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ABSTRACT 
 

Evodia lepta Merr. (Evodia lepta) is a well-known traditional Chinese medicine, which has been widely used 
in herbal tea. We previously reported that the coumarin compounds from the root of Evodia lepta exhibited 
neuroprotective effects. However, whether Evodia lepta could inhibit NLRP3 inflammasome in dementia was 
still unknown. In this study, the components of the Evodia lepta extract were identified by HPLC-Q-TOF 
HRMS. We employed a scopolamine-treated mouse model. Evodia lepta extract (10 or 20 mg/kg) and 
donepezil were treated by gavage once a day for 14 consecutive days. Following the behavioral tests, 
oxidative stress levels were measured. Then, Western blot and immunofluorescence analysis were used to 
evaluate the expressions of NLRP3 inflammasome. 14 major components of the Evodia lepta extract were 
identified by HPLC-Q-TOF HRMS. The results of Morris water maze, object recognition task and open field 
test indicated that Evodia lepta extract could ameliorate cognitive impairment in scopolamine-treated mice. 
Evodia lepta extract improved cholinergic system. Moreover, Evodia lepta extract improved the expressions 
of PSD95 and BDNF. Evodia lepta extract suppressed neuronal oxidative stress and apoptosis. In addition, 
Evodia lepta extract inhibited NLRP3 inflammasome in the hippocampus of scopolamine-treated mice. Evodia 
lepta extract could protect against cognitive impairment by inhibiting NLRP3 inflammasome in scopolamine-
treated mice. 
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INTRODUCTION 
 
Dementia is an intelligent impairment syndrome, 

which is caused by neuronal dysfunction and loss in 

the brain [1]. However, its mechanism is still unclear. 

The current medical intervention has not been able to 

stop the development of dementia, which has brought 

great burden and pain to the patients, family and 

society [2]. 

 
In dementia, the cognitive impairment is largely 

caused by the dysfunction of cholinergic neurons and 

neuronal loss [3]. “Cholinergic hypothesis” believes 

that dementia is related to the reduction of acetylcholine 

level and the loss of cholinergic neurons in the brain 

[4, 5]. Acetylcholine (Ach), a neurotransmitter from 

the cholinergic neurons, plays an important role in 

nervous systems. Reduced levels of acetylcholine  

can cause systemic or local inflammatory responses  

[6, 7]. In the brain, neuroinflammation clearly occurs 

in pathologically vulnerable regions, and significantly 

contributes to dementia pathological processes [8, 9]. 

NLRP3 (NOD-like receptor thermal protein domain 

associated protein 3) inflammasome, composed by 

NLRP3, apoptosis-associated speck-like protein con-

taining a CARD (ASC) and pro-cysteinyl aspartate 

specific proteinase-1 (pro-Caspase-1), can promote the 

Aβ-plaque formation, tau pathology, and result in 

cognitive dysfunction [10, 11]. Therefore, targeted 

treatments on cholinergic system and NLRP3-related 

neuroinflammation may be beneficial for dementia 

symptoms. 

 
Evodia lepta Merr. (Evodia lepta) is widely  

distributed in Guangxi, Guangdong, Hainan, Yunnan 

and other provinces, which belongs to the rutaceae 

family. In traditional Chinese medicine, Evodia lepta 

is often used for lung carbuncle, fever, shortness  

of breath, sore throat and chickenpox [12]. Many 

studies have shown that the alkaloids of Evodia lepta  

have some biological activities, such as inhibiting 

acetylcholinesterase (AChE), analgesic and anti-tumor 

[13]. In our previous study, the coumarin compounds 

extracted from the root of Evodia lepta can inhibit 

AChE activity in scopolamine-treated SH-SY5Y cells 

[14]. However, whether ethanol extract of the root  

of Evodia lepta could inhibit NLRP3 inflammasome 

remains unknown. 

 
In current study, we employed the scopolamine-

induced memory defect model, to study the anti-

neuroinflammation effect of ethanol extract of the  

root of Evodia lepta. Evodia lepta extract could 

significantly protect against cognitive impairment by 

inhibiting NLRP3 inflammasome in scopolamine-

treated mice. 

MATERIALS AND METHODS 
 

Materials 

 

Kits for detecting the Malondialdehyde (MDA)  

level, activity of manganese superoxide dismutase  

(Mn-SOD), Acetylcholine (Ach) level, activity of 

Acetylcholinesterase (AChE), and activity of Choline 

acetyltransferase (ChAT) were purchased from the 

Nanjing Jiancheng Bioengineering Institute (Nanjing, 

China). Primary antibodies, Postsynapticdensity 95 

(PSD95), BDNF, Cleaved Caspase-1, Bcl-2, Bax and 

Cleaved Caspase-3, were obtained from Abcam, Inc. 

(Cambridge, UK). Secondary antibodies (horseradish 

peroxidase-conjugated anti-rabbit IgG and mouse IgG) 

and NLRP3 were obtained from Cell Signaling Tech-

nology, Inc. (Danvers, MA, USA). 

 

Drug preparation and analysis 

 

The stem bark of Evodia lepta Merr. (5 kg) were 

extracted by 70% (V/V) ethanol. The solution was 

concentrated to afford a crude extract (460 g). Finally, 

1 g of Evodia lepta extract was determined to contain 

10.87 g of crude herb. The LC condition: column, 

Waters ACQUITY UPLC HSS T3: 1.8 μm, 2.1 mm × 

100 mm; column temperature: 45°C; mobile phase A: 

100% ultrapure water with 0.1% formic acid; mobile 

phase B: 100% acetonitrile with 0.1% formic acid; flow 

rate: 0.4 mL/min. The specific mobile phase changes 

were as follows: 0–15 min, 10% to 100% B; injection 

volume, 2 μL. 

 

HPLC-Q-TOF HRMS analysis 

 

The components analysis was conducted on Agilent 

6540 HPLC-MS system. Chromatographic separation 

was performed on a Waters ACQUITY UPLC HSS  

T3 column (1.8 μm, 2.1 mm × 100 mm). The mobile 

phase: (A) was water with 0.1% formic acid, (B) was 

acetonitrile with 0.1% formic acid. The gradient:  

0–8 min: 15–40% B; 8–10 min: 40–60% B; 10–15 min: 

60–100% B. The flow rate was 0.4 mL/min. The 

injection volume was 2 μL. The MS acquisition was 

performed at positive ionization mode. The ion source 

parameters: gas temperature 320C, drying gas 8 L/min, 

nebulizer 35 psig, sheath gas temperature 350C, sheath 

gas flow 11 L/min, voltage 3.5 kV. 

 

Animals 

 

Male 5-month-old C57BL/6 mice were provided by the 

Guangdong Province Medicine Experimental Animal 

Center. They were housed in the Lab of Guangzhou 

University of Chinese Medicine with constant temperature 

(21–25C), a humidity of 50–60%, photoperiod of 12 h, 
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and free access to water and food. All animal 

experiments were approved by the Guiding Principles 

for the Care and Use of Laboratory Animals that 

adopted and promulgated by the United States National 

Institutes of Health. 

 

Experimental groups and drug treatment 

 

After acclimatization for 12 weeks, 50 mice were 

randomly divided into parallel groups including control, 

scopolamine model, donepezil (5 mg/kg) and Evodia 

lepta extract (10 or 20 mg/kg), with 10 mice in each 

group. The mice were treated with Evodia lepta extract 

and donepezil by gavage once a day for 14 consecutive 

days. Donepezil was used as a positive drug which is 

central AChE inhibitor [15]. From the 7th day to the 

14th day, all groups were intraperitoneally injected with 

scopolamine (2 mg/kg) and the control group received 

the same volume of saline. 30 min later, behavioral test 

was employed. 

 

Morris water maze test 

 

The Morris water maze test was performed according 

to the Morris method [16]. Briefly, mice were 

subjected to navigation test for 5 consecutive days 

with four different starting points per day, and the 

escape latency was recorded. On the 6th day, the mice 

were subjected to acquisition a probe trial without the 

platform. 

 

Object recognition task 

 

The object recognition task was conducted using  

a previously described protocol [17]. The mice were 

placed in the testing box and explored freely for 5 min 

to adapt to two identical objects. On the next day, one 

of the objects was replaced by a new one, observing  

the trajectory of mice and the time to explore the two 

objects. 

 
Open field test 

 

The mice were placed alone in the center of a square 

arena (Med Associates Inc, St. Albans, VT, USA, 40  

cm × 40 cm) and allowed to move freely for 5 min. 

Experimental instrument recorded the changes of the 

mice. After each experiment, the arena was disinfected 

with 75% alcohol. 

 
Western blot analysis 

 

The brain tissues were weighed and homogenized  

on ice in RIPA Lysis Buffer, and centrifuged at 12, 000 

× g for 10 min at 4°C. Then the lysate was boiled  

with loading buffer at 100°C for 10 min. The protein 

samples were separated by SDS-PAGE analysis gel 

and transferred onto polyvinylidene difluoride (PVDF) 

membranes. After being blocked with 5% skimmed 

milk for 70 min, the membranes were incubated over-

night with the primary antibodies. Then, the membranes 

were washed and incubated with secondary anti- 

body for 1 h. The Western blot method was used to 

detect the expression level of PSD-95, BDNF, Bcl-2, 

BAX, Pro Caspase-3, Cleaved Caspase-3, NLRP3, and 

Cleaved Caspase-1. Bands were detected by using an 

ECL chemiluminescent kit and quantified using NIH 

ImageJ software. 

 

Measurement of MDA, SOD, ACh, ChAT and AChE 

 

The brain tissues were homogenized and collected 

supernatants by centrifugation for biochemical assays. 

According to the kit instructions, we used the super-

natants to detect the MDA level, the SOD activity; the 

ACh level, the ChAT and AChE activities. 

 

Immunohistochemistry 

 

The brain tissue sections were first baked in an oven  

at 60°C for 1 h followed by deparaffinization and 

rehydration. The sections were incubated in 3% H2O2 

at 37°C for 10 min. After washed by PBS, the sections 

were treated with sodium citrate buffer 1 × at high 

temperature performed antigen retrieval. Then, the 

sections were blocked with 5% BSA for 1 h, incubated 

by the primary antibody overnight at 4°C, and followed 

by a secondary antibody incubation. Subsequently,  

the sections were mounted with anti-fluorescence 

quenching sealing liquid (including DAPI). 

 

Statistical analysis 

 

Data analysis was used by SPSS 19.0 and GraphPad 

Prism 5 software. Statistical significance was analyzed 

using one-way analysis of variance (ANOVA) followed 

by Dunn’s test. The level of statistical significance for 

all tests was P < 0.05, P < 0.01. 

 

Data availability statement 

 

All data or resources used in the paper are available 

by reasonable requirements to the correspondence 

authors. 

 

RESULTS 
 

Identification of the major components of Evodia 

lepta extract by HPLC-Q-TOF HRMS 

 

Under optimized chromatographic conditions, 14 

components in the TIC chromatograms of the ethanol 
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Table 1. The names and formula of the 14 compounds. 

Number Name Formula 

1. 1-((3S,4S)-3,4-dihydroxy-5,7-dimethoxy-2,2-dimethylchroman-8-yl) ethanone C17H24O4 

2. (−)-nodakenetin C14H16O4 

3. Neobaicalein C19H18O8 

4. skimmianine C14H13NO4 

5. (+)-peucedanol C15H16O5 

6. 2-(1-Hydroxy-1-methylethyl)-4-methoxy-7H-furo[3,2-g](1) benzopyran-7-one C13H11NO3 

7. Evolitrin C16H12O5 

8. Oroxylin A C14H14O3 

9. Demethylsuberosin C17H21NO4 

10. Preskimmianine C14H14O5 

11. cis-Decursidinol C10H8O4 

12. Scopoletin C14H18O6 

13. Leptin A C15H18O4 

14 (+)-peucedanol C28H26O6 

 

extract of Evodia lepta sample were identified and 

assigned by comparing the m/z with those of the 

reference compounds (Figure 1A, 1B). The 14 major 

compounds in the ethanol extract of Evodia lepta  

were tentatively assigned (Table 1). 

Evodia lepta extract improves cognitive impairment 

and anxiety in scopolamine-treated mice 

 

Firstly, we used Morris Water Maze test to access the 

effect of Evodia lepta extract on memory protection. 

 

 

 
Figure 1. Identification of major components of Evodia lepta extract by HPLC-Q-TOF HRMS. (A) TIC spectrometry of the EtOH 

extract of EL, 14 peaks were identified as the characteristic compounds of the EtOH extract of EL. (B) Chemical structure of the 14 compounds. 
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The escape latency of the mice gradually decreased 

during the five consecutive days. The scopolamine 

group required more time to find the hidden platform 

when compared with the control group. The Evodia 

lepta administered groups and the positive group 

significantly improved the situation (Figure 2A). The 

representative swimming trails for the five groups 

showed the similar trends (Figure 2B). In the probe test, 

the high-dose Evodia lepta group improved the crossing 

times of the targeting platform (Figure 2C) and the time 

spent in the target quadrant (Figure 2D). The swimming 

speed was showed at no change (Figure 2E). In the  

novel recognition test, the scopolamine group was 

significantly lower than control group. Compared with 

scopolamine group, Evodia lepta groups were higher, 

but the effect is not significant (Figure 3A, 3B). In the 

open field test, the time of exploring inner squares 

(Figure 3C, 3D) were better than that in the scopo-

lamine group. These results suggested that Evodia lepta 

extract could improve the cognitive impairment and 

anxiety in scopolamine-treated mice. 

 

Evodia lepta extract ameliorates cholinergic system 

deficiency in scopolamine-treated mice 

 

As shown in Figure 4A–4C, we evaluated the effects  

of Evodia lepta extract on the cholinergic system 

deficiency. Scopolamine treatment significantly reduced

 

 
 

Figure 2. Evodia lepta extract improves cognitive impairment (Morris Water Maze) in scopolamine-treated mice. (A) Escape 

latency measured as mean time (s) during the navigation test. (B) Representative swim traces of each group. (C) Times of crossing the 
target platform in the probe trial. (D) Time spent in the target quadrant in the probe trial. (E) The swimming speed in the probe trial. Evodia 
lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent mean ± SD (n = 10 per group). ##P < 0.01, vs. Control; *P < 0.05,  
**P < 0.01, ***P < 0.001, vs. SCOP. 
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Figure 3. The effect of Evodia lepta on the working memory impairment and anxiety (Object recognition task and Open 
field test) induced by scopolamine. (A) Representative trajectory for each group in the new object recognition. (B) Mean time (±SEM) 
spent by each respective group exploring a reference object and a new object. (C) Representative trajectory for each group in the open 
field test. (D) Center exploration time. Evodia lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent mean ± SD (n = 10 per 
group). #P < 0.05, ##P < 0.01, vs. Control; *P < 0.05, vs. SCOP. 

 

 
 

Figure 4. Evodia lepta extract ameliorates cholinergic system deficiency in scopolamine-treated mice. (A–C) The level of Ach 

and activities of AChE and ChAT. Evodia lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent mean ± SD (n = 6 per group). 
##P < 0.01, ###P < 0.001, vs. Control; *P < 0.05, **P < 0.01, ***P < 0.001, vs. SCOP. 



www.aging-us.com 2391 AGING 

Ach level and ChAT activity, and increased AChE 

activity. Evodia lepta extract and donepezil signifi-

cantly reversed the changes.  These results suggested  

that Evodia lepta extract could ameliorate cholinergic 

system deficiency in scopolamine-treated mice. 

 

Evodia lepta extract protects the synaptic and 

neurotrophic factors in scopolamine-treated mice 

 

As shown in Figure 5A–5C, the levels of PSD95 and 

BDNF were decreased in the group of scopolamine 

group. After Evodia lepta extract and donepezil 

treatment, PSD95 and BDNF levels were increased, 

but there was no significant difference in PSD95 

between the treatment group and scopolamine group. 

These results indicated that Evodia lepta extract could 

improve scopolamine-induced neurodegeneration in 

mice.  

 

Evodia lepta extract inhibits oxidative stress in 

scopolamine-treated mice 

 

We also evaluated the effect of Evodia lepta extract  

on oxidative stress. Evodia lepta and donepezil 

decreased the level of MDA and increased the activity 

of SOD, compared to the scopolamine group (Figure 

6A, 6B). These results indicated that Evodia lepta 

extract significantly improved oxidative stress. 

 

 

 
Figure 5. Evodia lepta extract protects the synaptic and neurotrophic factors in scopolamine-treated mice. (A) Western blot 

of PSD95 and BDNF. (B, C) The expressions of PSD95 and BDNF. Evodia lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent 
mean ± SD (n = 3 per group). #P < 0.05, ##P < 0.01, vs. Control; *P < 0.05, vs. SCOP. 
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Evodia lepta extract ameliorates apoptosis in 

scopolamine-induced mice 

 

We elucidated the effect of Evodia lepta extract on 

neuronal apoptosis by detecting the expressions of 

apoptotic proteins. The level of BAX and Cleaved 

Caspase-3 were increased and Bcl-2 was decreased in  

the scopolamine-induced mice, Evodia lepta extract and 

donepezil significantly improved the situation (Figure 

7A–7D). These results indicated that Evodia lepta extract 

ameliorated apoptosis in scopolamine-induced mice. 

 

Evodia lepta extract inhibits NLRP3 inflammasome 

in scopolamine-treated mice 

 

To investigate the effect of Evodia lepta extract on 

NLRP3 inflammasome, we measured it with immuno-

fluorescence and Western blot. As shown in Figure 8, 

Western blot result demonstrated that the expressions  

of NLRP3 and Cleaved Caspase-1 were significantly 

increased in scopolamine-treated mice. Evodia lepta 

extract and donepezil significantly decreased the 

expressions of NLRP3 and Cleaved Caspase-1 (Figure 

8A–8C). Consistently, the immunofluorescence result 

showed the similar trends (Figure 8D). These results 

indicated that Evodia lepta extract could inhibit NLRP3 

inflammasome in scopolamine-induced mice. 

 

DISCUSSION 
 

Previous reports have shown that abnormal central 

cholinergic system is closely related to the pathogenesis 

of dementia, and Evodia lepta acts on the cholinergic 

system by inhibiting AChE activity [18]. Previously,  

we also found the coumarin compounds from the root  

of Evodia lepta had the neuroprotective effects by 

inhibiting AChE activity in scopolamine-treated SH-

SY5Y cells [14]. Based on the above studies, we 

studied the mechanism of Evodia lepta in dementia.  

In this study, a cognitive impairment model caused  

by scopolamine was established, which exhibited 

cholinergic neuronal dysfunction and memory damage 

[19]. In addition, anxiety is a common symptom  

of dementia [20, 21]. Anxiety is a major mental 

disorder in later life of adults living with dementia [22, 

23]. Since many dementia patients show anxiety-like 

behavior at the early stage of the disease, we also 

conducted Morris Water Maze test, novel recognition 

test and open field test. These results confirmed that 

the EtOH extract of Evodia lepta could protect the 

learning and memory impairment and anxiety behavior 

induced by scopolamine in mice. 

 
The cholinergic neuron theory is considered to be one 

of the core of the pathogenesis of dementia [24]. Ach is 

released by presynaptic neurons and widely exists in  

the brain. Its main function is to maintain postsynaptic 

membrane excitability and neural signal transmission, 

which plays an important role in learning and memory. 

AChE and ChAT are the key enzymes in biological 

nerve conduction. ChAT is involved in the production 

of Ach, and AChE is involved in the hydrolysis  

and cleavage of Ach, which consumed the levels of  

Ach [5, 25]. It was found that the local concentration of

 

 
 

Figure 6. Evodia lepta extract inhibits oxidative stress in scopolamine-treated mice. (A, B) The level of MDA and SOD. Evodia 

lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent mean ± SD (n = 6 per group). ###P < 0.001, vs. Control; *P < 0.05,  
**P < 0.01, ***P < 0.001, vs. SCOP. 
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AChE around the amyloid deposition area and tangles 

increase the lesions development, which also promote 

the production and accumulation of Aβ [26]. Hence,  

in this study, in order to clarify the effect of Evodia 

lepta extract on cholinergic system, AChE activity, 

ChAT activity and Ach level in the hippocampus of 

scopolamine-induced mice were examined. The results 

confirmed that Evodia lepta extract could regulate AChE 

activity, ChAT activity and Ach level in scopolamine-

treated mice.  

 

The cholinergic nervous system can influence  

synaptic transmission and synaptic plasticity [27]. 

Synaptic plasticity is important for brain learning  

and memory. Some evidences suggested that synaptic 

plasticity damages were increased in dementia [28]. 

BDNF, an important neurotrophic factor in neurons and 

glial cells, can regulate synaptic genesis and synaptic 

plasticity [29]. It is associated with several signaling 

pathways in synapse formation, including upregulating 

PSD-95, an important scaffolding protein in excitatory 

synapses [30, 31]. Therefore, BDNF and PSD-95 can 

affect memory function by promoting neuronal survival 

and differentiation. In this study, we found that Evodia 

lepta extract increased the levels of BDNF and PSD95 

in scopolamine-induced mice. 

 

Memory deficits induced by the cholinergic nervous 

system are often accompanied by oxidative stress 

[32, 33], which induces ROS, and leads to neuronal 

apoptosis in neurodegenerative diseases. SOD provides 

a major defense against oxidative stress by scavenging 

 

 

 
Figure 7. Evodia lepta extract ameliorates apoptosis in scopolamine-induced mice. (A) Western blot of BCL-2, Bax and Cleaved 
Caspase-3. (B–D) The expressions of BCL-2, Bax and Cleaved Caspase-3. Evodia lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data 
represent mean ± SD (n = 3 per group). #P < 0.05, vs. Control; *P < 0.05, **P < 0.01, vs. SCOP. 
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free radicals. MDA is a lipid index of each oxidation, 

indicating the overproduction of reactive oxygen 

species [34, 35]. In our study, Evodia lepta extract 

decreased the level of MDA and increased the activity 

of SOD in scopolamine-treated mice. 

NLRP3, an inflammasome receptor, generates a 

chronic inflammatory environment and regulate  

the maturation of its downstream target Caspase-1, 

followed by apoptosis and cytokine release, leading to 

the development and progression of dementia [36, 37].

 

 
 

Figure 8. Evodia lepta extract inhibits NLRP3 inflammasome in scopolamine-treated mice. (A) Western blot of NLRP3 and 

Cleaved Caspase-1. (B, C) The expressions of NLRP3 and Cleaved Caspase-1. (D) Subcellular localization of NLRP3 was observed by 
immunofluorescence. Evodia lepta 10 (10 mg/kg/d); Evodia lepta 20 (20 mg/kg/d). Data represent mean ± SD (n = 3 per group). #P < 0.01, 
##P < 0.001, vs. Control; *P < 0.01, **P < 0.001, vs. SCOP. 
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NLRP3 inflammasome is a trigger for the pathogenesis 

of AD. NLRP3 activation produces IL-1β, IL-18  

and other cytokines, and then promotes Aβ-plaque 

formation, resulting in cognitive dysfunction. Apoptosis 

plays an important role in dementia neuron loss,  

and Caspases and Bcl-2 protein families are central 

components of apoptotic. In our study, Evodia lepta 

extract inhibited NLRP3 inflammasome (decreased the 

level of NLRP3 and Cleaved caspase-1) and pro-

apoptosis protein (BAX and caspase-3), and increased 

anti-apoptosis protein (Bcl-2) in scopolamine-induced 

mice. 

 

CONCLUSIONS 
 

These results suggested that Evodia lepta extract might 

prevent against memory loss by inhibiting NLRP3 

inflammasome. NLRP3 inflammasome may be an ideal 

target for preventing against cognitive decline and 

neurodegeneration. Further studies are still needed to 

identify the active compound in Evodia lepta extract 

which targeting NLRP3 inflammasome. 
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