
www.aging-us.com 2494 AGING 

INTRODUCTION 
 

Esophageal cancer, a type of malignant gastrointestinal 

cancer, ranked seventh in incidence and sixth in mortality 

in 2020 worldwide [1]. Esophageal squamous cell 

carcinoma (ESCC) and esophageal adenocarcinoma are 

the two main histopathological subtypes [2]. ESCC 

accounts for approximately 90% of esophageal cancers, 
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ABSTRACT 
 

Immune checkpoint inhibitors (ICIs) represent a promising therapeutic approach for esophageal squamous cell 
carcinoma (ESCC). However, the subpopulations of ESCC patients expected to benefit from ICIs have not been 
clearly defined. The anti-tumor cytotoxic activity of T cells is an important pharmacological mechanism of ICIs. 
In this study, the prognostic value of the genes regulating tumor cells to T cell-mediated killing (referred to as 
GRTTKs) in ESCC was explored by using a comprehensive bioinformatics approach. Training and validation 
datasets were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), 
respectively. A prognostic risk scoring model was developed by integrating prognostic GRTTKs from TCGA and 
GEO datasets using a ridge regression algorithm. Patients with ESCC were divided into high- and low-risk groups 
based on eight GRTTKs (EIF4H, CDK2, TCEA1, SPTLC2, TMEM209, RGP1, EIF3D, and CAPZA3) to predict overall 
survival in the TCGA cohort. Using Kaplan-Meier curves, receiver operating characteristic curves, and C-index 
analysis, the high reliability of the prognostic risk-scoring model was certified. The model scores served as 
independent prognostic factors, and combining clinical staging with risk scoring improved the predictive value. 
Patients in the high-risk group exhibited abundant immune cell infiltration, including immune checkpoint 
expression, antigen presentation capability, immune cycle gene expression, and high tumor inflammation 
signature scores. The high-risk group exhibited a greater response to immunotherapy and neoadjuvant 
chemotherapy than the low-risk group. Drug sensitivity analysis demonstrated lower IC50 for AZD6244 and 
PD.0332991 in high-risk groups and lower IC50 for cisplatin, ATRA, QS11, and vinorelbine in the low-risk group. 
Furthermore, the differential expression of GRTTK-related signatures including CDK2, TCEA1, and TMEM209 
were verified in ESCC tissues and paracancerous tissues. Overall, the novel GRTTK-based prognostic model can 
serve as indicators to predict the survival status and immunotherapy response of patients with ESCC, thereby 
providing guidance for the development of personalized treatment strategies. 
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with the highest incidence rates in Eastern Asia and 

Eastern Africa [3]. Owing to the lack of obvious 

symptoms and specific diagnostic biomarkers in the early 

stages of ESCC, patients are often diagnosed in the late 

stages [4], and the 5-year overall survival rate of ESCC  

is still less than 30% [5]. For clinical management,  

a comprehensive, multidisciplinary treatment model 

involving surgery, radiotherapy, chemotherapy, targeted 

therapy, and immunotherapy is a promising approach to 

ESCC [6]. Recent developments in immunotherapy that 

harness the patient’s immune system, have shown 

encouraging therapeutic effects in various types of 

tumors [7–9]. For example, the protein PD-1, which 

negatively regulates T lymphocytes, binds to its ligands 

PD-L1 and PD-L2, resulting in the suppression of 

lymphocyte activation and inhibiting the immune 

response. Anti-PD1 and anti-PD-L1 antibodies disrupt 

the interaction of PD1 with PD-L1/PD-L2, thereby 

reactivating T lymphocyte immune function and exerting 

antitumor effects [10]. As PD-L1 expression is enriched 

on the surface of tumor cells in patients with ESCC [11], 

Immune checkpoint inhibitors (ICIs) directed at PD-1 

and its counterpart PD-L1 have displayed encouraging 

outcomes in the management of advanced ESCC. For 

instance, pembrolizumab resulted in longer overall 

survival (OS) than chemotherapy alone, leading to its 

approval as a second-line treatment for advanced ESCC 

[12]. Other checkpoint inhibitors, such as nivolumab and 

camrelizumab, have also shown efficacy [13, 14]. 

Despite recent advances in immunotherapy for ESCC, 

such as immune checkpoint inhibitors (ICIs) targeting the 

PD-1/PD-L1 axis, identifying patients who may benefit 

remains a challenge [15, 16]. With advances in high-

throughput sequencing technology and bioinformatic 

methods, numerous studies have explored biomarkers to 

predict the immune status and prognosis of patients with 

ESCC. For example, Guo et al. developed a six-gene 

prognostic signature correlated with m6A RNA 

methylation regulators to predict PD-L1 expression and 

immune cell infiltration in ESCC [17]. Angiogenesis 

gene panels have also been used to predict ESCC 

prognosis and immunotherapy [18]. However, these 

prognostic models lack effectiveness in clinical 

applications, and more practical prognostic indicators are 

required to guide precise immunotherapy for ESCC. 

 

T lymphocytes have antigen-specific cytotoxic 

capabilities and are central to the activation of the 

immune system against cancer [19]. Dysfunctions in T-

cell function limit the efficacy of tumor immunotherapy 

[20]. T-cell-mediated tumor killing (TTK) is a major 

principle of ICI therapy. Pan et al. utilized a genome-

scale screen to identify genes associated with resistance 
to T-cell-mediated killing, including Pbrm1, Arid2, and 

Brd7 in a chromatin remodeling complex in melanoma 

cells. Inactivation of Pbrm1 increased the sensitivity of 

tumor cells to interferon-γ and made tumor cells more 

susceptible to T-cell-mediated killing [21]. Kishton et 

al. applied multi-omics approaches to identify several 

genes, such as RAF2, BIRC2, and ALG11, capable of 

limiting T-cell killing activity, and demonstrated that 

knocking down BIRC2 using CRISPR Cas9 technology 

can effectively enhance the efficacy of immunotherapy 

[22]. Prognostic models of T-cell-mediated killing-

related genes in hepatocellular carcinoma and lung 

adenocarcinoma have been explored [23, 24]. However, 

to the best of our knowledge, studies on genes that 

regulate the response of tumor cells to T-cell-mediated 

tumor killing (termed GRTTKs) in ESCC are lacking. 

 

In the present research, we explored the prognostic 

relevance and immunological significance of GRTTKs 

in patients with ESCC. A prognostic model based on 

GRTTKs was established using data from The Cancer 

Genome Atlas (TCGA) for risk stratification and 

prognostic prediction. Moreover, we conducted an 

analysis of prognosis and the tumor immune micro-

environment disparities between the high-risk and low-

risk groups. Clinical treatment and sensitivity to 

different chemotherapy and immunotherapy drugs were 

also evaluated. The findings of this study indicate a 

significant correlation between T-cell-mediated tumor 

cell killing and the tumor microenvironment in ESCC, 

providing a basis for clinical decision-making in 

patients with ESCC. 

 

RESULTS 
 

Characteristics of GRTTKs in ESCC 

 

The study’s workflow is illustrated in Figure 1. 

Transcriptome expression profiles for ESCC tissues and 

normal esophageal samples were obtained from TCGA 

and GSE53622 cohorts. Subsequently, comprehensive 

bioinformatic analysis was conducted on the collected 

data. The multidimensional omics data of GRTTKs were 

analyzed using the TCGA-ESCC cohort. Comparing 

tumor samples with normal samples in the TCGA-ESCC 

cohort revealed 250 up-regulated and 20 down-regulated 

GRTTKs, as shown in the volcano plot in Figure 2A. 

Univariate Cox regression analyses indicated that 35 of 

the 270 GRTTKs were associated with ESCC prognosis. 

Six were identified as risk factors (HR > 1) and twenty-

nine as protective factors (HR < 1) for ESCC prognosis 

(Figure 2B). Comparisons of the expression levels of the 

35 GSTTKs between tumor and normal samples are 

shown in heatmaps and box plots in Figure 2C, 2D. 

Additionally, we investigated the copy number variation 

(CNV) within these 35 GRTTKs. A significant increase 

in copy number was observed for RAD21, DSCC1, and 

RECQL4, whereas notable losses were detected for 

DNTTIP2, SKA3, XRCC2, and MCM10 in ESCC tissues 
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compared with those of the healthy controls (Figure 2E). 

We further analyzed the mutation landscape of the 35 

GSTTKs using a waterfall plot. In the TCGA-ESCC 

cohort, we observed a predominance of missense 

mutations and a high frequency of single nucleotide 

polymorphisms (SNPs), with TP53 exhibiting the most 

significant somatic mutations (Supplementary Figure 

1A). Four GRTTKs, including SMARCA4, NLRC5, 

ICE1, and USP31 exhibited mutations with frequencies 

exceeding 1% (Supplementary Figure 1B). 

 

To screen for genes with consistent prognostic 

significance in the heterogeneous cohort, we applied 

the criteria of P < 0.1 and HR > 1 or P < 0.1 and HR < 

1 in both TCGA-ESCC and GSE53622 datasets. Eight 

GRTTKs with prognostic significance (CAPZA3, 

CDK2, EIF3D, EIF4H, RGP1, SPTLC2, TCEA1,  

and TMEM209) in both cohorts were identified 

(Supplementary Table 1). PCA revealed the capacity of 

the eight prognostic GRTTKs to differentiate between 

tumor and normal groups within the TCGA-ESCC 

cohort (Figure 3A). Interactions among the eight 

GRTTKs were explored using clinical information and 

transcriptomic features from the TCGA-ESCC cohort, 

revealing four distinct patterns (Figure 3B). The 

expression differences for these eight genes between 

tumor and normal samples in both TCGA-ESCC and 

GSE53622 cohorts are displayed using boxplots in 

Figures 3C, 3D. Subsequently, the associations between 

TIICs and the prognostic GRTTKs were evaluated. 

CDK2, EIF3D, EIF4H, TCEA1, and TMEM209 

demonstrated substantial positive correlations with Th1 

and Th2 cells in the TCGA-ESCC cohort (Figure 3E). 

In the GSE53622 cohort, the expression levels of 

CDK2, TCEA1, and TMEM209 were significantly 

negatively correlated with CD4+ Tcm, neutrophils, 

dendritic cells, and mast cells (Figure 3F). These 

findings indicate that GRTTK expression not only 

differs between tumors and normal samples but also has 

a robust prognostic value, demonstrating a strong 

association with the tumor microenvironment. 

 

Construction of a risk model based on prognostic 

GRTTKs 

 

A risk model was established with prognostic GRTTKs 

using ridge regression based on optimal lambda  

(λ = 0.0407) and matching coefficient values. The risk 

 

 
 

Figure 1. Flow chat of this study. 
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Figure 2. (A) Volcano plot of the differential expression of 270 GRTTKs between tumor and normal samples in the TCGA-ESCC cohort.  

(B) Univariate Cox regression analysis of 35 GRTTKs and prognosis in ESCC. (C) Heatmap displayed displaying the differential expression of 35 
GRTTKs between tumor and normal samples. (D) Boxplots of the differential expression of 35 GRTTKs between tumor and normal samples. 
(E) Copy number variation (CNV) of 35 GRTTKs in ESCC. 



www.aging-us.com 2498 AGING 

score was determined as follows: (EIF4H*0.4472) + 

(CDK2*0.0463) - (TCEA1*0.0262) -(SPTLC2*0.1268) - 

(TMEM209*0.2362) - (RGP1*1.0850) - (EIF3D*1.5052) 

- (CAPZA3*3.4184) (Figure 4A–4C). According to the 

prognostic model, we calculated the scores for each 

patient in the TCGA-ESCC dataset; patients in the low-

risk group had significantly longer survival times than 

those in the high-risk group (P < 0.0001) (Figure 4D). 

UMAP revealed the distribution of samples belonging to 

high- and low-risk groups in TCGA-ESCC. 

(Supplementary Figure 2A). The risk-scoring system 

exhibited favorable predictive capability, with 

corresponding AUC of 0.773, 0.929, and 0.915 for 1-

year, 2-year, and 3-year survival, respectively (Figure 

4E). We further incorporated age, clinical stage, 

pathological grade, and other variables into a multivariate 

Cox regression analysis, demonstrating that risk score 

was an independent prognostic factor for OS (Figure 4F). 

 

 
 

Figure 3. Characteristics of prognostic GRTTK in TCGA-ESCC and GSE53622. (A) PCA separated tumor samples from normal samples 

based on GRTTK. (B) The correlation network revealed internal connections among the eight prognostic GRTTKs. (C, D) Box plots depicting the 
differential expression between tumor and normal samples among the eight genes in TCGA-ESCC and GSE53622. (E, F) Pearson’s correlation 
coefficients between the expression of the eight genes and various immune cells in TCGA-ESCC and GSE53622. 
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GSE53622 was used as an external dataset for further 

validation. Kaplan-Meier survival analysis yielded 

similar results in the GSE53622 validation cohort  

(P = 0.0010) (Figure 4G). The sample distributions of 

different groups were differentiated by the UMAP 

algorithm in the GSE53622 dataset (Supplementary 

Figure 2B). The AUC values for the GSE53622 cohort 

at 1, 2, and 3-years were 0.681, 0.711, and 0.773, 

respectively (Figure 4H). Multivariate Cox regression 

analysis of the GSE53622 validation set identified the 

prognostic model score as an independent prognostic 

factor (Figure 4I). Moreover, the C index of the model 

for the TCGA-ESCC and GSE53622 cohorts were 0.783 

and 0.670, respectively, demonstrating the stability of 

the model. (Supplementary Figure 2C). In summary, our 

risk model exhibited high predictive accuracy. 

 

 
 

Figure 4. Construction and validation of the GRTTK based risk model. (A) Optimal regularization parameter (λ) selection (λ = 0.0407) 

using minimum partial likelihood deviance for TCGA cohort. (B) Coefficients of the risk model corresponding to the optimal λ.  
(C) Coefficient values for the eight genes in the risk model. (D) Kaplan-Meier analysis of overall survival (OS) based on risk groups in TCGA 
cohort. (E) ROC curves evaluating risk model performance in TCGA cohort. (F) Multivariable Cox analysis of the TCGA-ESCC cohort. (G) OS in 
the high-risk and low-risk groups in the GEO cohort (P = 0.0010). (H) ROC curves for the risk model for the GSE53622 cohort. (I) Multivariate 
Cox analysis of the GSE53622 cohort. (J) A nomogram displaying the predictive value of clinical stage and risk models. (K) AUC for the 
combined evaluation of patient prognosis using clinical stage and risk scores. 
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To further explore the association between the model 

and clinical stage, we analyzed the correlation between 

the risk model and clinical stage. A nomogram was 

plotted to visualize the predictive value of incorporating 

both clinical stage and risk scores. (Figure 4J). The 

AUC of combining clinical stage and risk score was 

calculated by time-ROC analysis in TCGA-ESCC 

cohort. The resulting AUC values for 1-, 2-, and 3-year 

overall survival were 0.848, 0.958, and 0.950, 

respectively (Figure 4K). 

 

Functions and somatic mutations associated with 

GRTTKs patterns 

 

Functional enrichment analysis was constructed to 

characterize the genes in the risk model. GO analysis 

suggested that GSTTKs were enriched in functions 

related to immune-related responses, such as the 

antibacterial humoral response and antimicrobial 

humoral immune response mediated by antimicrobial 

peptides (Figure 5A). KEGG enrichment analysis 

showed that these genes were mainly involved in 

allograft-rejection, the MAPK -signaling pathway, and 

the cell cycle (Figure 5B). In the GRTTK model, TP53 

demonstrated the highest discrepancy in mutation 

frequency between the groups (Figure 5C, 5D). 

 

Tumor immune microenvironment and status in 

different GRTTK Groups 

 

We further examined the association between immuno-

therapy and immune characteristics. Heatmap analysis 

 

 
 

Figure 5. Functional enrichment and somatic mutations related to GRTTK patterns. (A, B) GO and KEGG enrichment analysis of 

differentially expressed genes between high and low risk group. (C) Waterfall plot illustrating the overall mutation landscape in ESCC.  
(D) Graphical representation contrasting somatic mutation frequencies between high and low risk groups. 
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revealed higher immune cell infiltration in the high-risk 

versus low-risk group (Figure 6A). Significantly more 

activated B cells, dendritic cells, natural killer cells, 

effector T cells, immature B/dendritic cells, macro-

phages, monocytes and neutrophils were observed in the 

high-risk group (Figure 6B). The high-risk group also 

exhibited higher antigen presentation score (Figure 6C) 

and tumor inflammation signature score (Figure 6D), 

indicating greater responsiveness to ICIs. We also 

investigated the features of the immune cycle within the 

tumor microenvironment [25, 26]. The immunocycle 

gene set was evaluated. As illustrated using a radar plot, 

the high-risk group showed significantly enhanced 

immune reserves, whereas the low-risk group displayed 

more pronounced tumor phenotypes (Figure 6E, 6F). 

Moreover, in an analysis of expression differences  

of various immune checkpoint molecules including  

27 co-stimulatory factors, 15 co-inhibitory factors, and 

9 antigen-presenting factors, the high-risk group 

showed higher expression of immune checkpoint 

molecules CD48 and HLA-DPB1. (Supplementary 

Figure 3A–3C). 

 

Relationship between drug sensitivity and the 

GSTTK risk model 

 

To further explore the clinical utility of the newly 

developed signature, we compared immunotherapy and 

 

 
 

Figure 6. Tumor immune microenvironment and status in different GRTTK groups. (A) A heatmap exhibiting ssGSEA enrichment 

scores for 28 immunogenic cell type markers, stratified by high- and low-risk groups as per the GRTTK prognostic model. (B) Relative 
abundance of infiltrating cell types differed across different risk groups based on GRTTKs. (C) Assessment and contrast of antigen 
presentation potential between high- and low-risk groups, stratified using the GRTTK prognostic signatures. (D) Contrast of TIS scores 
between high-risk and low-risk patient groups. (E, F) Radar chart depicting divergence in immune cycle gene set enrichment between risk 
groups based on the GRTTK model. 
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chemotherapy responses and drug sensitivity between 

the risk groups. Therapeutic response to ICIs was 

evaluated and predicted using the TIDE website. The 

high-risk group showed a 44% immunotherapy response 

rate versus 28% for the low-risk group using the TIDE 

prediction (Figure 7A). Similarly, SubMap analysis 

revealed a consistent trend in the response to 

immunotherapy among patients with ESCC, consistent 

with the results of the TIDE database analysis  

(Figure 7B). The high-risk group showed a significantly 

higher response rate (30% vs. 19%) than the low-risk 

group, as evidenced by analyzing of the GSE104958 

neoadjuvant chemotherapy cohort (Figure 7C). The 

high-risk group showed sensitivity to AZD6244 and 

PD.0332991 (Figure 7D, 7E), whereas the low-risk 

group demonstrated potential sensitivity to cisplatin, 

ATRA, QS11, and vinorelbine (Figure 7F–7I). 

 

Verification of differential GRTTK expression in 

ESCC tissue samples 

 

We used GEPIA database to analyze the expression of 

eight GRTTKs in TCGA-ESCA cohort (Figure 8A–8H). 

The expression levels of CDK2, TCEA1 and TMEM209 

in the TCGA-ESCA cohort were upregulated in ESCC 

tissues compared with those in normal tissues. 

Consequently, the mRNA expression analysis was 

conducted in patients with ESCC and adjacent normal 

tissue samples using qRT-PCR to elevate the levels of 

CDK2, TCEA1, and TMEM209 genes. The results 

revealed an upregulation in the expression of CDK2, 

TCEA1, and TMEM209 within the primary tumorous 

tissues of ESCC patients in comparison to the adjacent 

non-cancerous tissues (Figure 9A–9C). These results are 

consistent with the outcomes of the bioinformatic 

analysis, reinforcing the validity of the experimental 

results. 

 

DISCUSSION 
 

Surgery combined with radiotherapy and chemotherapy 

is one of the primary treatment approaches for advanced 

ESCC [27]. In recent years, ICIs have significantly 

changed the treatment landscape and demonstrated 

clinical efficacy in advanced esophageal cancer, 

including ESCC [13, 28]. However, owing to tumor 

heterogeneity and the complexity of carcinogenic 

mechanisms, immunotherapy benefits only a subset of 

patients with ESCC [29], which poses a challenge in the 

application of this approach. An expanding number of 

researches show that the immune response within the 

tumor microenvironment affects tumor development, 

prognosis, and anti-tumor immunity [30]. A crucial  

role for cancer immunotherapy is T-cell-mediated 

immunotoxicity. Enhancing the sensitivity of cancer 

cells to T-cell-mediated killing is a key strategy for 

alleviating immune resistance. Hence, prognostic 

evaluations based on GRTTK patterns are crucial to 

facilitate precision-oriented clinical treatment. 

 

In this study, we identified eight GRTTKs associated 

with the development and prognosis of ESCC including 

EIF4H, CDK2, TCEA1, SPTLC2, TMEM209, RGP1, 

CAPZA3 and EIF3D based on the transcriptional matrix 

profiling analysis of TCGA and GEO cohorts. 

Eukaryotic Translation Initiation Factor 4H(EIF4H) is a 

pivotal gene involved in the initiation of protein 

synthesis in eukaryotic organisms [31]. It generates two 

distinct isoforms through alternative splicing processes 

and is implicated in the progression of lung 

adenocarcinoma [32]. CDK2 in tumors plays a pivotal 

role in cell cycle regulation and proliferation control, 

potentially serving as a promising therapeutic target for 

cancer treatment. Zhou et al. reported the overexpression 

of CDK2 gene in ESCC, which is consistent with our 

analytical findings, implicating its involvement in tumor 

proliferation [33]. TCEA1, a regulator of gene 

transcription, has been shown to influence myeloid cell 

proliferation and differentiation [34]. SPTLC2 encodes 

serine palmitoyltransferase long chain base subunit 2, 

which is involved in the synthesis of neuronal 

sphingolipids. Mutations in this gene have been shown 

to inhibit the response of human T cells [35]. TMEM209, 

which encodes a nuclear envelope protein, has been 

reported to be associated with lung cancer [36]. GRP1, 

also referred to as TIF32, constitutes a component of the 

eukaryotic translation initiation factor 3 (eIF3) complex; 

it is localized within the cytoplasm and actively 

participates in the activity of translation initiation factors 

[37]. EIF3D is a subfamily member of the eukaryotic 

translation initiation factor 3 (eIF3), has been observed 

in various human cancers, implicating its involvement in 

tumorigenesis [38]. The CAPZA3 gene encodes a protein 

associated with cellular cytoskeletal reorganization [39]. 

Although further research is needed to fully understand 

these prognostic genes in ESCC, our analysis 

underscores their significance as crucial prognostic 

factors. Moreover, these genes may serve as viable 

targets for treatment strategies. A significant difference 

in prognosis between risk groups is a prerequisite for 

group stratification [40]. A higher risk group had a 

worse prognosis compared to a low-risk group in this 

study. Prognostic risk models for different subgroups 

provide a basis for clinical translation [41]. Regarding 

the correlation between the risk model and clinical stage, 

a nomogram revealed that the combined utilization of 

both indicators resulted in a higher predictive 

performance (as determined by the ROC curve) than that 

of either parameter alone. This suggests that the 
prognostic model developed in this study can serve as a 

complementary tool for clinicopathological staging and 

improve prognostic prediction in clinical settings. 
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Figure 7. Evaluation of clinical immunotherapy responses and drug sensitivity (A) TIDE analysis forecasts the proportion of responsive 
patients to immunotherapy in the high- and low-risk groups stratified by the prognostic model. (B) SubMap analysis unveiled significant 
divergence in anti-PD-1 immunotherapy response between the high-risk and low-risk groups. (C) Proportions of neoadjuvant chemotherapy 
response between high-risk and low-risk patient groups in the GSE104958 data set. (D–I) Treatment response rates to six chemotherapy 
agents based on drug sensitivity scores. 
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We developed a scoring system and constructed a 

prognostic model to evaluate the tumor immune 

microenvironment in high- and low-risk groups (such as 

tumor-infiltrating cell abundance, immune cell molecular 

markers, and immune regulatory gene expression) and 

explored the clinical and predictive significance of the 

immunotherapy response. Moreover, we assessed genetic 

variations, including somatic mutations, mutation 

 

 
 

Figure 8. Expression Level of GRTTKs in GEPIA database. (A–H) The GEPIA database was utilized to contrast mRNA expression levels of 

pivotal genes between ESCC and normal tissues. 

 

 

 
 

Figure 9. Validation the differential expression of GRTTK in ESCC tissues. (A–C) Differential expression levels of CDK2, TCEA1 and 
TMEM209 in ESCC and normal tissues. 
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features, and relevant signaling pathways, to investigate 

the etiological factors that drive GRTTK patterns. 

 

Tumor microenvironments contain both cellular and non-

cellular components, including immune cells, fibroblasts, 

endothelial cells, and extracellular matrix components, 

which contribute to the occurrence and development of 

tumors [42]. These components interact with tumor cells 

and, regulate the immune responses in the tumor 

microenvironment [43]. We performed ssGSEA, immune 

checkpoint molecule expression, and antigen presentation 

scoring to further investigate the differences in immune 

function between the high- and low-risk groups. The 

high- and low-risk groups demonstrated differences in 

monocytes, CD8+ T cells, macrophages, and neutrophils. 

The difference in monocyte immune cells was the most 

significant. Monocytes exert a profound effect on the 

tumor microenvironment via multiple mechanisms, 

leading to antitumor effects and activation of antigen-

presenting cells [44]. Accurate prediction of antigen 

presentation represents a critical step in determining the 

ability of new antigens to activate antigen-specific T cells 

and effectively eliminate tumor cells [45]. Potentially, 

checkpoint inhibitors targeting PD-1, PD-L1 and CTLA-

4 could counteract immunosuppressive cells populations 

that dominate the tumor microenvironment in esophageal 

squamous cell carcinoma. By blocking these inhibitory 

receptors on T cells, these agents may enhance the 

activation, proliferation and cytotoxic functions of tumor-

reactive CD8+ T cells. Likewise, certain checkpoint 

inhibitors could stimulate immunogenic cell death, 

thereby increasing antigen presentation and tumor-

specific T cell recognition. Additionally, the T -cell 

inflamed gene-expression profile serves as a potential 

indicator of the response and clinical efficacy of ICI 

therapy in cancer [46]. In this study, the high-risk groups 

demonstrated elevated APS and TIS scores. By 

integrating the evaluations of these immunological 

scoring-related indicators, we determined that patients in 

the high-risk group had a higher level of immune 

reserves, which may indicate a higher potential for 

response to immunotherapy. There is evidence that 

regulatory T cells (Tregs), tolerogenic dendritic cells, 

alternatively activated macrophages dominate the 

immune microenvironment of ESCC, resulting in 

immunosuppression. Targeting these cells to reactivate 

the anti-tumor immune response in ESCC may partly 

explain why the high-risk groups may respond better to 

immunotherapy [47]. 

 

Furthermore, we used the TIDE database to forecast the 

proportion of immunotherapy-responsive patients. The 

high-risk group exhibited significantly higher response 
rates, which was further supported by a SubMap 

analysis, suggesting that patients in the high-risk group 

may benefit more from immunotherapy. Accordingly, 

the integration of immunotherapy into the treatment 

regimen is recommended. Recently, a novel neoadjuvant 

chemotherapy regimen consisting of docetaxel, cisplatin, 

and 5-fluorouracil was investigated, demonstrating a 

high response rate for the treatment of advanced ESCC 

[48]. Based on our analysis, high-risk groups responded 

better to neoadjuvant chemotherapy than low-risk 

groups. The high-risk group showed sensitivity to 

AZD6244, also known as selumetinib, a MEK inhibitor 

[49], and PD.0332991, a highly specific, small- 

molecule inhibitor of CDK4 and 6 [50], providing a 

basis for the development of novel therapeutic strategies. 

 

Although our study provides valuable insights, it has 

certain limitations, and a larger cohort of clinical 

samples is needed for validation. The GRTTK model 

and risk scores were derived using a comprehensive 

bioinformatics analysis. Accordingly, key GRTTKs 

must be validated and further evaluated by functional 

assays. Future studies should consider alternative 

bioinformatics methods or emerging technologies, such 

as machine learning or artificial intelligence, to improve 

the accuracy and robustness of the model. 

 

In conclusion, we developed a prognostic model based 

on GRTTKs and performed risk stratification, providing 

insights into the role of T- cell activity in ESCC. 

Furthermore, we investigated biological functions, 

immune infiltration, immune status, and therapeutic 

efficacy associated with GRTTK risk stratification. 

These findings are valuable for guiding treatment 

strategies, such as the selection of immunotherapy or 

combined approaches. Ultimately, the results of this 

study enhance our understanding of the genomic 

characteristics of T-cell-related genes in ESCC. 

 

MATERIALS AND METHODS 
 

Publicly available data collection and processing 

 

We obtained gene expression profiles along with 

associated clinical data including 80 tumor samples 

and 11 normal samples from the UCSC-Xena database 

(https://xenabrowser.net/datapages/) [51] and used as 

the training dataset. The GSE53622 cohort comprising 

60 tumor samples and 60 normal samples was 

downloaded from The Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and 

utilized as the validation set. Mutation data for 80 

ESCC tumor samples were obtained from the TCGA 

(https://portal.gdc.cancer.gov/), and the overall 

mutation landscape was evaluated using the plotmaf 

Summary function in the maftools R package. The 
Copy number variation data for TCGA-ESCC samples 

were retrieved from the UCSC-Xena database. The 

GSE104958 cohort consisted of ESCC samples and 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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five normal samples from patients who received 

neoadjuvant treatment with docetaxel, cisplatin, and 5-

fluorouracil, including gene expression profiles and 

corresponding treatment information. Raw data were 

normalized and transformed into log2(TPM + 1) 

format. A total of 1310 genes regulating tumor cell 

response to T cell-mediated killing, serving as GRTTKs, 

were retrieved from the TISIDB database [52] 

(http://cis.hku.hk/TISIDB/) (Supplementary Table 2). 

The expression levels of GRTTKs were examined 

between cancerous and adjacent normal tissues  

using GEPIA (Gene Expression Profiling Interactive 

Analysis, http://gepia2.cancer-pku.cn/#index), a web 

tool for differential gene expression analysis in  

cancer. 

 

Multi-omics analysis of GRTTKs in ESCC 

 

The limma package was employed to identify 

differentially expressed GRTTKs within the TCGA-

ESCC cohort, utilizing the following selection criteria: 

|log Fold Change (FC)| > 1 and False Discovery Rate 

(FDR) less than 0.05 [53]. The association of GRTTK 

with prognosis in ESCC was evaluated using univariate 

Cox regression analysis implemented in the Survival in 

package in R package. Principal Component Analysis 

(PCA) were utilized to assess the distribution of tumor 

and normal samples. Single-Sample Gene Set 

Enrichment Analysis (ssGSEA) were used to quantify 

GRTTK scores within the TCGA-ESCC samples. The 

infiltration scores for the TCGA-ESCC cohort were 

assessed using the ssGSEA algorithm in the GSVA R 

package based on specific immune cell markers [54]. 

The relationship between the immune, stromal, and 

ESTIMATE scores and GRTTK scores was determined 

based on Spearman correlation coefficients. The 

maftools package was employed for the characterization 

of somatic mutations within GRTTK-related genes in 

ESCC patients. 

 

Construction of a risk model related to GRTTK by 

ridge regression 

 

Ridge regression, a biased estimation method useful for 

the analysis of collinear data, was used to construct a 

prognostic model based on GSTTK [55, 56]. Owing to 

the small sample size of some cohorts, consensus 

prognostic genes were ultimately filtered by univariate 

Cox analysis with thresholds of P < 0.1 and all hazard 

ratios (HR) of >1 or <1 for the TCGA-ESCC and 

GSE53622 cohorts [57]. The lambda.min function was 

used for optimization, which automatically selects the 

lambda value that leads to the smallest error in cross-
validation. The prognostic score for each patient was 

calculated according to the gene expression level and 

the corresponding coefficient as follows: 

1

Prognostic Score

Expression (i) X Coefficient (i)

n

i=

=
 

 

n indicates the overall number of genes in the signature, 

Expression(i) is the expression level of the gene, and 

Coefficient(i) is the regression coefficient for that gene. 

Patients within the TCGA-ESCC cohort were 

categorized into high-risk and low-risk groups based on 

their prognostic scores, with the median risk score 

serving as the dividing threshold. An analysis of survival 

rates in high-risk and low-risk groups was conducted 

with the “survival” R package, which used Kaplan-

Meier survival curves to evaluate the differences 

between the groups. The predictive performance was 

evaluated using the concordance index (C-index) and 

receiver operating characteristic (ROC) -curve. The 

model was validated by using samples from the 

GSE53622 cohort. Patients in the GSE53622 cohort 

were scored using the same formula as the training 

cohort. 

 

Assessment of the efficacy and clinical value of the 

model 
 

The effectiveness of the model as a clinical stratification 

tool for distinguishing between patients was evaluated 

using the UMAP algorithm. The area under the ROC 

curve (AUC) was used to calculate the accuracy of  

the model’s prognostic prediction. An analysis of 

multivariate Cox regression including age, clinical 

stage, and pathological grade was conducted to identify 

candidate predictive factors associated with survival  

(P < 0.05). Clinical calibration plots were constructed 

using the root-mean-squarer R package. 

 

Gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analyses 
 

In order to determine the ranked order of differentially 

expressed genes between the high-risk group and the 

low-risk group, log2FoldChange (log2FC) values were 

calculated using the limma R package. Following that, 

the clusterProfiler R package was used to identify 

KEGG and GO pathways associated with the risk 

groups, and the enriched pathways were visualized 

using the normalized enrichment score (NES). An 

adjusted P-value of 0.05 was used to filter functional 

candidates. 

 

Evaluation of the tumor microenvironment and 

immune cell subpopulations 

 

An algorithm developed in the “estimate” package in R 

was used to calculate the stromal, immune, and 

http://cis.hku.hk/TISIDB/
http://gepia2.cancer-pku.cn/#index
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ESTIMATE scores. In high- and low-risk groups, 

Wilcoxon tests were used to compare tumor-infiltrating 

immune cells (TIICs) proportionally. Based on the 28 

characteristic marker genes of immune cells reported in 

a previous study [54], the ssGSEA algorithm in the 

GSVA R package [58] was used to obtain infiltration 

scores for immune cell subpopulations in different 

groups in the TCGA-ESCC cohort. Simultaneously, the 

expression levels of immune checkpoint molecules, 

including co-stimulatory [59], co-inhibitory [60] and 

antigen-presenting molecules [61], were quantified to 

assess the response to immune therapy in different risk 

groups. Tumor inflammation signature (TIS) analysis 

[62] was performed to determine the potential response 

of patients with ESCC to ICIs treatment. Furthermore, 

the immune cycle status of the different risk groups was 

evaluated using immune cycle gene sets [25]. 

 

Immunotherapy and chemotherapy response 

evaluation 

 

In high-risk and low-risk groups, the Tumor  

Immune Dysfunction and Exclusion (TIDE) website 

(http://tide.dfci.harvard.edu/) was used to predict ICIs 

responsiveness [63]. Similarities in mRNA expression 

patterns between patients with ESCC receiving 

immunotherapy, including treatment responders and 

non-responders, were assessed using SubMap. 

(https://cloud.genepattern.org/) [64]. The responses to 

neoadjuvant treatment in the high- and low-risk groups 

were assessed using the GSE104958 cohort [48]. The 

half-maximal inhibitory concentrations (IC50) of 

commonly employed chemotherapeutic drugs were 

calculated with the R package “pRRophetic” [65], 

which signifies the effectiveness of a substance in 

inhibiting specific biological or metabolic processes. 

 

ESCC tissue specimens 

 

ESCC tumor tissues and corresponding adjacent normal 

tissues were collected from 12 patients at the First 

Affiliated Hospital of Naval Medical University 

between November 2021 and February 2022.  

 

RNA extraction and RT-PCR 

 

A total RNA extraction was performed using TRIzol 

Reagent (Invitrogen, USA), according to the 

manufacturer’ s instructions. Following this, RNA  

was converted to cDNA using the HiScript II First 

Strand cDNA Synthesis Kit with gDNA wiper and  

qRT-PCR was performed using Taq Pro Universal 

SYBR qPCR Master Mix(Vazyme Biotech, Co., Ltd., 
Nanjing, China, R211-01). The design and synthesis of 

all primers were carried out by Shanghai Sangon 

Biotech and Listed in Supplementary Table 3. 

Subsequent analysis was conducted using the 2–ΔΔCT 

method, with GAPDH serving as the internal reference. 

 

Statistical analysis 

 

This study used R 4.1.2 to analyze and process the data, 

as well as generate plots. Spearman correlation analysis 

was used to perform the correlation analysis. Wilcoxon 

rank-sum tests or Student’s t-tests was used to analyze 

continuous variables. Categorical variables were 

analyzed using the chi-square test or Fisher’s exact test. 

Survival R package was used for Kaplan-Meier survival 

analysis and multivariate Cox regression analysis. 

Comparisons of survival rates were conducted using log-

rank tests. Statistical significance was determined by 

two-tailed P-values with P <0.05 considered significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Display of mutation rates of prognostic gene related to GRTTK in the TCGA cohort. (A) Whole-genome 

variation in the TCGA-ESCC cohort. (B) Waterfall plots showing somatic mutation frequencies of 35 key GRTTK in the TCGA-ESCC cohort. 
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Supplementary Figure 2. UMAP analysis and C-index analysis in the training and validation dataset. (A) UMAP analysis reveals 

the distribution patterns of patients in the high and low-risk groups in TCGA-ESCC cohort. (B) UMAP analysis depicting the distribution 
patterns of patients in the high and low-risk groups in GSE53622 cohort. (C) The C-index was used to assess the performance of risk model. 
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Supplementary Figure 3. Comparative analysis of multiple immune checkpoint molecules among different risk groups in the 
TCGA-ESCC cohort. (A) Costimulatory molecules expression distribution in the high-risk and low-risk groups of the TCGA-ESCC cohort.  

(B) Distribution of coinhibitory molecules expression in the high-risk and low-risk groups of the TCGA-ESCC cohort. (C) Expression profiles of 
antigen presentation molecule in the high and low-risk group of the TCGA-ESCC cohort. 
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Supplementary Tables 
 

 

 

Supplementary Table 1. Univariate Cox regression 
analysis screened genes with similar prognostic 
value. 

Genes TCGA_ESCC GSE53622 

EIF3D 0.01467913 0.05363505 

SPTLC2 0.07938117 0.06810316 

EIF4H 0.01330395 0.02735845 

RGP1 0.00032109 0.07588607 

CDK2 0.04077468 0.08068879 

TMEM209 0.08931848 0.04622017 

CAPZA3 0.05082211 0.02880283 

TCEA1 0.03995525 0.02700871 

 

Supplementary Table 2. Genes regulating the sensitivity of tumor cells to T cell-mediated killing. 

 

Supplementary Table 3. Primers used for real-time PCR. 

GENE Forward (5’→3’) Reverse (5’→3’) 

CDK2 GACACGCTGCTGGATGTCA CGTAGTGCAGCATTTGCGAT 

TCEA1 CAAAGAAGCCATCAGAGAGCATCAG TTGTCATTGGTTCATCAGCACTACG 

TMEM209 CTCGCTACCGTTCTTCACCTACC ACCCTATGCTGTTTCTCCTCTTCAC 

GAPDH GGAGCGAGATCCCTCCAAAAT  GGCTGTTGTCATACTTCTCATGG 

 


