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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a fatal hematopoietic 

disease, which is characterized by excessive proliferation 

of hematopoietic progenitor cells during the differen-

tiation and development of myeloid cells [1]. Clinical 

manifestations include infection, hemorrhage, anemia 

and infiltration of extramedullary tissues and organs, 

and the disease progresses rapidly with a natural course 

of only a few weeks to a few months [2]. The incidence 

rate increases with age and there are about 20,000 new 

cases of AML diagnosed each year in the USA [3]. 
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ABSTRACT 
 

Acute myeloid leukemia (AML) is a highly heterogeneous malignant disease of the blood cell. The current 
therapies for AML are unsatisfactory and the molecular mechanisms underlying AML are unclear. 5-methylcytosine 
(m5C) is an important posttranscriptional modification of mRNA, and is involved in the regulation of mRNA 
stability, translation, and other aspects of RNA metabolism. However, based on our knowledge of published 
literature, the role of the m5C regulators has not been explored in AML till date. In this study, we clarified the 
expression and gene variants of m5C regulators in AML and found that most m5C regulators were differentially 
expressed and correlated with disease prognosis. We also found that the methylation status of certain m5C 
regulators (e.g., DNMT3A, DNMT3B) affects the survival of AML patients. Two m5C modification subtypes, and 
high- and low-risk subgroups identified based on the expression of m5C regulators showed significant 
differences in the prognosis as well as immune cell infiltration. In addition, most of the m5C regulators were 
found to be correlated with miRNA expression in AML, as well as IC50 values of many drugs. The miRNA and 
GSVA analysis were used to identify the different miRNAs and KEGG or hallmark pathways between high- and 
low-risk subgroups. We also built a prognostic model based on m5C regulators, which was validated by two GSE 
databases. To verify the reliability of our analysis and conclusions, qPCR was used to identify the expressions 
of m5C regulators between normal and AML. In summary, we comprehensively explored the molecular 
characteristics of m5C regulators and built a prognostic model in AML. We proposed new mechanistic insights 
into the role of m5C in multiple databases and clinical data, which may pave novel ways for the development of 
therapeutic strategies. 
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AML places a significant financial burden on society 

and causes heavy emotional trauma to many families 

[4]. Despite advances in therapy (e.g., Venetoclax, 

Azacitidine, Gilteritinib, Glasdegib) [5–8], the AML 

patients remain have poor survival rates (5-year survival 

= 24%). AML pathogenesis is a complex multistep 

process: not only related to gene mutation, but also 

affected by epigenetic modifications (DNA methylation 

and histone modifications) [9] and posttranscriptional 

regulation (m6A methylation and alternative poly-

adenylation) [10–13]. Understanding the mechanisms of 

AML molecular pathogenesis can support the develop-

ment of better therapeutic strategies. 

 

5-methylcytosine (m5C) is a common RNA 

modification in eukaryotic cells [14, 15], which  

occurs in mRNAs, tRNAs, rRNAs and ncRNAs [16, 

17]. The dynamic m5C regulation depends on three 

kinds of regulatory factors, including methyltransferases 

(“writers”), demethylases (“erasers”), and m5C binding 

proteins (“readers”). “Writer” includes 11 factors 

(NOP2, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, 
NSUN7, DNMT1, DNMT3A, DNMT3B, and TRDMT1), 

“Erasers” (TET1, TET2, TET3, and ALKBH1) change 

the status of m5C modification and “Readers” (ALYREF 

and YBX1) recognize and bind to the m5C modification 

sites [17–20]. The m5C modification plays a critical 

regulatory role in multiple aspects of biological 

processes, including RNA export, RNA stability,  

and translation [21]. Recent studies have shown that 

m5C modification plays an important role in the 

development and progression of a variety of tumors [22, 

23]. However, the expression pattern and molecular 

mechanisms of m5C regulators remain unclear in AML. 

In this study, we retrospectively analyzed 17 m5C 

regulators in AML based on their expression profiles, 

mutation annotation data and copy number alteration 

data collected from The Cancer Genome Atlas (TCGA) 

database. We found that these m5C regulators were 

differentially expressed in AML, and mutations and 

copy number variations (CNVs) of some of the m5C 

regulators were significantly associated with the survival 

of AML patients. Furthermore, based on these 17 m5C 

regulators, AML patients were classified into two 

clusters. Subsequently, we identified a 6-gene signature 

and constructed a m5C-regulators risk model for 

assessing the risk of AML patients. We also analyzed  

the differences in immune cell infiltration in high-  

and low-risk groups and explored the immunological 

mechanisms underlying differential prognosis of these 

groups. Finally, we analyzed the relationship of m5C 

regulators with miRNAs and drug sensitivity to provide 

a reference for exploring AML mechanisms and develop 

possible novel epigenetic therapies. 

 

RESULTS  
 

Identification of expression levels and clinical 

correlation of m5C regulators in acute myeloid 

leukemia (AML) 

 

According to the existing literature reports [16, 17], 

seventeen m5C regulators (NOP2, NSUN2, NSUN3, 

NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, DNMT3A, 

DNMT3B, TRDMT1, TET1, TET2, TET3, ALKBH1, 
ALYREF, YBX1) were identified and explored in this 

study through various approaches (Figure 1). We first 

used inSilicoMerging package to merge datasets from 

 

 
 

Figure 1. Overall flow of the analysis. 
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GTEx and TCGA databases followed by combat 

function in SVA package to remove the batch  

effects, and then compared the expression levels  

of these regulators between AML and normal  

samples. Interestingly, we found unexpectedly high  

expression of nine m5C regulators in the tumor group  

(NOP2, NSUN3, NSUN6, NSUN7, DNMT1, DNMT3A, 

TRDMT1, TET2, and TET3), indicating their essential 

role in AML pathogenesis (Figure 2A). Further- 

more, correlation analysis revealed that most of  

the m5C regulators positively correlated with each  

other, while NSUN5, ALYREF and YBX1 had negative  

correlations with other m5C regulators (Figure 2B).  

To clarify whether m5C regulators could affect the  

prognosis of AML patients, we performed univariate Cox  

regression analysis. Our results demonstrated that higher

 

 
 

Figure 2. Expression, correlation, and function of m5C regulators. (A) Boxplot showing differential expression of m5C regulators in 

AML and normal samples. (B) Pearson correlation analysis, (C) univariate Cox regression analysis, (D) pathway activity analysis and (E) 
protein-protein interaction (PPI) analysis of m5C regulators. *p < 0.05, **p < 0.01, ***p < 0.001. 



www.aging-us.com 2343 AGING 

expression of m5C regulators (except for TET1,  
TET2, TET3, ALYREF) was associated with worse 

prognosis (Figure 2C). Further, the pathway activity 

analysis showed that most of the studied m5C regula-

tors activated apoptosis, cell cycle and DNA damage 

response signaling pathways, whereas inhibited EMT, 

hormone ER and RAS/MAPK signaling pathways 

(Figure 2D). Protein-protein interaction (PPI) analysis 

showed that there are implicated relationships among 

these m5C regulators (Figure 2E). 

 

It is unclear whether different clinical indicators  

can affect the expression of m5C regulators. Our results 

suggested that the expression of m5C regulators did not 

differ across the age groups (Figure 3A). In different 

CR groups, NOP2, NSUN3, NSUN4, NSUN5, NSUN6, 

NSUN7, DNMT3A, DNMT3B, TRDMT1, TET1 and YBX1 

were found to be significantly different (Figure 3B). 

Furthermore, most m5C regulators (except for TET3 
and ALKBH1) were significantly differentially expressed 

in different FAB groups (Figure 3C). In terms of 

gender, we did not observe any significant difference in 

the expression of m5C regulators (except for DNMT1) 

between male and female patients. (Figure 3D). The 

expression of only DNMT3A and TET3 varied signi-

ficantly between different survival statuses of AML 

patients (Figure 3E). We also reviewed the expression 

of m5C regulators based on treatment status and found 

that only TRDMT1 is differentially expressed before 

and after treatment (Figure 3F). 

 

Genetic alterations associated with m5C regulators 

in AML 

 

To elucidate the genetic alterations associated with  

m5C regulators, we integrated 4 datasets [24–26] from 

 

 
 

Figure 3. Clinical characteristics of m5C regulators in acute myeloid leukemia (AML). Expression of m5C regulators between (A) 

age groups, (B) CR groups, (C) FAB groups, (D) male and female, (E) survival status, and (F) before and after treatment in AML patients. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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different studies using cBioPortal (http://www. 

cbioportal.org/) tools. We found that these regulators 

harbor a large number of mutations in AML patients 

(Figure 4A). Surprisingly, DNMT3A mutation rate  

was comparatively higher than other regulators and 

reached 19%, with missense mutations accounting for 

the majority of all mutations in this gene. TET2 was the 

next with ~9% mutations, and it mainly harbored 

truncating mutations (Figure 4A). Figure 4B shows the 

alteration frequency of all m5C regulators together and 

DNMT3A alone. The peripheral blood smears of two 

AML patients showed morphologically aberrant red 

blood cells (Figure 4C). Genome sequencing of these 

two patients also identified mutations in DNMT3A. 

 
Given this high mutation rate of DNMT3A,  

we performed Kaplan–Meier survival analysis to  

validate the effect of DNMT3A mutations. The findings 

suggested that DNMT3A mutation did not significantly 

affect the survival of AML patients (Figure 4D).  

The CNVs of m5C regulators were also analyzed in  

AML. We found that TRDMT1, NSUN5 and DNMT1 

showed homozygous amplifications and TET2, NSUN2, 
DNMT3B and DNMT3A showed homozygous deletions 

 

 
 

Figure 4. Genetic alterations of m5C regulators in acute myeloid leukemia (AML). (A) Mutation analysis of m5C regulators in AML 
patients. (B) Alteration frequency of m5C regulators and DNMT3A. (C) The peripheral blood smears of two AML patients. (D) Kaplan–Meier 
curves showing the overall survival of AML patients with DNMT3A mutations. (E) Homozygous and heterozygous CNV analysis of m5C 
regulators in AML patients. (F) Pearson correlation analysis between CNV and mRNA expression of m5C regulators. (G) Association between 
overall survival and deletions in m5C regulators in AML patients. 
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in AML patients, while almost all m5C regulators 

showed heterozygous amplifications (except for NSUN5 

and NOP2) and heterozygous deletions (except for 

NSUN4, YBX1, TET3, DNMT3A and ALKBH1) (Figure 

4E). We further explored the correlation between the 

CNV and mRNA expression, and the result suggested 

that the CNVs of NSUN2, NSUN4, NUSN5 and NOP2 

were positively correlated with their mRNA expression 

levels, whereas TET2 CNV was negatively correlated 

with TET2 mRNA expression (Figure 4F). We further 

investigated whether deletions in m5C regulators affect 

the survival of AML patients. Our results revealed that 

deletions in NSUN3, NOP2 and a few other regulators 

were significantly associated with worse prognosis of 

AML patients (Figure 4G). 

DNA methylation of m5C regulators in AML 

 

DNA methylation is an epigenetic modification  

that is involved in the regulation of gene expression  

[27, 28]. We found that TET2, NSUN2, DNMT1,  

YBX1, TET1, NSUN4, DNMT3A, NSUN7 and DNMT3B 

methylation levels were negatively correlated with their 

expression levels (Figure 5A). Figure 5B shows the 

Spearman’s correlation values between the methylation 

and expression levels of four representative genes 

(NSUN4: R = −0.31, FDR = 4.4e-05; NSUN7: R = 

−0.51, FDR = 1e-12; DNMT3A: R = −0.36, FDR = 1.9e-

06; DNMT1: R = −0.20, FDR = 9.8e-03). Furthermore, 

the methylation levels of m5C regulators also affects  

the overall survival of AML patients (Figure 5C). 

 

 
 

Figure 5. Correlation between DNA methylation status and expression of m5C regulators in acute myeloid leukemia (AML). 
(A) Correlation between the methylation status and mRNA expression of m5C regulators in AML. (B) Scatterplots showing correlation 
between methylation status and expression of four representative m5C regulators. (C) Association between overall survival of AML patients 
and methylation status of m5C regulators. (D) Kaplan–Meier curves showing the overall survival of AML patients with DNMT3A, DNMT3B 
and TRDMT1 methylation. 
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Interestingly, we found that AML patients with high 

DNA methylation levels of DNMT3A and TRDMT1 

have a significantly shorter overall survival, while those 

with high DNA methylation levels of DNMT3B have  

a significantly longer overall survival (Figure 5C, 5D). 

 

Evaluation of clinical values of m5C regulated gene 

subgroups in AML using consensus clustering 

 

To clarify whether the AML patients can be divided 

into different subgroups according to the expression  

of m5C regulators, we performed unsupervised cluste- 

ring by ConsensusClusterPlus based on the 17 m5C 

regulators. Two m5C modification patterns (C1 and C2) 

were finally identified in AML patients (Figure 6A). 

NOP2, NSUN3, NSUN5, DNMT1, DNMT3B, TRDMT1, 

TET1, ALYREF and YBX1 were differentially expressed 

in these two clusters (Figure 6B). The LASSO Cox 

regression algorithm was applied to these candidate 

genes in the AML cohort. Eventually, 11 genes were 

identified based on the criteria to construct the m5C 

modification signature prognostic model (Figure 6C, 

6D). We further divided the AML patients into a high-

risk score group and a low-risk score group based on the 

median risk scores. The K-M plots demonstrated that 

the low-risk score group survived longer than the high-

risk score group (Figure 6E). The ROC curve analysis 

showed that the AUC of the prognostic model was 

0.744, indicating that the model has a good predictive 

ability (Figure 6F). The risk score and clinical status 

from two risk groups are shown in Figure 6G, 6H. We 

also observed the expression of m5C regulators in the 

low-risk and high-risk group; NOP2, NSUN2, NSUN5, 

DNMT1, DNMT3B, ALYREF and YBX1 were found to 

be highly expressed in the high-risk group (Figure 6I). 

In addition, there was a difference between the AML 

patients in the two cluster groups in terms of status, 

treatment, and cytogenetic risk (Figure 6J). 

 

To validate the stability of our model, GSE12417  

[29] and GSE37642 [30] datasets were used. The 

survival statistics for the high- and low-risk groups 

showed that the proportion of surviving patients was 

comparatively higher in the low-risk group, which had  

a better prognosis (Figure 7A, 7B). The AUC values  

of this model were 0.720 and 0.757 for GSE12417  

and GSE37642 datasets, respectively (Figure 7C, 7D). 

The risk score and clinical status of each case from the 

two risk groups are shown in Figure 7E–7H. 

 

Differential infiltration of immune cells in AML 

correlates with the cluster groups and risk model of 

m5C regulators 

 

To clarify the relationship between immune cell 

infiltration and m5C clusters or risk grouping, we used 

the EPIC algorithm to quantify the proportions of 

immune cells (Figure 8A). Further, we analyzed the 

correlation between m5C regulators and the infiltrated 

immune cell types (Figure 8B–8D). NSUN4 and 

NSUN6 were negatively correlated with CD8 T-cells 

and macrophages, and positively correlated with CD4 

T-cells. DNMT3A and DNMT3B were negatively 

correlated with CD8 T-cells and macrophages, and 

positively correlated with CD4 T-cells, endothelial and 

NK cells. TET1 and TET2 were positively correlated 

with CD8 T-cells and macrophages. Next, we wanted 

to know whether there is a difference in the infiltration 

of various immune cells between the low- and high-

risk groups. The result showed that CD4 T-cells were 

enriched in the low-risk group, while CD8 T-cells  

and macrophages were enriched in the high-risk  

group (Figure 8E). For different m5C subtypes, CD4 

T-cells and endothelial cells were enriched in C1 

cluster, while CD8 T-cells were enriched in C2 cluster 

(Figure 8F). To gain more insight into the relationship 

between immune infiltration and m5C regulators, we 

calculated stromal score of AML microenvironment  

by using ESTIMATE and evaluated the correlation 

between m5C regulators and stromal score. Our results 

suggested that ALKBH1, DNMT1, DNMT3A, NSUN2, 

NSUN3, NSUN4, NSUN5, NSUN6, TRDMT1, TET1, 

TET2, TET3, YBX1 were positively correlated with the 

stromal score (Figure 8G). The above results suggest 

that infiltration of different immune cells does exist  

in high and low risk groups as well as in different  

m5C clusters. These differences in the proportion of 

immune cells may be an important factor affecting  

the prognosis of patients in different groups of AML 

patients. 

 
Relationship between m5C regulators and RNA 

based stemness score, drug sensitivity and miRNA 

expression 

 

We also wondered whether those m5C regulators  

could affect other features of AML. Hence, we  

analyzed RNA Based Stemness Score (RNAss), 

miRNA expression and drug sensitivity. Our results 

suggested that TRDMT1, DNMT3A and DNMT3B  

were negatively correlated, while NSUN7 and YBX1 

were positively correlated with the RNAss (Figure 9A). 

For the drug sensitivity analysis, we calculated the 

correlation between drug IC50 and gene expression. 

Our results revealed that m5C regulators were cor-

related with many drugs (Figure 9B). We found  

that DNMT3A was positively correlated with Nelarabine 

(R = 0.638, p < 0.001), Zalcitabine (R = 0.605, p < 

0.001), Methylprednisolone (R = 0.556, p < 0.001), 

Chelerythine (R = 0.475, p < 0.001), Cladribine (R = 

0.443, p < 0.001); TET2 was positively correlated with 

Fulvestrant (R = 0.474, p < 0.01); NOP2 was positively 
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correlated with Cladribine (R = 0.408, p = 0.001), 

5-Fluorodeoxyuridine 10mer (R = 0.381, p = 0.003); 

and NSUN2 was positively correlated with malacid  

(R = 0.385, p = 0.002) (Figure 9C). Furthermore,  

we performed correlation analysis between all miRNAs 

and m5C regulators and found 33 miRNAs to be 

significantly correlated with m5C genes. We found 

DNMT3A to play a significant role in this gene-miRNA 

 

 
 

Figure 6. Consensus clustering and prognostic model of m5C regulators in acute myeloid leukemia (AML).  (A) Consensus 

clustering matrix for k = 2. (B) Box plots showing the expression of m5C regulators in two clusters. (C, D) LASSO Cox regression algorithm 
was used for calculating the minimum criteria. (E) Kaplan–Meier curves showing the overall survival of AML patients with high- and low-risk 
scores. (F) ROC curve showing the AUC value of the model for different survival times. (G, H) Distribution of the risk score and survival 
status. (I) Box plots showing the expression of m5C regulators in high- and low-risk groups. (J) Heatmap and clinicopathological 
characteristics of AML molecular subtypes and high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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network, which positively regulated 13 miRNAs (P < 

0.0001) and negatively regulated 7 miRNAs (P < 

0.0001) (Figure 9D). Further CD8 T-cells played a key 

role in the immune cell-miRNA network, and positively 

regulated 4 miRNAs (P < 0.0001), while negatively 

regulated 5 miRNAs (P < 0.0001) (Figure 9E). As 

shown in the scatter plot, DNMT3A is positively 

correlated with hsa-mir-146a (R = 0.65, P = 1.6e-19) 

(Figure 9F) and CD8-T cells are positively correlated 

with hsa-mir-6503 (R = 0.75, P = 1.1e-23) (Figure  

9G). The differential expression analysis of miRNAs 

between the low- and high-risk groups revealed hsa-

mir-17, hsa-mir-186, hsa-mir-19b-1, hsa-mir-19b-2, 

hsa-mir-20b, hsa-mir-576 and hsa-mir-582 to be highly 

expressed, while hsa-mir-181a-2 to be lowly expressed 

in the high-risk group (Figure 9H). 

 

 
 

Figure 7. Validation of the prognostic model. (A, B) Survival curves of patients in high and low-risk groups in GSE12417 and GSE37642 

datasets. (C, D) ROC curves showing the AUC value of the model for different survival times. (E–H) Distribution of the risk score and survival 
status. 
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Pathways different between the high- and low-risk 

groups 

 

The GSVA tool was used to analyze the differences in 

the KEGG and hallmark pathways between the high- 

and low- risk groups. Almost all the hallmark and 

KEGG pathways were found to be enriched in the high-

risk group (Figure 10A, 10C). Further, we performed 

correlation analyses between the gene expression  

values and pathway scores. For the hallmark pathways 

 

 
 

Figure 8. Correlation of the immune cell infiltration with high- and low-risk groups and m5C regulators-based subtypes. 
(A) The proportion of immune cells by EPIC algorithm. (B) The correlation between m5C regulators and different immune cell types. (C) 
DNMT3B is positively correlated with CD4 T-cells. (D) DNMT3A is negatively correlated with CD8 T-cells. (E) Differential infiltration of 
immune cell types between low- and high-risk groups. (F) Differential infiltration of immune cell types between C1 and C2 groups. (G) 
Correlation between m5C regulators and stromal score. *p < 0.05, **p < 0.01, ***p < 0.001. 
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enriched in the high-risk group, we found NOP2, 

NSUN3, NSUN6, TRDMT1, and TET1 to be significantly 

negatively correlated with most pathways, while TET3, 

ALYREF, and YBX1 to be significantly positively 

correlated (Figure 10B). For KEGG pathways  

enriched in the high-risk group, we found TRDMT1 and 

 

 
 

Figure 9. Relationship between expression of m5C regulators and RNA based stemness score, miRNA expression and drug 
sensitivity. (A) Correlation between m5C regulators and RNA based stemness score (RNAss). (B, C) Correlation between drug IC50 and 

m5C regulators. (D) Correlation between expressions of miRNAs and m5C regulators. (E) Correlation between immune cells and expressions 
of miRNAs. (F) has-mir-146a is positively correlated with DNMT3A. (G) has-mir-6503 is positively correlated with CD8 T cells. (H) Differential 
expression of miRNAs between low- and high-risk groups. 
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TET1 to be significantly negatively correlated, while 

ALYREF, and YBX1 to be significantly positively cor-

related with most of the pathways (Figure 10D). 

 

Expression levels of m5C regulators in specific cell 

types 

 

We downloaded the cell type specific expression data 

including scRNA-seq data from GSE116256 [31], 

GSE135851 [32], GSE147989 [33], and GSE154109 

[34] datasets to illustrate the expression of m5C 

regulators in specific cells (Figure 11). Based on  

these four datasets, we identified the expression of  

the genes in the following cells: conventional CD4  

T cells (referred as CD4Tconv), proliferating T cells 

(Tprolif), CD8 T cells (CD8T), exhausted CD8 T  

Cells (CD8Tex), natural killer cells (NK), B cells (B), 

plasma cells (Plasma), monocytes or macrophages

 

 
 

Figure 10. GSVA analysis between high- and low-risk AML groups. (A) Enrichment of hallmark pathways between high- and low-risk 
groups. (B) Correlation between the hallmark pathway scores enriched in high-risk group and m5C regulators. (C) Enrichment of KEGG 
pathways between high- and low-risk groups. (D) Correlation between the KEGG pathway scores enriched in high-risk group and m5C 
regulators. 
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 (Mono/Macro), mast cells (Mast), erythroid progenitor 

cells (EryPro), granulocyte-macrophage progenitor cells 

(GMP), hematopoietic stem cells (HSC), progenitor cells 

(Progenitor), promonocytes (Promonocyte), endothelial 

cells (Endothelial) and malignant cells (Malignant).  

At single-cell level, the expressions of ALYREF, 

DNMT1, NSUN5, and YBX1 were higher than other 

genes. Furthermore, ALYREF was found to be enriched 

in EryPro, DNMT1 was enriched in Tprolif and 

Promonocyte, NSUN5 was enriched in HSC, while 

YBX1 was enriched in almost all the cells (Figure 11). 

 

RT-qPCR validation of the selected m5C regulators 

 

To verify the reliability of our analysis and conclusions, 

six molecules (ALYREF, DNMT3B, NSUN2, NUSN5, 

TET1 and TET3) were selected further to confirm their 

expression levels in AML versus normal tissues using 

qRT-PCR (Figure 12). The results showed that the 

expression levels of ALYREF, NSUN2, and NUSN5 

were significantly higher in normal controls than in 

AML patients. This is in agreement with the results  

of our other analyses. Although we did not observe  

any significant differences in the expression levels of 

DNMT3B, TET1 and TET3 between the normal and 

AML samples, the trends in their expression levels were 

quite consistent with our other analysis results. Thus, 

the partial disagreement in the qRT-PCR results could 

be attributed to the heterogeneity of AML patients. 
 

DISCUSSION 
 

Recently, with the development of high- 

throughput sequencing technology, RNA modification 

has gradually become an important research area  

[22, 35]. (m6A) is the most abundant internal 

modification of mRNA and has been studied in depth 

[36–38]. Zhang et al. found that m6A reader IGF2BP3, 

which interacts with and enhances the RCC2 mRNA 

stability, is essential for AML cell survival [39]. 

Yankova et al. suggested that inhibition of METTL3 

could be a potential target for the treatment of AML 

[40]. m5C modifications have also been found to play 

regulatory roles in a variety of biological processes, 

particularly in tumor progression. Compared to m6A 

modifications, m5C modifications have been less 

studied in AML. Cheng et al. reported the mechanism 

of m5C methylation in AML drug resistance [41].  

Liu et al., [42] collected and analyzed multicenter 

AML data to suggest that not only AML diversity but 

also generation of complex tumor microenvironments 

are impacted by m5C modifications. Mutations in the 

well-known DNA methyltransferase gene DNMT3A 

are highly recurrent in patients with de novo AML  

and are known to be independently associated with a 

poor outcome [43]. More recently, 5-hydroxymethyl 

cytosine (5-hmC) has garnered lot of attention as a 

regulatory epigenetic modification with diagnostic and 

prognostic significance for several cancers [44]. TET 

family of proteins can oxidize m5C to 5hmC, which is 

known to play important roles in the pathogenesis of 

various tumors including AML [45, 46]. Both TET2 

and IDH1/2 mutations can impair the production of 

5hmC, thus decreasing 5hmC levels. Mutant IDH 

enzymes increase the production of oncometabolite 

(R)-2-hydroxyglutarate that competitively inhibits 

dioxygenase enzymes that are required for m5C to 5-

hmC modification and histone tail methylation [47].

 

 
 

Figure 11. Expression levels of m5C regulators in specific cell types based on single cell expression data. 
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Mutations in both these genes have been observed in 

AML [48]. Overall, the role of m5C modifications in 

AML remains ambiguous and limited. The present study 

focuses on investigating the multifaceted characteristics 

of m5C regulators in AML with the aim of contributing 

new evidence to the field of AML research. 

 

Network analysis of various molecular and regulatory 

factors [49, 50] is a strong and widely used approach for 

exploring the underlying mechanisms of any disease.  

It has not only been used in AML research [51–53]  

but also for several other diseases and physiological 

conditions [54–56]. In the current study, we constructed 

protein-protein interaction network and revealed the close 

relationships among the m5C regulators. Additionally, 

studying the interactions by combining various gene-

regulatory molecules including TFs, non-coding RNAs, 

and m5C regulators could expand our understanding of 

the regulation of these factors. Furthermore, construction 

of the independent networks for high- and low-risk 

AML groups may help us in gaining better insights into 

the differential role of these m5C regulators as risk 

factors. 

 

The analysis of molecular subtypes based on some 

features has been widely used in tumor research. The 

molecular subtypes can cluster cancer patients into 

different groups that have different characteristics 

(e.g., different sensitivity to drugs). Based on such 

subtypes, cancer patients can be diagnosed and  

treated more precisely. Jayavelu et al. classified  

AML into five subtypes based on proteogenomic 

features; they identified a “Mito-AML” group, which 

is characterized by high expression of mitochondrial 

proteins and poor prognosis [57]. Mou et al. identified 

molecular subtype- specific mRNA expression patterns 

and studied the characteristics of different subtypes in 

depth [58]. Mer et al. reported a subtype with NPM1 

mutation, which was based on stemness, and suggested 

applied kinase inhibitors for the treatment of this 

subtype [59]. However, whether m5C regulators can 

classify AML patients into different subtypes has not 

been explored till date. In the present study, AML 

patients were classified into C1 and C2 subgroups 

using m5C regulators, and significant differential  

gene expression and prognosis between the subgroups 

could be observed. Therefore, it is of great interest  

to further explore the differences between these two 

subtypes. 

 

In recent years, with the advancement of immunological 

research, immunotherapy has been applied to the 

treatment of AML. These patients have a comparable 

number of T cells in bone marrow (BM); the percentage 

of CD3+ and CD8+ T-cells in BM could predict 

response to the treatments [60]. Williams et al. showed 

that NK cell-based therapy has a promise to improve  

the drug response and survival of AML patients [61].

 

 
 

Figure 12. RT-qPCR validation of six m5C regulator genes. Bar plots showing differential expressions of ALYREF, DNMT3B, NSUN2, 

NUSN5, TET1 and TET3 between AML patients and normal controls. 
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Myeloid-derived suppressor cells (MDSCs) have also 

been found to dramatically increase in AML patients 

[62, 63]. MDSCs are proliferated by inducing AML 

cells through the extracellular vesicle (EVs), which 

contain several proliferation factors (e.g., MUC1) [64]. 

In the present study, we were also curious about the 

changes in the proportion of immune cells in different 

AML patient subgroups. Therefore, we used the EPIC 

algorithm for deconvolution to infer immune cell 

infiltration. We found differences in the proportion of 

immune cells across molecular subtypes as well as high- 

or low- risk groups, suggesting that further exploration 

of the mechanisms of immune cell changes in m5C 

subtype may provide novel insights into the treatment of 

AML. 

 

Our drug sensitivity analysis identified several  

drugs to be significantly correlated with the m5C 

regulators. For example, DNMT3A correlated with 

Nelarabine, which is an FDA approved drug and is 

used for the treatment of hematologic malignancies 

[65]. Zalcitabine, IC50 value of which was positively 

correlated with DNMT3A expression has been FDA 

approved for the treatment of HIV/AIDS [66], while 

Methylprednisolone is an FDA-approved medication 

for the management and treatment of allergic condi-

tions and acts as an anti-inflammatory and immuno-

suppressive agent [67]. Fulvestrant, an antiestrogenic 

medication that is used for the treatment of receptor-

positive metastatic breast cancer was found to be 

positively correlated with TET2 [68]. Cladribine, an 

FDA approved drug correlated with both DNMT3A 

and NOP2. It is currently used for the treatment of 

hematologic malignancies and a few other diseases 

[69, 70]. Malacid (Pyrimethamine), which significantly 

correlated with NSUN2 expression is mainly used  

for fungal and parasitic infection [71]. The strong 

positive correlation of these drugs with m5C regulators 

indicates that many of these that are currently used for 

other diseases and conditions can be explored as a 

therapeutic option for AML. Furthermore, the analysis 

of antagonistic and coordinated effects between drugs 

will provide references for precise medical treatment 

of LAML [72]. 

 

Certainly, although several meaningful results  

were obtained in the present study, there were a  

few limitations. Some of the important molecules  

we found (e.g., DNMT3A) require further validation 

using other datasets as well as experiments. Additional 

external validations based on other cohorts are needed 

to evaluate whether the m5C molecular subtype  

and risk-score still perform well in AML patients.  
In addition, this study indirectly revealed the role  

of m5C modification in AML. In the future, we will 

use m5C MeRIP-seq technology to globally map m5C 

modifications in AML and explore the changes in 

modification levels in different m5C subtypes as well 

as in high- and low-risk groups. 

 

MATERIALS AND METHODS 
 

Data source 

 

In this study, we downloaded the standardized data 

from the UCSC (https://xenabrowser.net/) database. The 

mRNA expression profiles, mutation annotation data, 

CNV data and clinical metadata were also downloaded 

from the UCSC database. The samples with incomplete 

clinical data were removed. 

 

Gene expression analysis of m5C regulators and 

survival analysis 

 

Based on existing literature, we collected 17  

m5C regulators. We employed the “inSilicoMerging” 

package to merge GTEx and TCGA database based on 

the matrixes of all gene expressions [73], and removed 

the batch effects by empirical bayes algorithm [74], and 

used the “t-test” algorithm to compare the differential 

expression of those m5C regulators. Pearson correlation 

analysis was used to measure the correlation among  

the m5C regulators. The univariate Cox regression was 

implemented to analyze the relationship of each m5C 

regulators’ expression with overall survival. 

 

Analysis of the CNV data and mutation annotation 

data 

 

The CNVs of m5C regulators, including homozygous 

and heterozygous amplifications and deletions, were 

visualized using the bubble plot. The mutation annotation 

data of AML was used for further analysis with the R 

package “maftools” [75]. 

 

Identification of m5C molecular clustering 

 

We used the 17 m5C regulators for identifying m5C 

patterns in AML patients. Consensus clustering was 

performed by using R package “ConsensusClusterPlus” 

[76] to identify different clusters based on the 

differential expression of the m5C regulators. The 

number of classifications was chosen according to  

the area under the CDF curve and the k-value. The 

classification step was repeated 1000 times to increase 

the reliability. 

 

m5C regulators risk model construction 

 

We applied the “glmnet” (https://glmnet.stanford.edu/ 

articles/glmnet.html) [77] and ‘survival’ (https://github. 

com/therneau/survival) [78] packages for the least 

https://xenabrowser.net/
https://glmnet.stanford.edu/%20articles/glmnet.html
https://glmnet.stanford.edu/%20articles/glmnet.html
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absolute shrinkage and selection operator (LASSO) 

regression to further screen the candidate m5C 

regulators, and finally a new m5C regulator signature 

was established. Based on the results of LASSO 

regression, we developed a risk score formula, which 

was calculated as follows: 

 

RiskScore = −0.3202 × NSUN3 − 0.2526 × NSUN4 + 

0.0372 × NSUN5 − 0.3514 × NSUN6 + 0.3160 × 

NSUN7 + 0.3244 × DNMT1 −0.3648 × DNMT3A + 

0.3476 × DNMT3B −0.0334 × TET2 − 0.0897 × TET3 + 

0.2137 × ALKBH1. 

 

In addition, we clustered AML patients into high- 

risk and low-risk groups based on the median risk 

score. Then, GSE12417 and GSE37642 datasets were 

used to validate the established risk model. 

 

Assessment of infiltrated immune cells and 

correlation analysis 

 

To clarify the immune infiltration differences between 

different m5C clusters and different risk groups, the 

“EPIC” algorithm [79] was used to evaluate the score  

of 8 immune cells. We further applied Wilcox test to 

compare the differences in immune cell score between 

different m5C clusters, and high and low risk score 

groups. Additionally, we applied the ESTIMATE 

algorithm to calculate the stromal infiltration and then 

correlation was calculated between m5C regulators and 

stromal score. 

 
Analysis of miRNA co-expression and drug 

sensitivity of m5C regulators in AML 

 

We obtained miRNA expression data of AML patients 

using the TCGA database. Candidate miRNA-m5C 

regulator pairs were obtained from the ENCORI 

database [80]. Pearson correlation analysis was 

performed to calculate the correlation between miRNA 

expression and that of m5C regulators. The drug 

sensitivity data were acquired from The Genomics  

of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/). We downloaded the 

IC50 values of each drug using the R package 

“pRRophetic” [24]. Then, correlation analysis was 

performed between the sensitivity and the expression 

of m5C regulators. 

 
GSVA and correlation analysis 

 

GSVA was used to analyze the KEGG and hallmark 

pathway scores between high-risk and low-risk 

subtypes [81]. We calculated the correlations between 

m5C regulators and KEGG or hallmark pathway 

scores. 

Real-time quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) 

 

Peripheral blood mononuclear cells were isolated from 

AML patients and the patient’s healthy family members 

(n = 4) from the Affiliated Hospital of Nantong 

University for in vivo testing. RNA was extracted 

using the MiniBEST Universal RNA Extraction Kit 

(Takara Bio, USA), followed by reverse transcription 

using a HiScript III 1st Strand cDNA Synthesis Kit 

(gDNA digester plus) and RT-qPCR. The primers used 

for the amplification are the following: 

 

5′-CGTGGAGACAGGTGGGAAAC-3′ (forward) 5′-

GTTCCTAAGCTGCGACCAGA-3′ (reverse) for 

ALYREF, 5′-ACAGAAAAGGAATGTGTGAAGGA-

3′ (forward) 5′-TGGAATAGGGGACCTCGTGT-3′ 

(reverse) for DNMT3B, 5′-GACATAGCCTGTCGC 

TTGGA-3′ (forward) 5′-ATCCGCATAAGACGATG 

GGAC-3′ (reverse) for NSUN2, 5′-CGTGGAGACAG 

GTGGGAAAC-3′ (forward) 5′-TCCAGCAACTT 

CCAGAACGTGA-3′ (reverse) for NSUN5, 5′-

TCAAATCTGGGGCCATCGAG-3′ (forward) 5′-

TCATCATCGCAGCCCTCTTC-3′ (reverse) for 

TET1, 5′-CCACCAGCCTCTTTTGGGAA-3′ (forward) 

5′-GCTCTGCTACTTCTTTCCTTGC-3′ (reverse) for 

TET3. 

 

The result of the experiment was represented by 

relative quantitative analysis of 2−ΔΔCT. ABL1 was used 

as control gene for normalizing the gene expression. 
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