
www.aging-us.com 2299 AGING 

INTRODUCTION 
 

Over the past few years, there has been a yearly rise in 

the frequency of kidney cancer cases, constituting 2.2% 
of newly diagnosed cancer incidents and contributing to 

approximately 1.8% of fatalities attributed to cancer  

[1, 2]. Kidney renal clear cell carcinoma (KIRC), a 

prevalent form of urinary system malignancy, makes up 

nearly 80% of all cases of renal cell carcinoma (RCC) 

[3–6]. Advanced KIRC is resistant to both chemotherapy 

and radiotherapy and it always combines with extremely 

poor prognosis [7]. Currently, the primary approach  

in treating individuals with KIRC involves surgical 

intervention. However, almost 40% of these patients 

experience metastases following initial removal [8, 9]. In 

addition, 25% of the KIRC patients are diagnosed with 
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ABSTRACT 
 

Background: Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core 
fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. 
Methods: The alterations of CF-related genes were summarized in pan-cancer. The “ConsensusClusterPlus” 
package was utilized to identify two CF-related KIRC subtypes. The “ssgsea” function was chosen to estimate 
the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune 
responses. The “oncoPredict” was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was 
performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were 
scrutinized to evaluate the CF state. 
Results: In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-
related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated 
with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, 
macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and 
endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of 
SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 
samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and 
fibroblast cells. 
Conclusions: Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited 
elevated expression in KIRC samples. 
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metastasis at the first visit due to no specific features  

at the early stage [10, 11]. As for metastatic renal cell 

carcinoma, only few first-line drugs such as Sunitinib 

can be used, but drug resistance often occurs after 6-15 

months of systematic treatment [12]. Identifying key 

driver genes related to progression can help improve the 

prognosis. Besides, an in-depth exploration of the 

molecular mechanisms of KIRC is significant for the 

creation of novel therapeutic agents. 

 

Fucosylation denotes the act of attaching a fucose 

molecule to glycolipids, O-glycans, and N-glycans.  

This process can be categorized into core fucosylation 

and terminal fucosylation. Being the prevalent  

post-translational alteration, core fucosylation (CF) 

participates in a range of biological mechanisms, 

including cell proliferation and differentiation. The 

creation of fucosylated glycans is associated with a set 

of fucosyltransferases (FUTs) that have been recognized 

within the human genome. Fucosyltransferase 8 (FUT8) 

possesses the ability to facilitate the incorporation of α-

1,6-fucose onto the innermost GlcNAc unit of N-

glycans. It has been established as the principal 

orchestrator of core fucosylation [13]. The disordered 

expression of fucosyltransferases (FUTs) have a close 

relationship with oncogenesis [14, 15]. Also, tumor 

immune response is revealed to be linked to aberrant core 

fucosylation [16]. Large amounts of immune system 

molecules are core fucosylated glycoproteins which 

participate in signal transduction, antigen clearance, and 

lymphocyte activation. The CF of IgG-BCR is essential 

in the process of antigen recognition and antibody 

production [17]. T cell receptors (TCRs) are core-

fucosylated glycoproteins and the activation of T cell is 

related to the CF of the TCR [18]. In addition, most CF-

related genes can positively regulate the expression of 

PD-1 and anti-tumor immune responses can be improved 

after obstructing the core fucosylation of PD-1 [19]. 

 

Absolutely, targeting the abnormal fucosylaion will be a 

novel strategy in cancer treatment. Till now, the 

abnormal CF has been found in many cancers including 

lung cancer [20], thyroid carcinoma [21], and 

hepatocellular carcinoma [22]. Whether CF functions in 

the tumorigenesis and progression in KIRC is poorly 

investigated. In this research, we systematically 

summarized the alteration of CF-related genes in a pan-

cancer level and focused on the potential mechanisms of 

CF in KIRC. Using the expression levels of central core 

fucosylation (CF) genes, KIRC samples were categorized 

into two subtypes, each displaying unique traits such as 

survival probabilities, tumor microenvironment (TME) 

characteristics, and responsiveness to drugs. FUT8, as the 
gene of great importance to CF, was explored in KIRC in 

detail. Subsequent to that, an analysis was conducted to 

explore the variations of FUT8 expression within KIRC 

samples exhibiting diverse clinical attributes. Also, the 

molecular features of FUT8 were researched in a single-

cell level. Consequently, we found that the state of CF 

was different in KIRC samples and was linked to the 

prognosis, immune response and drug sensitive of KIRC. 

All the findings in the research indicated that CF is a 

potential indicator of the TME in KIRC and regulating 

CF might be an approach to improve the prognosis of 

KIRC. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 
 

The genes involved in the process of the CF were 

collected and downloaded from the GeneCards database. 

For pan-cancer analysis, The Cancer Genome Atlas 

(TCGA) database was searched and the mRNA 

expression, survival data, single-nucleotide variation 

(SNV), and copy number variation (CNV) of common 

cancers were downloaded. In addition, the transcriptome 

profilings and clinical data of KIRC were obtained from 

both The Cancer Genome Atlas (TCGA) and the 

ArrayExpress database. Totally, the TCGA dataset 

contained 539 KIRC samples and the ArrayExpress 

dataset contained 101 KIRC samples. The batch effects 

between the two datasets were removed the utilizing the 

“sva” package in R [23, 24]. Prognostic core 

fucosylation-related genes (PCFGs) for KIRC were 

pinpointed through the implementation of univariate Cox 

regression analysis. Then these PCFGs were selected in 

the following in-depth analyses. Common immune 

checkpoint genes (ICGs) were summarized according to 

published research [25]. Genes participating in the 

signaling pathways were sourced from The Molecular 

Signatures Database (MSigDB). 
 

Pan-cancer analyses of CF 
 

In view of the influence of the abnormal CF on the 

invasiveness, malignancy, and drug resistance of tumor 

cells in various cancers [26–29], the PCFGs which were 

CF-related hub genes were analyzed and summarized in 

pan-cancer. Initially, the fold change (FC) value was 

computed to evaluate the changes in gene expression 

between normal and tumor tissues in each cancer.  

Then, the univariate Cox regression analysis was 

performed to identify the prognostic value of each gene. 

Subsequently, the cumulative copy number variation 

(CNV), both amplified and deleted, was tallied. In the 

case of single nucleotide variation (SNV), the mutation 

frequency (number of samples with SNV divided by the 

total number of samples) was computed. The outcomes 

were visualized using a heatmap presentation. All these 

methods above have been summarized and utilized in 

previous studies [30–33]. 
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CF-based cluster analysis and identification of 

distinct KIRC subtypes 

 

Subsequent sections involved comprehensive analyses 

aimed at delving into the potential significance of core 

fucosylation (CF) in the context of KIRC. The 

“ConsensusClusterPlus” packages in R was utilized to 

identify distinct KIRC subtypes. The various features 

between different KIRC subtypes were further explored. 

First, the “survival” package was utilized to plot the 

survival curves. Then the “ssgsea” function in “GSVA” 

package was chosen to estimate the state of CF. Broadly 

speaking, the “estimate” package was employed to 

evaluate aspects like tumor purity, immune activity, and 

stromal characteristics. As for estimating the TME 

specifically, the following approaches were utilized: (1) 

multiple algorithms including XCELL, MCPCOUNTER, 

CIBERSORT, CIBERSORT-ABS, EPIC, and TIMER 

were applied respectively to assess immune responses 

[34]; (2) the immune-related processes were estimated by 

“‘ssGSEA”; (3) the expression levels of common ICGs 

were collected and compared; (4) the condition of 

signaling pathways, encompassing those pertinent to 

immunity and metabolism, was gauged using the 

“ssgsea” method; (5) the states of common cell deaths 

were also estimated through “ssgsea”. Finally, the drug 

sensitivity in different KIRC subtypes was investigated 

by “oncoPredict”. Of note, the exploration of all the 

discrepancies between different KIRC subtypes was 

utilized “wilcox.test”. 

 

Subgroup analyses of FUT8 in KIRC 

 

Fucosyltransferase 8 (FUT8), belonging to the fucosyl-

transferase family, assumes a pivotal role as the master 

controller in the core fucosylation process [35]. Till now, 

FUT8 has been outlined as an essential factor in the 

therapy of many cancers, such as liver, lung, colorectal, 

prostate, ovarian, breast [36]. But the potential influence 

of FUT8 in KIRC has not been well investigated. In the 

following research, we focused on the alteration FUT8 

and its correlation with the tumor malignancy in KIRC. 

Utilizing the Biomarker Exploration for Solid Tumors 

(BEST) web server, which leverages extensive datasets, 

an investigation was conducted into the expression 

patterns of FUT8 across KIRC samples exhibiting 

diverse clinical attributes, with particular emphasis on 

tumor grade. With the increasing expression of FUT8, the 

altered gene mutation and CNV were also explored. In 

addition, the FUT8-related biological processes including 

GO and KEGG were summarized. 

 

Immunohistochemistry 

 

Human tissue microarray sections of KIRC were 

procured from Zhuoli Biotech (Shanghai). Immuno-

histochemistry (IHC) was conducted by initially 

deparaffinizing and rehydrating the slides. Subsequently, 

tissue sections were incubated overnight with primary 

antibodies targeting FUT8. Following incubation with 

secondary antibodies, the sections were stained using 

diaminobenzidine and counterstained with instant 

hematoxylin. KIRC and normal tissues with complete 

IHC morphology were meticulously chosen for analysis. 

Two independent pathologists evaluated IHC scores 

based on staining intensity and the percentage of 

positive-stained cells. 

 

The assessment of the CF state based on scRNA-Seq 

data 

 

KIRC scRNA-seq data (GSE156632) were retrieved 

from the GEO database and analyzed using the standard 

protocols of Seurat. Cells with less than 200 or more 

than 6500 count features were excluded, and cells  

with a mitochondrial RNA percentage exceeding 10% 

were also removed. Subsequently, the data underwent 

normalization and scaling for PCA analysis. The 

harmony package was employed to mitigate batch 

effects, and the “FindClusters” function was utilized to 

cluster cells at an optimal resolution. UMAP was 

employed for data visualization. Using typical cell-type 

markers, all subpopulations were identified and 

annotated. The CF state was assessed using five widely 

recognized algorithms: GSVA, UCell, singscore, Add, 

and AUCell. Importantly, the scores from the 

aforementioned five algorithms were aggregated to 

derive a total score, referred to as “Scoring.” 

Subsequently, the “wilcox.test” was employed to 

compare the CF state between KIRC and normal 

samples within each single-cell subpopulation. 

 

Availability of data and materials 

 

The datasets analyzed in this work can be retrieved 

from public platforms. Also, any raw data and analytic 

technologies can directly contact the corresponding 

author and first author if the request is reasonable. 

 

RESULTS 
 

Data acquisition and identification of CF-related 

hub genes 

 

All the KIRC samples were obtained from the TCGA 

and the ArrayExpress databases (TCGA: 539 samples; 

ArrayExpress: 101samples). After taking an intersection 

of the genes in the two datasets, the expression of 17612 

genes were obtained. In total, a collection of 142 genes 

associated with core fucosylation were acquired from 

the GeneCards database. 62 CF-related hub genes with 

prognostic values were distinguished from the 142 
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genes after conducting univariate Cox regression 

analysis. In addition, 40 ICGs were collected for further 

analysis. 

 

Pan-cancer analysis based on CF-related hub genes 

 

According to reports, core fucosylation (CF) occupies a 

crucial role in the initiation of tumorigenesis across 

various types of cancers. The alterations of the CF-

related hub genes were summarized in pan-cancer. It 

was found that over half of the CF-related hub genes had 

increasing expression levels in tumor samples in many 

cancers including GBM, KIRC, STAD, and THCA 

(Figure 1A). Then the univariate Cox regression analysis 

was utilized to distinguish risky genes (HR>1, p<0.05) 

and protective genes (HR<1, p<0.05). The prognostic 

significance of every CF-related hub gene was evaluated 

and depicted through a heatmap visualization (Figure 

1B). CNV, an important source of genetic variation, is a 

leading cause of the altered gene expression. The CNV 

gain mainly existed in ACC and KICH and the CNV 

loss primarily existed in OV and UCS (Figure 1C, 1D). 

SNV can also affect the gene expression levels. The 

SNV mutation frequency was higher in UCEC. 

Especially, LRP1, FN1, and CTNNB1 had obviously 

high SNV mutation frequency (Figure 1E). 

 

CF-based cluster analysis and identification of two 

KIRC subtypes 

 

In the following part, the potential role of CF was 

explored in KIRC. Initially, all samples from KIRC 

were categorized into two distinct clusters, denoted as 

C1 and C2, relying on the expression levels of the CF-

related hub genes (Figure 2A). The survival analysis 

suggested that samples in C1 had worse overall survival 

than that in C2 (Figure 2B). Next, the states of CF in the 

two clusters were estimated and compared. It was 

indicated that the CF score exhibited a higher value in 

cluster C1 compared to cluster C2 (p<0.001) (Figure 

2C). As for the TME in the two clusters, in cluster C1, 

both the immune score and stromal score displayed 

elevated values in contrast to cluster C2, while the 

tumor purity in cluster C1 was comparatively lower 

than that observed in cluster C2 (Figure 2D). 

 

The variations in the immune microenvironment of 

the two KIRC subtypes 

 

First, the immune responses within the two subtypes 

were scrutinized, revealing dissimilarities in the levels 

of immune cell infiltration between them. Neutrophils, 

macrophages, myeloid dendritic cells, B cells, and T 
cell CD4+ memory activated were more active in C1, 

while mast cells, NK cells, and endothelial cells were 

more active in C2 (Figure 3A). As for the ICGs, the 

discrepancies between the two KIRC subtypes were 

shown in Figure 3B. Compared with C1, the expression 

of most ICGs (i.e., TNFRSF9, TNFSF4, TNFSF14, 

BTLA, CD44, TNFRSF25, TNFRSF8, TMIGD2, 

FGL1, TIGIT, IL23A, TNFRSF18, LGALS9, CD70, 

ICOS, SIGLEC15, LAIR1, LAG3, CD8A, CD48, PVR, 

PDCD1, CD86, CD80, PDCD1LG2, CD276, PTPRC, 

CTLA4, CD40LG, CD28, CD27) were decreasing 

while JAK2 and TNFSF15 had higher expression in C2. 

Certainly, the immune-related processes and immune 

cells were correlated with the state of CF. CCR and 

parainflammation were strongly correlated with CF 

score (r>0.5, p<0.05) and Cytolytic activity, APC co-

stimulation, T cell co-stimulation, pDCs, checkpoints, 

Neutrophils, DCs, Type II IFN Response, TIL, 

Macrophages, Treg, and T helper cells were moderately 

correlated with CF score(r>0.3, p<0.05) (Figure 3C, 

3D). Furthermore, the correlations between CF-related 

hub genes and the immune-related processes were 

explored. It was shown in Figure 3E that the expression 

levels of FCGR3A and PDCD1 had strong positive 

correlations with almost all immune processes. The 

expression of SELP was strongly correlated with Type 

II IFN Response. In addition, the expression of FUT7 

displayed a substantial positive correlation with several 

factors, including TIL, pDCs, T cell co-stimulation, 

chemokine receptor (CCR), check points, T helper cells, 

Th1 cells, and inflammation-promoting (r>0.5, p<0.05). 

 

The discrepancies of the pathway activities and drug 

sensitivities between the two KIRC subtypes 

 

After estimating the pathway activity, the discrepancies 

of the metabolism- and immune-related pathways and 

cell deaths were shown in the form of heatmap. In C1, 

the activities of alpha linolenic acid metabolism, amino 

sugar and nucleotide sugar metabolism, arachidonic 

acid metabolism, ether lipid metabolism, purine 

metabolism, pyrimidine metabolism, taurine and 

hypotaurine metabolism, and sulfur metabolism were 

up-regulated. In C2, the activities of arginine and 

proline metabolism, ascorbate and aldarate metabolism, 

beta alanine metabolism, butanoate metabolism, fatty 

acid metabolism, glycerolipid metabolism, glyoxylate 

and dicarboxylate metabolism, histidine metabolism, 

inositol phosphate metabolism, propanoate metabolism, 

pyruvate metabolism, retinol metabolism, glycolysis 

gluconeogenesis metabolism, and mTOR signaling 

pathway metabolism were up-regulated (Figure 4A). 

As for immune-related pathway, we found that the 

increasing activities of almost all immune-related 

pathways (i.e., antigen processing and presentation, B 

cell receptor signaling pathway, base excision repair, 
cell cycle, chemokine signaling pathway, cytokine 

cytokine receptor interaction, DNA replication, 

intestinal network for iga production, homologous 
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Figure 1. Pan-cancer analysis of CF-related hub genes. (A) The mRNA alteration, (B) the prognostic value, (C) the CNV gain, (D) the CNV 

loss, and (E) the SNV frequency of CF-related hub genes. 
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recombination, mismatch repair, natural killer cell 

mediated cytotoxicity, NOD like receptor signaling 

pathway, nucleotide excision repair, oocyte meiosis, 

p53 signaling pathway, primary immunodeficiency, 

progesterone mediated oocyte maturation, proteasome, 

RNA degradation, spliceosome, systemic lupus 

erythematosus, T cell receptor signaling pathway, TGF 

beta signaling pathway, Toll like receptor signaling 

pathway) existed in C1 (Figure 4B). The state of cell 

death in the two subgroups also differed from each 

other. The state of curroptosis was more active in C2 

while the state of immunogenic cell death, ferropotosis, 

phagocytosis, necrosis, pyroptosis, and PANoptosis 

were more active in C1 (Figure 4C). What’s more, the 

two KIRC subtypes showed distinct drug sensitivities. 

Samples in C2 may be more sensitive to vinorelbine, 

epirubicin, cisplatin, 5-fluorouracil, gemcitabine, and 

topotecan, while samples in C1 may be more sensitive 

to gefitinib, erlotinib, lapatinib, nilotinib, oxaliplatin, 

and afatinib (Figure 5). 

 

The investigation of the molecular features of FUT8 

in KIRC through subgroup analysis and IHC 

 

FUT8, as the key regulator of CF, has the highest 

correlation score with CF in GeneCards. In view of the 

distinct features of CF in the two KIRC subtypes, the 

molecular features of FUT8 in KIRC were further 

investigated. Compared with normal samples, FUT8  

had obviously higher expression in KIRC based on 

 

 
 

Figure 2. Identification of two CF-related KIRC subtypes. (A) Subtype distinguishment, (B) survival curves, (C) CF state, and (D) TME 
estimation of the two KIRC subtypes. 
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Figure 3. The immune microenvironment in the two subtypes. (A) The discrepancies of immune response in the two KIRC subtypes. 
(B) The altered expression of ICGs. (C, D) The correlation between immune-related process and CF score. (E) The correlation between 
immune-related process and the expression of CF-related genes. 
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Figure 4. The exhibition of the distinct (A) metabolism-related pathways, (B) immune-related pathways, and (C) cell deaths in the two KIRC 

subtypes. 



www.aging-us.com 2307 AGING 

GSE167573 dataset (Figure 6A). Also, the expression 

level of FUT8 was found to be elevated in male KIRC 

patients compared to female patients, as evidenced by 

the data from both the E_MTAB_1980 and TCGA 

datasets (Figure 6B). In addition, its expression level 

was increasing in those KIRC samples with tumor 

progression based on GSE29609 dataset (Figure 6C). 

The expression of FUT8 showed highest level in G4 

 

 
 

Figure 5. The discrepancies of drug sensitivity in the two KIRC subtypes. 
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samples based on the TCGA dataset (p<0.05) (Figure 

6D). As for T and M grade, we found that samples with 

T4 grade or M1 grade had the obviously high expression 

level of FUT8 based on TCGA dataset (Figure 6E, 6F). 

Subsequently, IHC revealed the expression level of 

FUT8 in KIRC and para-cancer tissues. Clearly, FUT8 

exhibited higher IHC scores in KIRC compared to para-

cancer tissues (p<0.05) (Figure 6G). 

 

 
 

Figure 6. The investigation of the molecular features of FUT8 in KIRC through subgroup analysis and IHC. (A–F) The comparison 
of FUT8 expression in distinct KIRC subgroups. (G) Expression validation of FUT8 in KIRC and para-cancer. 
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FUT8-based enrichment analysis in KIRC 

 

Having designated FUT8 as the input variable, an over-

representation analysis was conducted to identify the 

genes most closely linked to FUT8. Then the genes 

correlated with FUT8 were obtained and collected to 

carry out GSEA. First, the GO bar chart demonstrated 

that these genes exhibited enrichment across numerous 

biological processes (i.e., cellular macromolecule 

metabolic process, cellular protein metabolic process, 

organelle organization, cellular response to DNA damage 

stimulus, protein metabolic process), cellular component 

(i.e., cytoplasm, intracellular organelle, intracellular 

anatomical structure, intracellular membrane-bounded 

organelle, nucleoplasm), and molecular function (i.e., 

protein binding, molecular function, catalytic activity, 

RNA binding, heterocyclic compound binding) (Figure 

7A). Then the KEGG bar chart suggested that these 

FUT8-related genes were correlated with many 

biological processes, such as cell cycle, p53 signaling 

pathway, hedgehog signaling pathway, wnt signaling 

pathway, mRNA surveillance pathway, arginine and 

proline metabolism, amino sugar and nucleotide sugar 

metabolism, arachidonic acid metabolism, drug 

metabolism-cytochrome P450, PPAR signaling pathway, 

and Toll-like receptor signaling pathway (Figure 7B). 

Additionally, with the increase of FUT8 expression, the 

genomics landscape of the TCGA-KIRC dataset was 

displayed in Figure 7C. We observed a higher frequency 

of SETD2 mutations within the low-FUT8 group and the 

mutation of DNAH9 was more frequent in high-FUT8 

group. 

 

Identification of CF state based on single-cell 

transcriptional profiling 

 

Further analysis of the scRNA-seq data (GSE156632) 

was performed to unveil the CF state in KIRC  

and normal samples. Following quality control 

(Supplementary Figure 1), all cells were grouped into 

50 clusters (Figure 8A and Supplementary Figure 2A, 

2B). Subsequently, these clusters were categorized into 

distinct cell types based on specific cell markers (Figure 

8B–8D and supplementary Figure 2C). The CF state 

was evaluated in each cell type. It suggested that the CF 

state is notably active in endothelial and fibroblast cells 

(Figure 9A). The CF state of each cell type between 

KIRC and normal samples was compared, revealing 

statistical discrepancies in myeloid, epithelial, NK, T, 

fibroblast, and endothelial cells (Figure 9B, 9C). 

 

DISCUSSION 
 

KIRC, combined with poor prognosis, is found to be 

easily resistant to chemotherapy and radiotherapy. Drug 

resistance can also occur in patients who received the 

target therapy. Absolutely, it is essential to identify the 

mechanisms of tumorigenesis and targets for tumor 

therapy in KIRC. Till now, the role of CF has been 

researched in many kidney diseases such as diabetic 

kidney disease and chronic kidney disease [37, 38]. 

Also, the latent influence of CF is explored from 

diagnosis to treatment in various cancers including 

liver, lung, colorectal, pancreas, and prostate cancers 

[26]. However, whether CF acts in the development and 

progression in KIRC is not well understood. In this 

research, we concentrate on the CF in KIRC and 

explored its potential role to the prognosis, TME, and 

drug therapy. 

 

First, the PCFGs were singled out from the entirety of 

CF-related genes within KIRC. Subsequently, using the 

expression levels of these genes, KIRC samples were 

categorized into two distinct subtypes, denoted as C1 and 

C2, each exhibiting unique characteristics. The results of 

the in-depth analyses revealed that the C1 with poor 

prognosis had more active CF state. Also, the two KIRC 

subtypes with distinct state of CF had different TME. In 

recent years, TME was paid increasing attention because 

of its significant role in immune response, therapy 

response, and distant metastasis [39–42]. Research 

indicates that CF dysfunction can alter the TME. In  

lung cancer, FUT8 was identified as capable of 

regulating the cancer-promoting potential of cancer-

associated fibroblasts through the modification of EGFR 

core fucosylation [43]. Furthermore, different states of 

CF in KIRC result in diverse TME conditions. We found 

that neutrophils, macrophages, B cells, and T cell CD4+ 

memory activated were more active while mast cells, NK 

cells, and Endothelial cells were more silent in C1. Of 

note, it was reported that the intra-tumoral neutrophils 

ranged from zero to 289 cells/mm (2) tumor tissue had a 

statistical correlation with increasing tumor size in KIRC 

and it was recognized as a standalone prognostic 

determinant in cases of localized renal cell carcinoma 

[44]. In addition, Bromwich and colleagues discovered a 

correlation between heightened levels of CD4+ T-cell 

infiltration within tumors and an unfavorable prognosis. 

[45, 46]. As for macrophages, it suggested that M1 

macrophages had an association with a favorable 

prognosis while M2 macrophages linked with a poor 

prognosis in kidney cancer [47]. High density of CD20-

defined B-cells indicated a poor-prognosis subset of RCC 

[48]. Mast cells might be diminished in KIRC which 

resulted in a weaken anti-tumor immune response [49]. 

The NK cells in KIRC were revealed to be correlated 

with the expression of TACC3 which was discerned as an 

autonomous risk element influencing prognosis [50]. The 

crucial role of endothelial cells in KIRC had been 
explored and an endothelial-related prognostic signature 

including three genes (i.e., CCND1, MALL, VWF) was 

constructed [51]. 
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Figure 7. FUT8-based enrichment analysis and mutation summarization in KIRC. (A) GO enrichment, (B) KEGG enrichment, and (C) 

mutation in high-FUT8 and low-FUT8 subgroups. 
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Figure 8. Identification of distinct cell types in KIRC and normal samples. (A) Clustree for identifying suitable cell clusters. (B) Various 

cell types across all samples. (C) Distinct cell types in KIRC and normal samples. (D) Expression of marker genes in each cell type. 
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Additionally, there are also other discrepancies in the 

two KIRC subtypes, which may be related to the 

distinct state of CF. As is known, blocking the immune 

checkpoint pathways to hinder cancer cells from 

masquerading as constituents of the human body is a 

promising approach to realize anti-cancer immunity 

[52]. Our investigation revealed discernible differences 

in the expression levels of ICGs between the two 

subtypes of KIRC. Compared with C2, the expression 

of most ICGs (i.e., TNFRSF9, TNFSF4, TNFSF14, 

BTLA, CD44, TNFRSF25, TNFRSF8, TMIGD2, 

FGL1, TIGIT, IL23A, TNFRSF18, LGALS9, CD70, 

 

 
 

Figure 9. Estimation of CF state based on scRNA-Seq data. (A) CF state in each cell type; (B) Discrepancies of CF state in each cell type 
between KIRC and normal samples; (C) Detailed CF state depicted in a UMAP plot. 
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ICOS, SIGLEC15, LAIR1, LAG3, CD8A, CD48, PVR, 

PDCD1, CD86, CD80, PDCD1LG2, CD276, PTPRC, 

CTLA4, CD40LG, CD28, CD27) were increasing  

while JAK2 and TNFSF15 had lower expression in C1. 

These alterations might be novel targets to improve 

anti-cancer immunity. Additionally, the activities  

of metabolism- and immune-related pathways were 

distinct in the two KIRC subtypes. In C1, the activities  

of various metabolism-related pathways differed from 

those in C2, including pathways such as alpha linolenic 

acid metabolism, amino sugar and nucleotide sugar 

metabolism, and arachidonic acid metabolism. Moreover, 

there was a notable increase in the activities of nearly all 

immune-related pathways in C1, including pathways 

such as antigen processing and presentation and B cell 

receptor signaling pathway. The state of cell death also 

altered in the two clusters. Furthermore, the two KIRC 

subtypes showed distinct drug sensitivities. Samples in 

C2 may be more sensitive to vinorelbine, epirubicin, 

cisplatin, 5-fluorouracil, gemcitabine, and topotecan, 

while samples in C1 may be more sensitive to gefitinib, 

erlotinib, lapatinib, nilotinib, oxaliplatin, and afatinib. 
 

FUT8 is demonstrated to be located on chromosome 

14q24.3 and its special chromosome location which is 

distinct from other fucosyltransferase genes implies its 

unique biological significance [53]. The upregulation of 

FUT8 exists in many cancers [36, 54]. The expression 

level of FUT8 holds potential as a biomarker possessing 

either prognostic or diagnostic significance in many 

cancers including prostate cancer [55], pancreatic cancer 

[56], gastric cancer [57], and colorectal cancer [58]. 

Furthermore, our findings corroborated previous 

research by demonstrating an upregulation of FUT8 

expression in KIRC. In the subgroup analysis, we found 

that increasing expression of FUT8 occurred in G4 

samples, male patients, and those samples with T4 grade 

or M1 grade. All the results implied that FUT8 might act 

as a risk indicator in KIRC. Then, the IHC was 

conducted, revealing that FUT8 exhibited higher IHC 

scores in KIRC compared to para-cancer tissues. 

Besides, we found that the mutation of SETD2 was more 

frequent in low-FUT8 group and the mutation of 

DNAH9 was more frequent in high-FUT8 group. 

SETD2 was identified as one of the chromosome 3p21 

epigenetic tumor suppressors and its mutation frequency 

in KIRC was 7.4% and 11.6% in the MSKCC and the 

TCGA cohorts respectively [59]. The exploration about 

DNAH9 mutation had little or no reports in KIRC. 

However, it has been recognized as among the ten most 

frequently mutated genes in cases of hepatocellular 

carcinoma [60] and the loss of the wild type allele of 

DNAH9 identifying a suppressor in esophageal 
squamous cell carcinoma [61]. What’s more, FUT8 

inhibition can alleviate the cancer radioresistance and 

suppress the growth of tumor cell [62]. FUT8 is also 

reported to participate in humoral immune responses. 

FUT8 is associated with the maintenance of cancer cell 

stemness. It is found that the deficiency of FUT8 can 

down-regulate the stemness of cancer cells and result in 

the decrease of the expression of corresponding 

biomarkers, such as CD133, EpCAM, and c-Met [63–

65]. All the findings above suggests that the regulation 

of FUT8 might a novel approach in the therapy in KIRC. 

 

Finally, there are still a few drawbacks in our research 

which need to be optimized if possible. The current 

research was based on the analyses of retrospective 

data. Supplemental basic experiments are required for 

additional demonstration. Besides, ample clinical 

cohorts are essential to confirm our findings. 
 

CONCLUSIONS 
 

In the research, two CF-related subtypes were identified 

based on the CF-related genes and the FUT8-related 

subgroup analyses were conducted in KIRC. The 

distinct state of CF may induce various TME, such as 

immune response and ICG expression. FUT8, as the key 

regulator of CF, was found to have an increasing 

expression in advanced KIRC samples, which implies it 

negative role in KIRC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Single-cell data processing process. (A, B) Quality control of the scRNA-seq data. (C) Highly variable genes in 

the data. (D, E) Cell distribution before and after removing the batch effect with Harmony. (F) ElbowPlot for identifying an appropriate 
number of principal components. 
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Supplementary Figure 2. Single-cell dimension reduction and cell annotation. (A) UMAP plots for all samples. (B) UMAP plots for 

normal and tumor groups. (C) The expression of cell markers in each cluster. 


