.002  

AC087501.4 0.43  (0.25,0.75) 0.003  AC116407.1 0.80  (0.64,0.99) 0.045  

AC092279.1 0.73  (0.56,0.96) 0.022  AC006116.9 0.21  (0.05,0.88) 0.033  

AC022148.2 0.30  (0.10,0.90) 0.032  GMDS-DT 0.40  (0.20,0.80) 0.009  

ZKSCAN7-AS1 0.59  (0.38,0.92) 0.021  LINC01116 1.28  (1.09,1.49) 0.002  

AC009509.4 1.75  (1.17,2.63) 0.007  AC092574.1 0.65  (0.45,0.93) 0.020  

CACTIN-AS1 2.48  (1.04,5.92) 0.041  AL606489.1 1.43  (1.16,1.77) 0.001  

AC090948.1 0.72  (0.53,0.98) 0.034  DEPDC1-AS1 4.28  (1.89,9.66) <0.001  

AC090023.2 1.85  (1.24,2.75) 0.003  AL449423.1 1.67  (1.03,2.72) 0.037  

LINC01138 1.42  (1.00,2.00) 0.047  AL691432.2 0.62  (0.47,0.84) 0.002  

AC018529.1 0.58  (0.34,0.98) 0.042  ZNF571-AS1 0.63  (0.41,0.97) 0.035  

AC011477.2 0.70  (0.54,0.92) 0.009  RASAL2-AS1 1.56  (1.01,2.40) 0.043  

AC007552.2 0.77  (0.61,0.97) 0.024  AL157895.1 0.48  (0.25,0.94) 0.032  

SH3BP5-AS1 0.75  (0.58,0.97) 0.027  AL358115.1 1.60  (1.03,2.49) 0.035  

SNHG14 0.67  (0.45,0.99) 0.042  AC025171.2 0.74  (0.57,0.97) 0.029  

APCDD1L-DT 1.53  (1.20,1.94) 0.001  AC112721.1 1.34  (1.01,1.77) 0.040  

AC124242.1 0.51  (0.29,0.89) 0.019  DAAM2-AS1 0.40  (0.18,0.91) 0.029  

AC027031.2 1.37  (1.09,1.72) 0.006  AC010615.2 0.79  (0.62,1.00) 0.047  
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CYTOR 1.62  (1.11,2.36) 0.013  TMEM30A-DT 0.27  (0.11,0.68) 0.006  

ADAMTS9-AS2 0.47  (0.25,0.89) 0.020  AL137009.1 0.64  (0.43,0.94) 0.021  

AC003991.1 0.57  (0.33,0.98) 0.041  AL359220.1 0.58  (0.36,0.93) 0.022  

LINC00520 1.80  (1.20,2.69) 0.004  ZNF32-AS2 0.73  (0.54,0.99) 0.045  

LINC00460 1.18  (1.02,1.37) 0.026  AC125807.2 1.33  (1.01,1.74) 0.041  

AC107021.2 1.25  (1.00,1.57) 0.047  LINC02310 2.75  (1.83,4.14) <0.001  

AL008729.2 0.80  (0.66,0.97) 0.025  AC138965.1 1.63  (1.07,2.48) 0.023  

AL031602.2 0.53  (0.36,0.78) 0.001  STXBP5-AS1 2.45  (1.11,5.42) 0.027  

BZW1-AS1 2.43  (1.58,3.74) <0.001  AC034223.2 1.53  (1.28,1.85) <0.001  

AC008937.3 0.46  (0.23,0.93) 0.030  AP005264.1 1.91  (1.21,3.03) 0.006  

AC100810.3 1.68  (1.15,2.47) 0.007  AP005717.2 2.35  (1.01,5.48) 0.047  

LINC02728 0.43  (0.21,0.90) 0.025  AC010343.3 1.54  (1.07,2.21) 0.019  

AC092718.5 0.58  (0.38,0.91) 0.017  AC024075.1 0.76  (0.6,0.97) 0.025  

AC021087.1 0.57  (0.38,0.84) 0.005  AL162632.3 2.96  (1.22,7.18) 0.016  

AC084048.1 0.45  (0.21,0.97) 0.042  AC024075.3 0.72  (0.53,0.97) 0.031  

AC004540.2 0.59  (0.37,0.94) 0.026  AC091057.1 1.35  (1.03,1.78) 0.030  

AC021087.3 0.58  (0.37,0.93) 0.023  AC022210.1 1.53  (1.09,2.15) 0.013  

AL137186.2 1.73  (1.04,2.86) 0.034  AC090409.1 1.88  (1.00,3.55) 0.050  

GLIS2-AS1 0.62  (0.45,0.84) 0.002  ZNF790-AS1 0.62  (0.42,0.92) 0.017  

LINC02848 0.06  (0.01,0.74) 0.028  AL356608.1 0.13  (0.03,0.56) 0.006  

TMPO-AS1 1.38  (1.02,1.86) 0.034  LINC01117 1.88  (1.41,2.50) <0.001  

AL354953.1 1.31  (1.11,1.55) 0.002  AC008870.2 0.73  (0.53,0.99) 0.045  

STEAP2-AS1 1.76  (1.13,2.73) 0.012  AC108136.1 1.97  (1.37,2.83) <0.001  

ZRANB2-AS2 0.17  (0.04,0.74) 0.018  AL353804.1 0.73  (0.56,0.96) 0.026  

AC091435.2 0.61  (0.38,0.99) 0.047  AL139351.3 1.77  (1.23,2.55) 0.002  

AC124045.1 0.67  (0.46,1.00) 0.048  ASB16-AS1 0.69  (0.47,0.99) 0.046  

RMDN2-AS1 0.58  (0.35,0.96) 0.034  LINC01537 2.40  (1.60,3.60) <0.001  

AP000864.1 2.22  (1.11,4.43) 0.024  AC006058.3 1.57  (1.15,2.16) 0.005  

AC026355.2 0.81  (0.67,0.98) 0.034  AC123595.2 0.61  (0.41,0.90) 0.014  

AC092640.1 1.94  (1.12,3.36) 0.018  AC005865.2 1.40  (1.05,1.88) 0.024  

AL138689.1 1.37  (1.06,1.77) 0.018  HAS2-AS1 5.20  (2.48,10.92) <0.001  

AC084781.1 2.79  (1.20,6.47) 0.017  AC092329.4 0.53  (0.33,0.87) 0.011  

AL031778.1 0.64  (0.44,0.92) 0.017  AP000695.1 1.53  (1.23,1.91) <0.001  

AP000695.2 1.48  (1.16,1.88) 0.001  AL138921.2 0.66  (0.44,0.98) 0.039  

AC135050.6 0.60  (0.44,0.82) 0.001  AL138789.1 1.53  (1.15,2.02) 0.003  

AL109811.2 0.61  (0.44,0.84) 0.003  AC025419.1 1.51  (1.15,1.98) 0.003  

LINC01711 1.40  (1.13,1.74) 0.002  AC024909.1 0.61  (0.38,0.98) 0.041  

TRMT2B-AS1 0.56  (0.34,0.94) 0.028  AC068580.2 1.41  (1.00,1.98) 0.047  

MANCR 1.68  (1.34,2.10) <0.001  AL355075.2 0.76  (0.59,0.98) 0.035  

AL139424.3 0.42  (0.18,0.95) 0.037  NAGPA-AS1 0.64  (0.42,0.98) 0.042  

AC127024.5 0.69  (0.50,0.97) 0.030  HCG18 0.53  (0.34,0.85) 0.007  

AL158068.2 1.95  (1.02,3.70) 0.042  AL391261.1 2.08  (1.33,3.26) 0.001  

NIPBL-DT 0.69  (0.50,0.95) 0.023  MAP3K4-AS1 1.55  (1.09,2.21) 0.016  

AC016735.1 1.37  (1.03,1.82) 0.030  AL359643.2 0.26  (0.08,0.91) 0.035  

AC019205.1 0.56  (0.32,0.97) 0.038  AC114781.2 0.45  (0.24,0.84) 0.013  

LINC01385 1.33  (1.03,1.72) 0.029  AC060780.1 0.70  (0.50,0.97) 0.033  

AC034102.8 0.62  (0.41,0.92) 0.019  AL590729.1 0.57  (0.35,0.92) 0.022  

DIRC3 2.27  (1.20,4.30) 0.012  SEPSECS-AS1 0.62  (0.39,0.99) 0.045  

MIR31HG 1.54  (1.30,1.81) <0.001  LINC02582 1.41  (1.11,1.78) 0.005  

Abbreviation: ARlncRNAs, anoikis-related lncRNAs; CI, Confidence interval; HR, Hazard ratios; LUAD, Lung 
adenocarcinoma. 
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Supplementary Table 3. 11 ARlncRNAs connected with the over 
survival of the LUAD patients after multivariate Cox analysis in 
training cohort. 

Gene HR HR (95% CI) Coef P-value 

AL031602.2 0.49 (0.32,0.77) -0.710450178205890  0.002 

BZW1-AS1 1.54 (0.93,2.54) 0.432038348321673  0.092 

AC021087.1 0.62 (0.41,0.94) -0.476411291926875  0.025 

GLIS2-AS1 0.64 (0.46,0.87) -0.454008732783369  0.005 

ABCA9-AS1 2.72 (1.31,5.63) 0.999706491359515  0.007 

AL606489.1 1.30  (1.03,1.63) 0.259835252523394  0.025 

ZNF571-AS1 0.71 (0.44,1.12) -0.348748604018090  0.139 

LINC02310 2.12 (1.24,3.62) 0.750892025449650  0.006 

AL162632.3 3.73 (1.43,9.72) 1.315573571091090  0.007 

LINC01117 1.40  (1.03,1.90) 0.338762422003907  0.029 

HAS2-AS1 2.17 (0.93,5.05) 0.775846321855369  0.072 

Abbreviations: ARlncRNAs, anoikis-related lncRNAs; CI, Confidence interval; 
Coef, Coefficient; HR, Hazard ratios; LUAD, Lung adenocarcinoma. 

 

Supplementary Table 4. The risk scores and risk groups of LUAD patients in the total cohort. 

 

Supplementary Table 5. The risk scores and risk groups of LUAD patients in the training cohort. 

 

Supplementary Table 6. The risk scores and risk groups of LUAD patients in the test cohort. 

 

Supplementary Table 7. The 6 sensitive drugs in the low-risk group were obtained 
by chemotherapy drug sensitivity analysis at P<0.001. 

Drug P-value L.median (25%,75%) H.median (25%,75%) 

IGF1R signaling    

  BMS-754807_2171 <0.001 1.4(0.46-2.80) 2.29(0.87-4.24) 

JNK and p38 signaling    

  Doramapimod_1042 <0.001 83.61(69.75-104.75) 102.35(79.12-125.55) 

Mitosis    

  ZM447439_1050 <0.001 16.88(14.01-22.23) 19.95(15.60-27.00) 

  SB505124_1194 <0.001 9.81(7.58-11.49) 10.55(8.91-12.46) 

PI3K/MTOR signaling    

  PF-4708671_1129 <0.001 44.12(35.94-56.42) 52.27(40.16-67.21) 

RTK signaling    

  Axitinib_1021 <0.001 19.84(15.40-25.53) 24.51(19.14-31.54) 

Abbreviation: H, High risk group; L, Low risk group. 
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Supplementary Table 8. The 59 sensitive drugs in the high-risk group were obtained by 
chemotherapy drug sensitivity analysis at P<0.001. 

Drug P-value L.median (25%,75%) H.median (25%,75%) 

Apoptosis regulation    

  Wee1 Inhibitor_1046 <0.001 7.47(3.92-17.87) 5.43(2.84-9.77) 

  PD0325901_1060 <0.001 1.81(1.13-3.32) 1.32(0.75-2.20) 

  IAP_5620_1428 0.001 166.18(101.98-300.14) 132.62(73.47-237.21) 

  Vinorelbine_2048 <0.001 0.04(0.02-0.16) 0.02(0.01-0.08) 

Apoptosis regulation    

  Palbociclib_1054 0.001 43.51(27.37-73.12) 34.73(21.48-54.85) 

  BI-2536_1086 0.001 1.52(0.97-2.46) 1.25(0.63-2.04) 

  MK-1775_1179 <0.001 1.81(0.98-4.43) 1.03(0.60-2.06) 

  VE821_2111 <0.001 60.1(34.42-139.30) 36.68(21.63-75.00) 

Chromatin other    

  MK-8776_2046 <0.001 24.11(12.15-59.18) 12.82(7.41-25.27) 

DNA replication    

  Gemcitabine_1190 0.001 0.6(0.21-1.62) 0.37(0.14-1.06) 

  Epirubicin_1511 0.001 0.36(0.20-0.76) 0.27(0.16-0.52) 

  Foretinib_2040 <0.001 2.61(1.44-4.64) 1.68(0.96-2.93) 

  Pyridostatin_2044 0.001 25.58(15.86-47.59) 20.14(13.58-35.02) 

EGFR signaling    

  Gefitinib_1010 <0.001 23.98(14.81-43.06) 17.29(11.02-32.56) 

  Erlotinib_1168 <0.001 13.92(9.28-22.93) 10.35(6.73-17.11) 

  Lapatinib_1558 0.001 19.14(9.89-42.41) 13.51(7.37-29.66) 

  AZD3759_1915 <0.001 13.02(8.81-23.27) 10.95(7.05-17.85) 

  Ulixertinib_2047 <0.001 9.95(5.74-16.58) 8.51(5.34-12.73) 

ERK MAPK signaling    

  Alisertib_1051 0.001 6.34(2.64-20.79) 4.51(1.84-10.41) 

  Trametinib_1372 <0.001 2.18(1.07-4.93) 1.23(0.52-3.19) 

  VE-822_1613 <0.001 30.55(14.81-75.84) 18.45(9.74-44.10) 

  ERK_6604_1714 <0.001 36.5(22.63-62.14) 28.49(15.34-48.95) 

  AZD4547_1786 <0.001 18(10.57-33.60) 13.67(8.02-21.89) 

  Buparlisib_1873 <0.001 2.47(1.77-4.16) 1.96(1.38-3.24) 

Genome integrity    

  Vinblastine_1004 <0.001 0.02(0.01-0.08) 0.02(0.01-0.04) 

  Talazoparib_1259 <0.001 28.19(15.37-52.10) 18.24(9.69-33.86) 

  Pevonedistat_1529 <0.001 2.1(1.02-5.31) 1.4(0.58-2.92) 

Hormone-related    

  Fulvestrant_1200 <0.001 16.13(10.95-29.25) 12.87(9.41-19.21) 

  GDC0810_1925 <0.001 129.24(93.10-205.90) 98.57(71.36-156.54) 

IGF1R signaling    

  AZD7762_1022 <0.001 1.03(0.58-2.41) 0.67(0.38-1.23) 

  Staurosporine_1034 <0.001 0.05(0.03-0.11) 0.03(0.02-0.06) 

Metabolism    

  GSK2606414_1618 0.001 38.55(24.86-64.48) 32.2(22.40-46.59) 

Mitosis    

  Cisplatin_1005 <0.001 30.97(14.04-72.36) 14.26(5.53-34.88) 

  Docetaxel_1007 <0.001 0.01(0.01-0.03) 0.01(0.00-0.01) 

  Luminespib_1559 <0.001 0.1(0.05-0.27) 0.07(0.04-0.14) 

  Savolitinib_1936 <0.001 14.36(7.64-26.69) 8.08(4.85-13.45) 
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p53 pathway    

  MIRA-1_1931 <0.001 196.28(107.82-367.99) 147.05(94.10-247.43) 

PI3K/MTOR signaling    

  Dactolisib_1057 <0.001 0.19(0.11-0.37) 0.14(0.08-0.26) 

  GNE-317_1926 <0.001 1.74(0.99-3.40) 1.17(0.76-2.24) 

  Ipatasertib_1924 0.001 27.69(14.41-62.63) 21.89(11.05-40.65) 

  LJI308_2107 0.001 166.78(102.37-296.89) 124.37(77.98-205.04) 

  Pictilisib_1058 <0.001 3.92(2.19-8.61) 2.71(1.59-5.31) 

  Taselisib_1561 <0.001 9.15(4.13-19.07) 5.97(2.48-14.13) 

  Paclitaxel_1080 <0.001 0.07(0.03-0.24) 0.04(0.02-0.10) 

  YK-4-279_1239 <0.001 9.56(4.99-26.66) 6.15(3.26-14.90) 

  Alpelisib_1560 <0.001 36.02(17.94-77.46) 22.27(10.47-47.92) 

  AMG-319_2045 <0.001 115.83(75.92-196.16) 92.09(61.12-149.61) 

  AT13148_2170 0.001 30.38(17.05-72.24) 21.85(12.17-55.76) 

Protein stability and degradation   

  BMS-536924_1091 <0.001 9.14(5.90-13.51) 6.47(4.29-10.45) 

  BPD-00008900_1998 <0.001 91.93(63.06-146.75) 69.9(47.88-112.14) 

RTK signaling    

  5-Fluorouracil_1073 <0.001 123.65(55.68-338.28) 63.96(25.47-183.49) 

Other    

  Cytarabine_1006 <0.001 6.77(3.12-13.02) 4.26(1.83-8.59) 

  Dasatinib_1079 <0.001 5.49(2.05-17.88) 3.47(0.70-11.36) 

  Dabrafenib_1373 0.001 101.23(54.01-186.31) 74.25(34.06-145.65) 

  Temozolomide_1375 <0.001 328.03(226.50-763.95) 274.93(162.41-466.20) 

  I-BET-762_1624 <0.001 29.3(19.04-47.07) 21.97(14.31-37.35) 

  AZD6738_1917 <0.001 8.84(4.63-20.71) 5.38(2.63-9.13) 

  VX-11e_2096 <0.001 18.18(12.24-34.21) 12.77(7.66-21.69) 

Unclassified    

  BDP-00009066_1866 <0.001 9.61(7.16-17.15) 8.07(5.66-11.79) 

Abbreviation: H, High risk group; L, Low risk group. 

 

 

 

 

 

 


