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INTRODUCTION 
 

Although there is a perceived improvement in quality 
of life in today’s society, nonalcoholic fatty liver 

disease (NAFLD), a common metabolic syndrome 

strongly associated with diabetes, hyperlipidemia, and 

obesity, affects more than a quarter of the  

world’s population [1, 2]. However, even though 

NAFLD seriously threatens public health, there is no 
FDA-approved treatment for NAFLD [3], and the 

development of novel drugs requires further study. 

NAFLD refers to a group of diseases characterized by 
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ABSTRACT 
 

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of 
the world’s population. Although the prevalence of NAFLD is continuously rising, effective medical treatments 
are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed 
product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-
inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We 
used recent literature, the Herb database and the SwissADME database to isolate the active compounds of 
PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO 
functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in 
NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK 
and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. 
Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM 
and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to 
de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings 
revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation. 
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excessive fat accumulation in the liver, including 

nonalcoholic steatosis, nonalcoholic steatohepatitis, 

hepatic fibrosis, hepatic cirrhosis and hepatocellular 

carcinoma. According to the two-hit hypothesis, which 

has been widely accepted as the classic pathogenesis 

of NAFLD [4], hepatic accumulation of lipids acts as 

the “first hit” and sensitizes the liver to further damage. 

According to the multiple-hit hypothesis [5], the first 

hit is still mainly lipid accumulation in hepatocytes 

caused by insulin resistance, and then the second hit 

follows: lipid peroxidation damage caused by reactive 

oxygen species and related events, resulting in steato-

hepatitis. Steatohepatitis persists, extracellular matrix 

synthesis is enhanced, and progressive liver fibrosis 

occurs. Regardless of which hypothesis, abnormal 

accumulation of lipids in the liver is the initial process 

before substantial liver damage; thus, treatments de-

creasing hepatic lipid accumulation could be the focus 

in coming years. Basically, intrahepatic triglycerides 

are derived from de novo lipogenesis (DNL) and 

esterification of fatty acids but are consumed via 

apolipoprotein B assembly, very low-density lipoprotein 

secretion, intrahepatic lipolysis, and mitochondrial  

and peroxisome β-oxidation. As one of the pathways 

involved in triglyceride synthesis, abnormal expression 

of de novo lipogenesis-related factors such as sterol-

regulatory element binding proteins (SREBP-1c), ATP 

citrate lyase (ACLY), acetyl coenzyme A carboxylase 

1 (ACC1), and fatty acid synthase (FASN) and 

dysfunction in lipid metabolic pathways cause lipid 

deposition and contribute to the development of 

NAFLD [6]. Thus, exploring treatments that target  

this pathway requires further studies. 

 
As a traditional Chinese medicine formulation, Radix 

Polygoni Multiflori (RPM) has been proven to have 

various beneficial pharmacological effects, including 

the ability to promote nerve cell growth [7], ameliorate 

neurasthenia symptoms [8, 9], alleviate oxidative  

stress damage [10], delay cell aging [11] and improve 

neurodegenerative disease [12]. Depending on different 

processing technologies, RPMs are generally divided 

into two kinds of medicinal materials: raw RPM and 

prepared RPM (PRPM), although they are from the 

same plant. PRPM is the product of raw RPM mixed 

with black bean juice and yellow rice wine, steamed in 

water and dried [13]. According to the 2020 edition of 

the Chinese Pharmacopoeia, raw RPM has the effects 

of detoxifying, eliminating carbuncles, intercepting 

malaria, moistening intestines and relieving defecation, 

while PRPM has the effects of tonifying the liver, 

kidney, essence and blood, blacking hair, strengthening 

muscles and bones, resolving turbidity and regulating 

lipids. Studies have shown that the main chemical 

components of raw RPM and PRPM change little,  

but the content of chemical components varies greatly, 

which is the main reason for their different efficacies 

and indications [14]. After processing, compared with 

raw RPM, the content of stilbene glycosides and 

anthraquinones in PRPM decreased greatly, but the 

ratio of anthraquinones to total compounds increased, 

and most of the bound anthraquinones were converted 

to free anthraquinones after processing, such as emodin 

and physcione. Some reports of clinical adverse 

reactions show that taking RPM can damage the 

function of the liver and kidney, which is contrary to 

the theory of traditional Chinese medicine on the 

function of RPM and contrary to the results of some 

studies showing that RPM protects the liver and 

reduces hepatitis and fatty liver. These different 

outcomes may be related to the dosage of RPM and the 

content of chemical components of raw RPM and 

PRPM. It is reported in the literature that Polygonum 

multiflorum has the effect of tonifying the liver and 

tonifying blood, reducing the anti-inflammation and 

reducing fat of nonalcoholic fatty liver disease and 

reducing the incidence of complications of nonalcoholic 

fatty liver disease, but the mechanism is unknown; and 

the protective effect of RPM on the liver is contrary to 

some reports need to be further explained. 

 

Network pharmacology is a method used to conduct 

multidimensional analyses of drugs, targets and diseases 

with internet software and omics data [15–17]. It  

has strong applicability for the prediction of compo- 

nents and their potential therapeutic effects on related 

diseases in traditional Chinese medicine. In this study, 

we predicted the related targets of RPMP to protect 

against nonalcoholic fatty liver disease through network 

pharmacological analysis and proved that emodin is  

the main component of Polygonum multiflorum that 

protects against nonalcoholic fatty liver disease at the 

cellular and animal levels. 

 

MATERIALS AND METHODS 
 

Network pharmacology analysis 

 

By conducting literature searches in coming years [18–

22] and searching in the high-throughput experiments 

of traditional Chinese medicine and the reference 

database HERB (http://herb.ac.cn/) using the keyword 

He Shou Wu, the drug components of PRPM were 

obtained. The SDF files and 2D structures of the drug 

components were searched and collected through the 

PubChem database (http://pubchem.ncbi.nlm.nih.gov). 

In Swiss ADME (http://www.swissadme.ch/) software, 

using the SDF file of the drug components as an index, 

we obtained relevant information about the drug com-

ponents. The compounds were then screened, and the 

screening criteria included oral bioavailability (OB) 

≥0%, high gastrointestinal absorption (Gl absorption) 

http://herb.ac.cn/
http://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch/
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score, and three out of five Druglikeness para- 

meters (Lipinski, Ghose, Veber, Egan, and Muegge)  

set to “Yes”. In the Swiss Target Prediction software 

(http://www.swisstargetprediction.ch/), the selected 

compounds of He Shou Wu were used as keywords  

for retrieval to obtain the potential target gene names 

of the components. Gene names were validated using 

the UniProt (http://www.uniprot.org/) database. 
 

A total of 430 targets of PRPM were  

identified using SwissTargetPrediction (http://www. 

swisstargetprediction.ch/), and 479 potential targets 

were collected from the GeneCards (https://www. 

genecards.org/), DisGeNET (https://www.disgenet.org/), 

DrugBank (https://go.drugbank.com/) and OMIM 

databases (https://www.omim.org/). A total of 479 

target symbols associated with NAFLD were identified 

using the OMIM database. The enrichment of RPM 

potential targets and NAFLD-related targets in the  

GO pathway and KEGG pathway was subsequently 

analyzed using DAVID (https://david.ncifcrf.gov/), 

and a network map including components, target  

gene symbols, KEGG enriched pathways, and related 

diseases was constructed in Cytoscape 3.9.1. 
 

Microarray data and screening differentially 

expressed genes 
 

Two gene expression profiles, GSE89632 and 

GSE96971, were obtained from the National Center for 

Biotechnology Information Gene Expression Omni- 

bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo). 

Differentially expressed genes between NAFLD and 

normal tissue samples were screened via GEO2R 

(http://www.ncbi.nlm.nih.gov/geo/geo2r/). The estab-

lished Bioconductor R package was used to analyze the 

GEO data. Criteria were set at P-values (adj. P) < 0.05 

and |logFC| > 1 to select common DEGs from the four 

datasets for further analysis. In addition, enrichment 

analyses of GO pathways and KEGG pathways were 

performed in DAVID (https://david.ncifcrf.gov/). 
 

Preparation of prepared Radix Polygoni Multiflori 
 

The method of PRPM treatment was based on our 

group’s previous research [7, 12]. A total of 500 g of 

raw RPM (Tongji Tang Pharmacy, Guizhou) was 

steeped in water for 1 h, heated and boiled for 60 min, 

and the liquid was removed; the decoction was repeated 

twice by continuing to add water, and the liquid was 

combined 3 times and passed through gauze to remove 

the residue. Forty-eight hours later, the liquid was 

evaporated under reduced pressure at 100°C and stored 

in an evaporator. The Chinese Pharmacopoeia records 

that the dose of PRPM for rats is 0.63–1.26 g/kg, so the 

dosage for the low-dose group is 1 g/kg/d and 2 g/kg/d 

for the high-dose group. 

Experimental animals 

 
Thirty db/db mice and 10 db/m mice aged between 6 

and 8 weeks were obtained from Junke Biological Co., 

Ltd., (Nanjing, China). Db/m mice were regarded as the 

normal control (NC) group. Db/db mice were randomly 

assigned to 3 groups: the NAFLD control group, low 

PRPM dose (1 g/kg/d) group (low PRPM), and high 

PRPM dose (2 g/kg/d) group (high PRPM). Mice in 

each group were housed at the Animal Centre of 

GuiZhou Medical University in an environment with a 

12 h light/dark cycle in a temperature range of 23–25°C 

(relative humidity: ~50%). The mice received standard 

laboratory chow pellets, and water was supplied ad 

libitum. After 6 weeks of adaptive feeding, the NC 

group and NAFLD group received saline gavage, while 

the low PRPM and high PRPM groups received PRPM 

gavage at the corresponding dose for 8 weeks. After 8 

weeks of intervention, the mice were anesthetized by 

intraperitoneal injection of sodium pentobarbital (100 

mg/kg). Then, all mice were sacrificed by cervical 

dislocation. The experiments were conducted in strict 

accordance with the Principles of Laboratory Animal 

Care (People’s Republic of China), and the experiments 

were approved by the Animal Care and Use Committee 

of Guizhou Medical University (approval no. 2001342; 

Guiyang, China). 

 
TG, ALT, and ELISA 

 
Manufactured kits (Nanjing Jiancheng Institute of 

Biological Engineering) were used for the determination 

of mouse serum TG (A110-2-1) and ALT (C009-3-1), 

and ELISA kits (Shanghai ELISA Biotechnology Co., 

Ltd.) were used for the determination of mouse serum 

insulin, IL-6 (ml063159) and TNF-α (ml002095). Fifty 

microliters of mouse serum diluted 1:1 with assay 

diluent was added to the reaction wells. Fifty microliters 

of the diluted standards and 50 µl of the test samples 

were added to the reaction wells. The reaction plate was 

covered, gently shaken and mixed, and incubated at 

37°C for 1 hour. The plate was washed 3 times with 

washing solution. Eighty microliters of high-affinity 

streptavidin-HRP solution was added to each well, 

shaken gently and incubated at 37°C for 30 minutes. 

After 3 washes, 50 µl each of a mixed substrate A and  

B solution was added to each well, shaken gently, 

mixed well, and incubated at 37°C for 10 minutes in  

the dark. Fifty microliters of termination solution was 

quickly added, and the OD of each well was measured 

at 450 nm. 

 
Hematoxylin and eosin (H&E) staining 

 
After the mice were fasted for 12 h and anesthetized 

by intraperitoneal injection of sodium pentobarbital 

http://www.swisstargetprediction.ch/
http://www.uniprot.org/
https://www.disgenet.org/
https://go.drugbank.com/
https://www.omim.org/
https://david.ncifcrf.gov/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/
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(100 mg/kg), they were intracardially perfused using 

0.9% sodium chloride solution and sacrificed by 

cervical dislocation. Liver tissues were isolated and 

stored in formalin and liquid nitrogen. After paraffin 

embedding, liver sections were deparaffinized with 

xylene and rehydrated. For H&E staining, liver sections 

were processed according to standard procedures, and 

the morphological changes were observed under a 

microscope (Nikon Eclipse C1). 

 

Immunohistochemistry 

 

For immunohistochemical (IHC) staining, for antigen 

retrieval, rehydrated sections were immersed in citrate 

buffer (pH 6.0) at 121°C for 2 minutes and then slowly 

cooled to room temperature. Endogenous peroxidase 

activity was blocked with 3% hydrogen peroxide (H2O2) 

for 25 minutes in the dark. Nonspecific binding was 

blocked with 3% bovine serum albumin for 30 minutes. 

After covering with the primary antibody (SREBP1 

1:100, Cat No. 14088-1-AP, Proteintech, Wuhan, China), 

(P38 1:250, Cat No. 14064-1-AP, Proteintech, Wuhan, 

China), (P-P38 1:250, Cat No. 28796-1-AP, Proteintech, 

Wuhan, China), (ERK1/2 1:250, Cat No. 11257-1-AP, 

Proteintech, Wuhan, China), (P-ERK1/2 1:100, Cat No. 

28733-1-AP, Proteintech, Wuhan, China) overnight at 

4°C in a humidified chamber, the sections were reacted 

with HRP-conjugated goat anti-rabbit antibody (1:500; 

Proteintech, Ltd, Wuhan, China) for 30 min at 37°C, 

followed by detection with 3,3′-diaminobenzidine (DAB) 

(Dako, Glostrup, Denmark) and counterstaining with 

Mayer’s hematoxylin solution (Sigma-Aldrich, St. Louis, 

MO, USA), and changes were observed under the 

microscope. The histoscore, also known as the H-score, 

was used for semiquantitative evaluation of immuno-

histochemistry. The H-score accounts for both the per-

centage and intensity of positive staining. It is calculated 

by multiplying the percentage of mildly stained cells by 

1, the percentage of moderately stained cells by 2, and 

the percentage of strongly stained cells by 3. 

 
Cell lines and coculture assay 

 

The HepG2 cell line, which was derived from a 

hepatocellular carcinoma cell line, was a gift from our 

group by Professor Zhu. For cell recovery, cells frozen 

in liquid nitrogen were rapidly transferred to a 37°C 

incubator for complete thawing and then centrifuged at 

800 rpm for 5 min in a 15 ml centrifuge tube filled with 

culture medium. The supernatant was discarded, and the 

cells were resuspended in T-25 culture flasks with an 

appropriate amount of culture medium. After the cells 

in the culture flask had grown to 80–90% confluence, 

2 ml of trypsin was added to digest the cells for 3 min, 

4 ml of culture medium was added to terminate the 

digestion, and then the cells were added to the tube and 

centrifuged for 5 min at 800 rpm. Then, the cells were 

resuspended in a new T-25 culture flask. The cells were 

treated with a specific concentration of emodin (Beijing 

Solab Technology Co., Ltd., China) when they were in 

their logarithmic growth phase, and the proteins were 

extracted after 24 h. The culture conditions were all  

in a mixture of 10% FBS (Gibco Life Technologies, 

Waltham, MA, USA) and 1% penicillin-streptomycin 

(Invitrogen Life Technologies, Waltham, MA, USA)  

in an incubator at 37°C, 5% CO2 and 95% relative 

humidity. A total of 4 × 105 cells per well were 

inoculated in 6-well plates and 6-well plates containing 

cell climbing slices. Cells were incubated with 100  

µM oleic acid (O8291, Solarbio, China) and 200 µM 

palmitic acid (H8780, Solarbio, China) for lipid 

accumulation models. After growing to 80%, medium 

containing different concentrations of emodin (E8390, 

Solarbio, China) was added for 24 hours, and total  

cell protein or cell climbing slices were extracted.  

To investigate the correlation between the efficacy of 

PRPM and emodin with the MAPK signaling pathway, 

HepG2 cells were treated with 15 nM MEK inhibitor 

selumatinib (), 5 µM p38 inhibitor losmapimod, and 

10 nM MAPK activator diprovocim for 24 hours. 

 

Immunofluorescence staining 

 

Immunofluorescence staining and microscopy were 

performed as described previously [23], and the concen-

trations of antibodies were as follows: SREBP1 1:100 

(Cat No. 14088-1-AP, Proteintech, Wuhan, China),  

P38 1:250 (Cat No. 14064-1-AP, Proteintech, Wuhan, 

China), P-P38 1:250 (Cat No. 28796-1-AP, Proteintech, 

Wuhan, China), ERK1/2 1:250 (Cat No. 11257-1-AP, 

Proteintech, Wuhan, China), and P-ERK1/2 1:100 (Cat 

No. 28733-1-AP, Proteintech, Wuhan, China). To perform 

semiquantitative analysis, the fluorescence intensity of 

immunofluorescence was measured via ImageJ. 

 
Oil red O staining and nil red staining 

 

Oil red O staining (D027-1-1, Nanjing Jiancheng 

Institute of Biological Engineering, China) and Nile red 

staining (N8440, Solarbio, Beijing, China) were applied 

to evaluate lipid accumulation in mouse livers and 

HepG2 cells with different treatments. After sacrifice, 

sections (9 µm thick) were cut from the frozen mouse 

liver tissues and stained with freshly diluted Oil 

Red O staining solution for 20 min. After different 

treatments for 24 h, the cell medium was removed. For 

Oil red O staining, cells were treated with 4% para-

formaldehyde for 15 minutes and washed with double-

distilled water and 60% isopropanol for 10 seconds. Oil 

Red O staining solution was mixed with diluent at a 

ratio of 5:2 and passed through a 0.22 μm filter, and  

the sections were stained for 30 minutes protected from 
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light and then washed with double-distilled water. The 

sections were restained with hematoxylin for 5 minutes 

and then washed with double-distilled water. Then,  

the tissue sections were sealed with an aqueous sealer. 

For Nile red O staining, cell sections were fixed with 

10% paraformaldehyde for 10 min at room temperature. 

Then, the sections were incubated with 2 μg/mL Nile 

red for 15 min. Images were acquired by fluorescence 

microscopy (Nikon Eclipse C1). The semiquantification 

of Oil Red O staining was conducted by measuring the 

area of staining above a predefined constant area. This 

measurement was performed using ImageJ. To perform 

semiquantitative analysis, the fluorescence intensity of 

Nile red staining was measured using ImageJ software. 

 

Western blot analysis 

 

High-efficiency RIPA tissue/cell lysate (Beijing Soleibo 

Technology Co., Ltd., China) (containing PMSF) was 

used to lyse liver cancer tissue or cells to extract 

proteins, and then they were separated on a 10% or  

12% gel with SDS-polyacrylamide. Samples (20 µg) 

were wet-transferred into 0.22 µm PVDF membranes 

(Millipore, Burlington, MA, USA) and covered with 5% 

nonfat milk for 2 hours at room temperature, followed 

by incubation with primary antibodies overnight 

(SREBP1 1:1000, Cat No. 14088-1-AP, Proteintech, 

Wuhan, China), (ACC1 1:1000, Cat No. 21923-1-AP, 

Proteintech, Wuhan, China), (FASN 1:1000, Cat No. 

10624-2-AP, Proteintech, Wuhan, China), (ACLY 

1:2000, Cat No. 15421-1-AP, Proteintech, Wuhan, 

China), (P38 1:1000, Cat No. 14064-1-AP, Proteintech, 

Wuhan, China), (P-P38 1:1000, Cat No. 28796-1-AP, 

Proteintech, Wuhan, China), (ERK1/2 1:1000, Cat No. 

11257-1-AP, Proteintech, Wuhan, China), (P-ERK1/2 

1:1000, Cat No. 28733-1-AP, Proteintech, Wuhan, 

China), (GAPDH 1:10000, Catalog No. 10494). The 

membranes were washed 3 times in TBS with 0.1% 

Tween-20 buffer for 10 min each, reacted with 

secondary antibody for 2 h at room temperature, and 

then washed 3 times in TBST buffer for 10 min  

each minute. Bands were visualized with enhanced 

chemiluminescence Western blot detection reagents 

(Advansta, Inc., Menlo Park, CA, USA), and relative 

protein levels were quantified by using ImageJ. 

 

RT-qPCR 

 

RT-qPCR was performed to analyze the mRNA  

levels of SREBP-1c, ACC1, FASN, and ACLY. Total 

RNA was extracted from mouse liver tissue as well as 

HepG2 cells using TRIzol reagent (Life Technologies, 

Thermo Fisher Scientific), and mRNA was then reverse 
transcribed into cDNA via a reverse transcription  

kit (DRR036A, TaKaRa Biotechnology Co., Ltd., 

Japan). The cDNA was then amplified according to the 

instructions of the SYBR fluorescence quantification  

kit (DRR420A, TaKaRa Biotechnology Co., Ltd., 

Japan). The primers were designed in NCBI Primer-

BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and 

the specific primer sequences are given as listed below. 

Fold changes in gene expression were calculated by the 

2−ΔΔCT method using GAPDH as a control. 

 

Primers for RT-qPCR for human genes were as follows: 

GAPDH-F: ACCCAGAAGACTGTGGATGG; GAPDH-

R: CACATTGGGGGTAGGAACAC; SREBP-1-F: ACT 

TCTGGAGGCATCGCAAGCA; SREBP-1-R: AGGT 

TCCAGAGGAGGCTACAAG; FASN-F: TTCTACGG 

CTCCACGCTCTTCC; FASN-R: GAAGAGTCTTCG 

TCAGCCAGGA; ACC1-F: TTCACTCCACCTTGTCA 

GCGGA; ACC1-R: GTCAGAGAAGCAGCCCATCA 

CT; ACLY-F: GCTCTGCCTATGACAGCACCAT; and 

ACLY-R: GTCCGATGATGGTCACTCCCTT. Primers 

for RT-qPCR for mouse genes were as follows: GAPDH-

F: CATCACTGCCACCCAGAAGACTG; GAPDH-R: 

ATGCCAGTGAGCTTCCCGTTCAG; SREBP-1-F: CG 

ACTACATCCGCTTCTTGCAG; SREBP-1-R: CCTCC 

ATAGACACATCTGTGCC; FASN-F: CACAGTGCTC 

AAAGGACATGCC; FASN-R: CACCAGGTGTAGT 

GCCTTCCTC; ACC1-F: GTTCTGTTGGACAACGCC 

TTCAC; ACC1-R: GGAGTCACAGAAGCAGCCCA 

TT; ACLY-F: AGGAAGTGCCACCTCCAACAGT; and 

ACLY-R: CGCTCATCACAGATGCTGGTCA. 

 

Statistical analysis 

 

Statistical analyses were performed with SPSS 17.0 

software (SPSS, Chicago, IL, USA). Data were analyzed 

using two independent sample t-tests. Each experiment 

was performed three times. P < 0.05 was considered to 

indicate a statistically significant difference. 

 

Availability of data and materials 

 

The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 

 

RESULTS 
 

Network pharmacology analysis of prepared Radix 

Polygoni Multiflori for the treatment of NAFLD 
 

After screening and filtering in the HERB database, 29 

candidate ingredients of PRPM, including anthraquinone-

related compounds and adipoids, were selected based  

on oral bioavailability (OB) greater than or equal to 30% 

or drug-like properties (DL) greater than or equal to 0.18 
(considering that numerous studies have demonstrated 

the beneficial effects of the ingredient resveratrol on 

fatty liver, it was also treated as one of the candidate 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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ingredients, even though it did not meet the screening 

criteria). The OB and DL scores of each candidate  

are shown in Supplementary Table 1. After using 

SwissTargetPrediction software, 430 potential targets of 

PRPM were identified. Moreover, in total, 479 targets 

associated with NAFLD were collected from databases 

including the GeneCards, DisGeNET, DrugBank and 

OMIM databases. Sixty-six gene symbols between the 

RPM potential targets and the NAFLD-associated 

targets overlapped, as shown in Figure 1A, and Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses were performed 

in DAVID (Figure 1B, 1C). Finally, a network map 

among the compound, target genes, KEGG pathways, 

and diseases was drawn in Cytoscape 3.9.1 (Figure 1D). 

Network pharmacology analysis of PRPM revealed that 

these 66 target genes were associated with biological 

process pathways such as cellular response to hypoxia 

and oxidative stress and regulation of apoptotic 

processes. The genes were enriched in cellular com-

ponents such as macromolecular complex, chromatin, 

receptor complex, and RNA polymerase II transcription 

factor complex and in molecular function pathways 

such as transcription factor binding, enzyme binding, 

transcription coactivator binding, RNA polymerase II 

transcription factor activity, ligand-activated sequence-

specific DNA binding, and identical protein binding. 

KEGG pathway analysis revealed that the genes  

were enriched in the HIF-1 signaling pathway, AMPK 

signaling pathway, AGE-RAGE signaling pathway 

associated with diabetic complications, insulin resistance, 

and MAPK signaling pathway. As an important protein 

kinase, AMPK (adenosine 5′-monophosphate (AMP)-

activated protein kinase) is widely distributed in tissues 

with high energy metabolism, such as liver, fat and 

skeletal muscle, and is known as the “cellular energy 

homeostasis receptor”. This pathway has become a major 

target for the prevention and treatment of NAFLD. 

Additionally, the HIF-1 signaling pathway and AGE-

RAGE signaling pathway have been reported to be 

potential targets for NAFLD treatment. After network 

pharmacology analysis, we found that some ingredients 

of PRPM might target and protect against hepatic  

lipid accumulation and inflammation and be potential 

therapies for NAFLD. 

 
Considering that NAFLD has a complex pathogenesis, 

multiple factors and pathways can accelerate the 

progression of NAFLD. To explore which pathways 

varied the most or might promote the development of 

NAFLD, two microarray datasets from GEO (GSE89632 

and GSE96971) were downloaded, and the gene expres-

sion profiles of hepatic tissues from 24 control and  

48 NAFLD patients were gathered (Figure 2). After  

GO and KEGG analyses, we found that the mitogen-

activated protein kinase (MAPK) signaling pathway  

and its members extracellular regulated protein kinases 

1/2 (ERK1/2) were enriched in the upregulated genes. 

Studies have proven that the MAPK signaling pathway 

plays important roles in hepatocellular carcinoma,  

the later stages of NAFLD after steatosis in the liver, 

hepatitis and hepatic cirrhosis [24]. Meanwhile, dis-

ruption of p38α promotes steatohepatitis and is involved 

in macrophage polarization [25]. Therapies targeting 

MAPK have also shown positive effects on NAFLD, 

suggesting that MAPK might play an important role  

in NAFLD [26–28]. Furthermore, studies have also 

found that AMPK signaling is directly regulated by 

MAPK and constrains the AMPK-driven oxidative 

phosphorylation of biomaterials [29]. 
 

Prepared Radix Polygoni Multiflori improves liver 

function in mice with nonalcoholic fatty liver disease 
 

According to the literature, db/db mice are  

used to construct an NAFLD animal model. Therefore,  

we successfully constructed a NAFLD model using 

db/db mice and administered PRPM treatment. The 

components of emodin, tetrahydroxystilbene glucoside, 

and physcion were detected via UPLC-MS/MS 

(Supplementary Materials and Method, Supplementary 

Figure 1, Supplementary Table 2). After 8 w of PRPM 

intervention, we assessed the morphology of the liver 

tissue using hematoxylin and eosin (H&E) staining  

and discovered that PRPM decreased the formation  

of hepatic fat vacuoles and reduced fat accumulation 

(Figure 3A). Later, we tested mice for insulin resistance 

and examined total triglycerides, serum alanine trans-

aminase, serum TNF-α, and serum IL6 (Figure 3C–3G), 

which are related to liver function and inflammation 

status in mice, and found that insulin function and liver 

function improved in the PRPM intervention group, 

while they were abnormal in the nonintervention group. 
 

PRPM and emodin improved MAPK gene 

disruption in NAFLD 
 

Studies have proven that the MAPK signaling pathway 

plays important roles in hepatocellular carcinoma,  

the later stages of NAFLD after steatosis in the  

liver, hepatitis and hepatic cirrhosis [24]. Meanwhile, 

disruption in p38α promotes steatohepatitis and is 

involved in macrophage polarization [25]. Therapies 

targeting MAPK have also shown positive effects  

on NAFLD, suggesting that MAPK might play an 

important role in NAFLD [26–28]. 
 

To demonstrate whether PRPM and its active ingredient 

emodin could inhibit the activation of MAPK and reduce 

its associated protein in the liver, we collected mouse 

liver tissues for immunohistochemical detection (Figure 

4A–4E). The levels of the MAPK pathway-related 

proteins P38 and ERK1/2 and their phosphorylation 
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Figure 1. Enrichment analysis of the anti-NAFLD mechanisms of PRPM. (A) Sixty-six common targets of NAFLD and PRPM. (B) The 

top 10 significantly enriched (p < 0.05) terms in BP, CC and MF of GO analysis. The Y-axis represents the enrichment count of the target, and 
the X-axis represents the GO category of the target gene. (C) The top 15 pathways with significant enrichment (p < 0.05) were selected. The 
Y-axis represents the pathway, while the colors represent the significance of differential enrichment, and the size of the circles represents 
the number of genes. (D) Ingredient-target-pathway network of PRPM. The red rhombuses indicate ingredients, the green circles indicate 
targets, and the orange rounded rectangle indicates pathways. 
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changed significantly in NAFLD mouse liver tissue, 

while the alterations were partially recovered after 

PRPM intervention. According to the bioinformatics 

results and studies [24, 27, 30], differentially expressed 

genes were enriched in the MAPK signaling pathway, 

while the ERK1 and ERK2 cascades were upregulated 

 

 
 

Figure 2. Volcano plot and heatmap of differentially expressed genes and the functional enrichment of KEGG and GO. (A) 

Volcano plot was constructed using the fold change values and P-adjust; red indicates upregulation, while blue indicates downregulation. 
(B) Heatmap of the differential gene expression; different colors represent the trend of gene expression in different tissues. The top 50 
upregulated genes and the top 50 downregulated genes are shown in this figure. (C–F) The enriched KEGG signaling pathways and GO 
functions were selected to demonstrate the primary biological actions of major potential mRNAs. The abscissa indicates the gene ratio, and 
the enriched pathways are presented in the ordinate. Colors indicate the significance of differential enrichment, and the size of the circles 
indicates the number of genes. In the enrichment results, p < 0.05 and FDR <0.05 were considered meaningful pathways (enrichment score 
with −log10 (P) of more than 1.3). 
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in the NAFLD group. We verified this finding using 

Western blotting, and the findings were consistent  

with the immunohistochemical results (Figure 4F–4J). 

Compared to the NAFLD groups, the expression levels 

of p38 increased, while its phosphorylation decreased. 

In contrast, the expression levels of ERK1/2 decreased, 

while its phosphorylation increased (Figure 4F–4J). To 

support the results of this experiment, we conducted an 

 

 
 

Figure 3. PRPM improves nonalcoholic fatty liver disease. (A) H&E staining, ×100, ×200, ×400; Oil red staining, ×200, ×400. (B) 

Quantitative analysis of the Oil red O staining-positive area (%). (C–G) ELISA analysis of the insulin index, serum triglycerides (TG), alanine 
aminotransferase (ALT), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). *indicates a comparison with NC, P < 0.05. #indicates a 
comparison with NAFLD, P < 0.05. The white line indicates 50 μm. 
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in vitro test to detect MAPK-related indicators in  

cells using immunofluorescence (Figure 5A–5E).  

The results showed that P38 and ERK1/2 expression 

decreased after emodin treatment using emodin, and 

phosphorylated P38 and phosphorylated ERK1/2 

expression increased; these results were also verified  

by Western blotting (Figure 5F–5J). These findings 

were slightly different than what we found in the mice. 

 

 

 

Figure 4. PRPM mediates the MAPK signaling pathway in NAFLD. (A) IHC staining of P38, phosphorylated P38, ERK1/2 and 

phosphorylated ERK1/2 in NAFLD mouse models, ×200, ×400. (B–E) Correlation analysis of H-scores of P38, phosphorylated P38, ERK1/2 
and phosphorylated ERK1/2. (F) Representative Western blot of P38, phosphorylated P38, ERK1/2 and phosphorylated ERK1/2. (G–J) 
Western blot analysis. *indicates comparison with NC, P < 0.05. #indicates a comparison with NAFLD, P < 0.05. The white line indicates 
50 μm. 
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Although the expression levels of p38 increased while  

its phosphorylation decreased, the expression levels of 

ERK1/2 did not increase, which showed the opposite 

results in the cell models. Meanwhile, as one of the most 

common health products for NAFLD treatments, silybin, 

the main ingredient of milk thistle [31–33], did not show 

significant effects on the MAPK signaling pathway. 

PRPM and emodin mediate the AMPK signaling 

pathway in NAFLD 

 

Abnormal excessive lipid accumulation is the  

main cardiovascular manifestation of NAFLD, and 

disturbance of the de novo lipogenesis pathway 

strongly participates in this process. In the network 

 

 
 

Figure 5. Emodin mediates the MAPK signaling pathway in HepG2 cells. (A) IF staining of P38, phosphorylated P38, ERK1/2 and 
phosphorylated ERK1/2 (200×) in HepG2 cells. (B–E) Florescence intensity analysis of P38, phosphorylated P38, ERK1/2 and phosphorylated 
ERK1/2. (F) Representative Western blot of P38, phosphorylated P38, ERK1/2 and phosphorylated ERK1/2. (G–J) Western blot analysis. 
*indicates a comparison with NC, P < 0.05. The white line indicates 50 μm. 
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pharmacology analysis, we found that PRPM treatment 

for NAFLD was related to the AMPK signaling 

pathway. Here, we found that after PRPM treatment, 

lipogenesis-related proteins such as ACC1, FASN,  

and ACLY were mainly regulated by SREBP1, the 

downstream factor of the AMPK signaling pathway.  

A previous study by Yu et al. showed that PRPM 

downregulated AMPK/SREBP-1 in a NAFLD zebrafish 

model [34], so we also explored the actions of PRPM 

on the de novo lipogenesis pathway (DNL) (Figure 6). 

Immunohistochemistry (IHC) of SREBP-1c showed 

that as the key factor of DNL, SREBP-1c was highly 

expressed in db/db mice compared with db/m mice 

(Figure 6A, 6B). After PRPM treatment, the expression 

level of SREBP-1c decreased, and Western blot and q-

PCR results (Figure 6C–6K) showed the same results, 

which were consistent with Yu et al.’s study. Moreover, 

the expression levels of ACC1, FASN, and ACLY  

also simultaneously decreased (Figure 6C–6K). In 

conclusion, our results suggest that PRPM treatment can 

 

 
 

Figure 6. PRPM mediates the AMPK signaling pathway in NAFLD. (A) IHC staining of SREBP-1, ×200, ×400. (B) A correlation analysis 

of the H-scores of SREBP-1. (C) Representative Western blot of SREBP-1, ACC1, FASN, and ACLY. (D–G) Western blot analysis. (H–K) Relative 
mRNA levels of SREBP-1, ACC1, FASN, and ACLY (ratio: measured mRNA/GAPDH mRNA). *indicates comparison with NC, P < 0.05. #indicates 
a comparison with NAFLD, P < 0.05. The white line indicates 50 μm. 



www.aging-us.com 2374 AGING 

improve NAFLD by inhibiting the expression of 

de novo lipogenesis-related proteins, and the above 

results indicate that PRPM treatment can dramatically 

improve lipid accumulation in NAFLD model mice. 

Later, whether emodin also downregulates the de novo 

lipogenesis pathway was tested. Immunofluorescence of 

SREBP-1c showed that compared with the normal control, 

emodin downregulated SREBP-1c (Figure 7A, 7B). 

 

 
 

Figure 7. Emodin mediates the AMPK signaling pathway in HepG2 cells. (A) IF staining of SREBP-1. (B) Florescence intensity 

analysis of SREBP-1, ×200. (C) Representative Western blot of SREBP-1, ACC1, FASN, and ACLY. (D–G) Western blot analysis. (H–K) Relative 
mRNA levels of SREBP-1, ACC1, FASN, and ACLY (ratio: measured mRNA/GAPDH mRNA). (L–N) Nile red and Oil red O staining and analysis. 
*indicates comparison with NC, P < 0.05. A indicates a comparison with FFA Medium, P < 0.05. The white line indicates 50 μm. 
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Lipid accumulation cell models were established  

via combined oleic acid and palmitic acid (free fatty 

acid medium, FFA medium) treatments. Nile red and 

Oil red O staining showed that emodin intervention 

reduced lipid droplets in cells caused by excessive 

fatty acid production (Figure 7L–7N), which occurred 

when the SREBP-1c expression level was diminished. 

Western blot and q-PCR results also showed that 

emodin downregulated the intracellular protein expres-

sion levels of SREBP-1c, ACC1, FASN, and ACLY 

(Figure 7C–7K), which was in accordance with the 

effects of PRPM treatment in the livers of the NAFLD 

model mice. 

 

The MAPK activator diprovocim restored the 

inhibitory effect of emodin on the AMPK signaling 

pathway 

 

After treatment with Losmapimod, an inhibitor of P38, 

the expression levels of DNL, including SREBP-1c, 

ACLY, ACC1, and FASN, were downregulated, similar 

to emodin intervention (Figure 8A–8E). However, 

treatments with selumetinib, the MEK inhibitor, and 

silybin did not yield the same results. Based on this, we 

speculate that the inhibitory effect of emodin on the 

AMPK signaling pathway is related to the inhibition of 

the MAPK p38 signaling pathway. 

 

We utilized diprovocim, a small molecule compound 

that activates the MAPK signaling pathway, to treat 

HepG2 cells either alone or in combination with emodin 

(Figure 8F–8N). The results showed that diprovocim 

alone promoted the phosphorylation of P38 and 

upregulated the expression of SREBP-1 in the AMPK 

signaling pathway, as well as the downstream targets 

FASN, ACC1, and ACLY. Additionally, simultaneous 

treatment with diprovocim and emodin restored the 

inhibitory effect of emodin on SREBP-1, FASN, ACC1, 

and ACLY (Figure 8F–8K). Moreover, Oil red O 

staining and Nile red staining showed that simultaneous 

treatment with both Diprovocim and Emodin increased 

the accumulation of lipids compared to emodin 

treatment alone (Figure 8L–8N). These findings suggest 

that the inhibitory effect of emodin on the AMPK 

signaling pathway is associated with the inhibition of 

the MAPK p38 signaling pathway. 

 

DISCUSSION 
 

The prevalence of NAFLD, which consists of a series of 

conditions strongly associated with obesity and type 2 

diabetes, has climbed to almost a quarter of the world’s 

population. As a result of its exceptionally complex 

pathogenesis, approximately 150 monotherapies targeting 

one or a few genes in clinical trials have not yet been 

completed or have failed to meet the clinical endpoints, 

and there are still no monotherapies that have been 

approved by the Food and Drug Administration [35]. 

Db/db mice are ideal models of nonalcoholic fatty liver 

disease [36–38]; db/db mice are often used to build type 

2 diabetes models due to the loss of leptin receptor, 

which leads to weight obesity and increased appetite, 

while nonalcoholic fatty liver disease is highly related 

to obesity and type 2 diabetes. Different from the non-

alcoholic fatty liver disease induced by high-fat and 

high-sugar diet, high-fructose diet and choline deficiency 

diet, the model of db/db mice is stable, and the pure 

mice will develop into fatty liver over time, to avoid  

the low rate of diet-induced model, and it is easy  

to spontaneously alleviate the interference caused by 

uncontrollable factors such as fatty liver. Therefore,  

in this study, db/db mice were selected to establish a 

model of NAFLD. Studies have proven that multiple 

pathways and interactions affect the pathogenesis of 

NAFLD [1, 2, 4], including de novo lipogenesis enhance-

ment, over esterification of fatty acids, decreases in 

intrahepatic lipolysis and mitochondrial β-oxidation, 

and inflammation due to the hepatotoxicity caused  

by triglyceride overaccumulation in the liver. Each 

homeostatic dysfunction promotes NAFLD progression 

and an adverse outcome. Thus, we believe that treat-

ments targeting multiple pathways might achieve better 

clinical outcomes. 

 
Unlike monotherapy, traditional Chinese medicine 

focuses on the holistic view of maintaining a 

homeostatic balance within the whole body; diverse 

ingredients in traditional Chinese medicines can target  

a variety of biological factors and regulate multiple 

signaling pathways. According to how they were 

prepared, the traditional Chinese medicine herb RPM  

is classified as Sheng Shou Wu, and PRPM is classified 

as Zhi Shou Wu [39]. These two different types of 

RPMs have distinct functions; raw RPMs have high 

hepatotoxicity, but the toxicity is reduced after pro-

cessing. After various processing methods, the content  

of anthraquinones, the main hepatotoxic component of 

RPM, decreased significantly, which may be the main 

reason for the reduction in the toxicity of PRPM [40, 

41]. Among all of these candidate ingredients, some 

studies reported a risk of liver injury associated with 

anthraquinone-related compounds, although systematic 

studies on the hepatotoxicity of PRPM and its 

ingredients showed that it does not lead to liver damage 

if it is administered at a low dose. These studies might 

explain why clinical studies have reported different or 

even opposite results on PRPM treatments; diverse 

dosages or preparation methods of PRPM would cause 

variations in the PRPM ingredient concentrations, and 

low-dose PRPM therapy would not significantly impair 

the liver and even play an active role against NAFLD. 

Two recent studies have shown that stilbene glycoside, 
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one of the main components of RPM, can hinder 

emodin metabolism in the liver, expose emodin for a 

long time, affect bile acid metabolism, and promote 

emodin to cause obvious hepatotoxicity [42, 43]. The 

use of emodin or stilbene glycoside alone had no 

significant effect [44]. It was reported that after RPM 

was processed, the content of emodin increased and  

the content of stilbene glycosides decreased, while 

 

 
 

Figure 8. The MAPK activator diprovocim restored the inhibitory effect of emodin on the AMPK signaling pathway. (A) 

Representative Western blot of SREBP-1, ACC1, FASN, and ACLY. (B–E) Western blot analysis. (F) Representative Western blot of SREBP-1, 
ACC1, FASN, ACLY, and P-P38. (G–K) Western blot analysis. (L–N) Nile red and Oil red O staining and analysis. *indicates comparison with 
NC, P < 0.05. A indicates a comparison with FFA Medium, P < 0.05. The white line indicates 50 μm. 
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stilbene glycosides were unstable under acidic 

conditions and easily degraded into stilbene aglycone at 

room temperature and further decomposed into phenols 

[45]. 

 

Network pharmacology is a new method based on the 

theory of systems biology, which analyzes the network 

of biological systems and selects specific signal nodes 

for the molecular design of multitarget drugs. Network 

pharmacology emphasizes the regulation of signaling 

pathways to improve the therapeutic effect and reduce 

toxicity and side effects to improve the success rate  

of new clinical trials and shrink the costs of research 

and development. Based on network pharmacology,  

we found that PRPM might have positive effects on 

NAFLD, and its beneficial mechanisms of action might 

involve multiple signaling pathways, such as the HIF-1 

signaling pathway, AMPK signaling pathway, AGE-

RAGE signaling pathway associated with diabetic 

complications, insulin resistance, and MAPK signaling 

pathway. Both the AMPK and MAPK signaling path-

ways play important roles in liver energy metabolism 

[27, 46]. As a regulator of metabolism and mitochondrial 

homeostasis, AMPK enhances fatty acid oxidation and 

lipolysis while inhibiting lipogenesis and glycogen, and 

therapies targeting AMPK and its downstream targets 

have been a hot topic in recent years. Additionally, 

MAPK is a serine/threonine protein kinase that exists 

widely in mammalian cells. It can be phosphorylated 

and activated by a series of extracellular stimuli and 

then conveys extracellular signals to cells and their 

nuclei, resulting in biological effects. This transduction 

is unique to eukaryotes and mainly regulates cell 

growth, proliferation, differentiation, apoptosis and 

other processes. 

 
MAPK signaling pathway dysfunction was involved  

in NAFLD; Vernia S. et al. found that liver-specific 

deletion of Jnk1 and Jnk2 in mice protected mice from 

diet-induced obesity and insulin resistance [47], while 

Jing. et al. and Pereira, S. et al. found that p38 α 

knockout or inhibitor intervention could significantly 

alleviate diet-induced fatty liver degeneration. In 

contrast, Khan AS. et al. found that ERK1 whole-body 

knockout led to increased weight gain as well as 

increased insulin resistance in diet-induced outcomes, 

and Kujiraoka, T. et al. found that ERK2 liver tissue-

specific knockout led to more adverse liver damage 

[48]. Therefore, targeted treatment of liver MAPK may 

be beneficial to NAFLD. In this study, we also found 

MAPK signaling pathway disruption in the liver. In 

animal experiments, the expression of the MAPK-

related gene P38 was increased in the NAFLD group, 

and the expression of ERK1/2 was decreased, which is 

consistent with the results of some clinical studies in 

nonalcoholic fatty liver groups [49, 50]. Moreover, in 

the NAFLD groups, the phosphorylation of P38 

decreased, while the phosphorylation of ERK1 and 

ERK2 increased. After treatment for 14 weeks, both 

high and low doses of PRPM could not only decrease 

lipid accumulation in the liver but also reverse these 

changes to varying degrees, suggesting that in addition 

to DNL-related genes, PRPM therapy may also target 

MAPK. While we used emodin to interfere with HepG2 

cells, we found that emodin can also inhibit the 

expression of P38 and promote P38 phosphorylation, 

which is consistent with the findings of PRPM in db/db 

mice. However, emodin can also inhibit the expression 

of ERK1/2, while PRPM can upregulate the expression 

of ERK1/2, indicating that although emodin is one  

of the active compounds of PRPM, traditional Chinese 

medicine still interferes with NAFLD in a multi-

component and multitarget way. 

 

In general, through network pharmacology and in vivo 

and in vitro experiments, it was found that intervention 

with PRPM and its main compound emodin could 

improve lipid droplet accumulation in NAFLD model 

mice and a fatty liver cell model, and its mechanism 

may be related to the inhibition of p38/phosphorylated 

p38. This study provides an experimental foundation for 

elucidating the mechanism by which PRPM and emodin 

improve NAFLD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Methods 
 
1 Preanalytical sample handling UPLC‒MS/MS 

mass spectrometry and liquid phase methods 

 
Sample pretreatment: Mice were euthanized 15  

min after gavage, and liver tissue samples were 

obtained according to previous studies and references 

[1, 2]. Then, 0.4 ml of saline was added to the tissue 

homogenate, methanol at triple volume was added for 

precipitating the protein, and the turbine was mixed for 

10 s, filtering supernatants via 0.22 µm filters head for 

instrumental analysis. The components of the PRPM 

extract were identified by using Waters ACQUITY 

UPLC I-Class (Waters, Milford, MA, USA) and Xevo 

TQD IVD (Waters, Milford, MA, USA) instruments. 

Preparation of controls: Appropriate amounts of 

emodin (CAS: 518-82-1, Beijing Solarbio Science and 

Technology Co., Ltd., China), tetrahydroxystilbene 

glucoside (CAS: 873-94-2, Beijing Solarbio Science 

and Technology Co., Ltd., China), and physcion (CAS: 

521-61-9, Beijing Solarbio Science and Technology 

Co., Ltd.) were weighed. Standards were placed in  

a 10 ml measuring flask, dissolved in methanol and 

then diluted precisely to the needed concentration  

of the control solution when used. Mass spectrometry 

conditions: ionization at an electrospray ionization 

source (ESI), multiple reaction monitoring (MRM) 

detection in positive ion mode, Capillay (kV): 2.50, 

Desolvation Temp (°C): 200. The MRM of emodin, 

tetrahydroxystilbene glucoside and physcion are shown 

in Supplementary Table 1. Chromatographic conditions. 

The separation was carried out on an ACQUITY 

UPLC BEH C18 (2.1 × 50 mm, 1.7 µm) column  

using the mobile phase: (A) 0.1% formic acid water-

acetonitrile and (B) binary gradient elution; flow  

rate: 0.2 ml/min. Column temperature 35°C, injection 

volume 1 µl. Gradient elution program: 0–1 min (30% 

A), 1–2 min (30%-90% A), 2–3 min (90% A), 3-4 min 

(90–30% A), 4–5 min (30% A). 

 

RESULTS 
 
1 UPLC‒MS/MS analysis of the prepared radix 

polygoni multiflori active compounds in the mouse 

liver 

 
We reviewed the conversion measurements provided  

by the Chinese Pharmacopoeia and previous studies  

and divided PRPM treatment into a high-dose group  

and a low-dose group to investigate whether different 

preparations and doses of PRPM play different roles in 

the liver. In this study, the PRPM active compounds 

gathered in hepatic tissues after gavage were extracted 

after 40–50% ethanol precipitation for 48 hours, and 

UPLC‒MS/MS tests were performed to detect the 

components of emodin, tetrahydroxystilbene glucoside, 

and physcion (Supplementary Figure 1B) (The mass 

spectrometry conditions are shown in Supplementary 

Table 2). The results showed that we detected the peaks 

of the three active compounds at retention times of 

0.32 s, 0.78 s and 3.27 s (Supplementary Figure 1A). 

A comparison of network pharmacological analysis  

and relevant literature references revealed that emodin 

may be the main active ingredient in PRPM that is 

responsible for the improvement of nonalcoholic fatty 

liver disease. 
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Supplementary Figure 
 

 
 

Supplementary Figure 1. The three active ingredients of PRPM in mouse liver as measured by UPLC‒MS/MS. (A) Chromatograms 

of three active components. (B) Chemical structure of the three active ingredients. 
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Supplementary Tables 
 

Supplementary Table 1. OB and DL scores of each PRPM ingredients. 

Ingredient OB (%) DL 

n-trans-feruloyltyramine 86.71 0.26 

aloeemodin 83.38 0.24 

rhein 47.07 0.28 

Physciondiglucoside 41.65 0.63 

sitosterol 36.91 0.75 

procyanidin b-13′-o-gallate 31.99 0.32 

gallic acid 31.69 0.04 

guaijaverin 29.65 0.70 

chrysazin 28.74 0.19 

tricin 27.86 0.34 

emodinanthrone 24.72 0.21 

questinol 24.49 0.30 

emodin 24.40 0.24 

physcion 22.29 0.27 

citreorosein 22.19 0.27 

piceid 21.44 0.50 

daucosterol 20.63 0.63 

questin 20.44 0.27 

resveratrol 19.07 0.11 

6-methoxyluteolin-7-glucoside 19.00 0.81 

chrysophanic 18.64 0.21 

chrysophanol 18.64 0.21 

physcion-8-o-beta-d-glucoside 18.31 0.63 

emodin-8-o-beta-d-glucoside 10.03 0.80 

polygalacic acid 8.95 0.70 

physcion 1-o-beta-d-glucoside 8.20 0.85 

3,4,3′,5′-Tetrahydroxystilbene-3-glucoside 2.99 0.55 

Rhein diglucoside 2.93 0.63 

chrysophanol-8-O-beta-D-(6′-O-galloyl)-glucopyranoside 1.92 0.69 

 

 

Supplementary Table 2. The mass spectrometry conditions. 

Composition Parent ion Daughter ion Cone Collision energy 

Emodin 270.84 114.96 50 46 

Tetrahydroxystilbene Glucosid 407.03 245.04 26 10 

Physcion 284.94 139.11 56 58 

 

 


