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INTRODUCTION 
 

Primary liver cancer (PLC) is a globally prevalent 

malignancy with a high mortality rate [1]. Hepatocellular 

carcinoma (HCC) is the main histological subtype  

of primary liver cancer, accounting for 75%‒85%  

of cases. HCC has multiple risk factors, including  

HBV or HCV infection and alcoholic cirrhosis [2].  

The primary treatment options for HCC include surgery 

(hepatectomy), interventional therapy, microwave 

radiofrequency ablation, targeted therapy, radiotherapy, 

and chemotherapy. However, most patients are 

diagnosed with advanced-stage HCC and cannot be 

curatively treated with surgical resection, in situ liver 

transplantation, or local percutaneous tumor ablation 

[3]. The treatment options for patients with advanced 

HCC include radiofrequency ablation (RFA) [4] and 

transcatheter arterial chemoembolization (TACE) [5]; 
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ABSTRACT 
 

The H2A.Z variant histone 1 (H2AZ1) is aberrantly expressed in various tumors, correlating with an unfavorable 
prognosis. However, its role in hepatocellular carcinoma (HCC) remains unclear. We aimed to elucidate the 
pathways affected by H2AZ1 and identify promising therapeutic targets for HCC. Following bioinformatic 
analysis of gene expression and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus 
database, we found 6,344 dysregulated genes related to H2AZ1 overexpression in HCC tissues (P < 0.05). We 
performed weighted gene co-expression network analysis to identify the gene module most related to H2AZ1. 
The H2AZ1-based index was further developed using Cox regression analysis, which revealed that the poor 
prognosis in the high H2AZ1-based index group could be attributed to elevated tumor stemness (P < 0.05). 
Moreover, the clinical model showed good prognostic potential (AUC > 0.7). We found that H2AZ1 knockdown 
led to reduced superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) levels, and increased 
apoptosis rate in tumor cells (P < 0.001). Thus, we developed an H2AZ1-based index model with the potential to 
predict the prognosis of patients with HCC. Our findings provide initial evidence that H2AZ1 overexpression 
plays a pivotal role in HCC initiation and progression. 
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however, the therapeutic effects are unsatisfactory. 

Sorafenib is the main targeted drug for treating patients 

with advanced HCC; however, less than one-third  

of patients benefit from it and most of them develop 

drug resistance within 6 months of starting treatment  

[6, 7]. Therefore, identifying novel HCC prognostic 

markers and potential drug targets is necessary to help 

physicians determine the progression of the disease and 

facilitate the development of potential therapies for 

HCC. 

 

Genomic and epigenetic changes are important drivers 

of cancer development [8]. Moreover, histone variants 

and their post-translational modifications play a crucial 

role in cancer initiation and progression [9, 10]. Histones, 

as major chromatin components [11], with their post-

translational modifications, are associated with tumor 

metastasis [12]. Among these, H2A.Z variant histone 1 

(H2AZ1, also known as H2AFZ) is present in almost  

all organisms. It is involved in several physiological 

processes, such as transcriptional control, DNA repair, 

and regulation of mitotic heterochromatin [13]. H2AZ1 

is the most highly expressed histone variant within the 

H2A family [14] and is overexpressed in various 

cancers, including prostate, bladder, non-small cell 

lung, breast, and colorectal cancers [15–19]. H2AZ1 

overexpression in tumors is associated with a poor 

prognosis [20, 21], suggesting its important role in 

tumor development and progression. H2AZ1 over-

expression is more pronounced in metastatic cancer 

[22]. Notably, preliminary observations suggest that  

the abnormal expression of H2AZ plays a significant 

role in the progression of liver cancer [23, 24], although 

the molecular pathways associated with H2AZ have  

not been elucidated. We aimed to further characterize 

the biological characteristics and affected pathways of 

H2AZ1 in HCC, thereby providing new and promising 

therapeutic targets for HCC. 

 

RESULTS 
 

Gene co-expression modules characterize the global 

regulatory pattern of H2AZ1 in HCC 

 

The workflow of this study is illustrated in Figure  

1. Through a differential expression analysis of 374 

 

 
 

Figure 1. Flow chart of this study. TCGA, The Cancer Genome Atlas; DEG: Differentially Expressed Gene; DEmiR: Differentially Expressed 
miRNA; WGCNA, Weighted Gene Co-Expression Network Analysis; WT, wild type; MUT, mutant. 
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HCC and 50 control samples, we identified 19,746 

differentially expressed genes (DEG), comprising 

11,285 upregulated DEGs and 8,461 downregulated 

DEGs, and 485 differentially expressed miRNAs 

(DEmiRs) consisting of 218 upregulated DEmiRs  

and 267 downregulated DemiRs (adjusted P<0.05). 

Moreover, 9,359 DEGs (4736 upregulated DEGs and 

4623 downregulated DEGs) and 88 DEmiRs (43 

upregulated DEmiRs and 45 downregulated DEmiRs) 

were identified between H2AZ1 high and low samples 

(Figure 2A). In addition, we identified DEGs and 

miRNAs whose expression levels were consistently 

up- or downregulated in both sets of differential 

results, identifying them as the dysregulated genes  

and miRNAs associated with H2AZ1 overexpression 

in HCC (Figure 2B). Heatmaps showed significant 

differences in the expression of these genes and 

miRNAs between the H2AZ1 high expression group 

and the H2AZ1 low expression and control groups 

(Figure 2C, 2D). 

 

Using weighted correlation network analysis  

(WGCNA), we constructed co-expression networks 

and modules using the dysregulated genes related  

to H2AZ1 overexpression. To construct a scale-free 

network, we set the soft threshold power β to 8 

(R2=0.85), and DEGs with similar expression patterns 

were clustered into 16 co-expression modules (Figure 

2E, 2F). Pearson’s correlation coefficients were used 

to analyze the interactions among these co-expression 

modules, and the branches of the dendrogram were 

grouped according to the relatedness of the eigengenes 

(Figure 2G). We further analyzed the correlation 

between each module, H2AZ1, and clinical features 

(Figure 2H) and found that the black module had  

the most significant correlation with H2AZ1 (R=0.82, 

p=6e-95), while it was negatively correlated with 

overall survival (OS) (R=-0.12, p=3e-05). Therefore, 

co-expression in the black modules might be a  

key factor in the poor prognosis of H2AZ1-mediated 

HCC. 

 

Biological functions and signaling pathways 

associated with H2AZ1 dysregulation in HCC 

 

Subsequently, we performed a functional enrichment 

analysis of the module genes. The results showed  

that the black module genes were significantly 

enriched in biological processes related to oxidative 

phosphorylation and ubiquitination (P<0.05, Figure 

3A), as well as pathways such as cellular senescence, 

cell cycle, P53 signaling pathway, and apoptosis 

(P<0.05, Figure 3B). Using gene set enrichment 
analysis (GSEA), we verified the significant activation 

of gene sets linked to cellular senescence, cell  

cycle, P53 signaling pathway, and apoptosis in the 

H2AZ1 high expression group (Figure 3C), suggesting 

that these pathways may be closely associated  

with H2AZ1-mediated HCC development. Correlation 

analysis showed that H2AZ1 expression in HCC  

was significantly and positively correlated with the 

gene set scores for apoptosis, cell cycle, cellular 

senescence, and P53 signaling pathway (Figure 3D).  

In addition, using pivot analysis, we explored the 

regulation of H2AZ1 in cellular responses to oxidative 

stress in black module genes (Supplementary Table 1) 

and constructed a protein-protein interaction network. 

These results indicated that H2AZ1 may regulate 

cellular responses to oxidative stress gene sets by 

regulating transcription factors such as JUN, YY1,  

and SIRT1 (Figure 3E). H2AZ1 overexpression  

in HCC may, thus, affect the development of tumor 

cells by regulating cell apoptosis, cell cycle, and 

aging. 

 

H2AZ1-based index model shows significant 

prognostic potential in HCC 

 

To explore the potential clinical roles of H2AZ1 and 

its related dysregulated genes in HCC, we performed 

survival analysis on these genes and selected the top 

50 genes most significantly associated with HCC 

overall survival (OS) and recurrence-free survival 

(RFS) (Supplementary Table 2). We further screened 

these genes by univariate analysis, excluding KAT2A 

(P=0.029) based on a significance threshold of P<0.01, 

and constructed the H2AZ1-based index by Cox 

multivariate analysis (Supplementary Table 3). We 

explored the expression of this index in a clinical 

cohort of patients with HCC (Figure 4A). Moreover, 

survival curve analysis revealed that a high H2AZ1-

based index was associated with poor OS and RFS in 

HCC (Figure 4B, 4C), which was verified in HCC-

independent cohorts, such as GSE54236, GSE14520, 

and GSE76427 (Figure 4D–4F). Notably, this index 

showed a significant negative correlation with the OS 

of patients with HCC (Figure 4G). Univariate analysis 

showed that H2AZ1-based indices, such as tumor size 

(T), lymph node involvement (N), distant metastasis 

(M), and stage, could serve as independent risk factors 

for HCC (Figure 4H). Subsequently, based on clinical 

characteristics such as TNM staging of patients with 

HCC and the H2AZ1 index, we further established a 

clinical model and represented it using a nomogram 

(Figure 4I). Survival analysis showed that this clinical 

model had predictive potential for OS and RFS in 

HCC (Figure 4J, 4K), and the receiver operating 

characteristic (ROC) curve showed that this clinical 

model had higher accuracy than the TNM model 
(Figure 4L, 4M). Furthermore, the calibration curve 

validated the predictive accuracy of the nomogram 

(Figures 4N, 4O). 
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Figure 2. Weighted gene co-expression network analysis reveals the regulatory pattern of H2AZ1 in hepatocellular 
carcinoma. (A) Rosette volcano plot showing differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) in control 

and hepatocellular carcinoma (HCC), H2AZ1 overexpressed and H2AZ1 underexpressed, respectively (TCGA-LIHC). (B) Scatter plot showing 
differentially expressed genes and miRNAs in HCC affected by H2AZ1. (C) Heat map showing the expression of dysregulated genes associated 
with H2AZ1 overexpression in HCC in Control-H2AZ1 high and low expression groups. (D) Heat map showing the expression of H2AZ1-related 
HCC DEmiRs in the high and low expression groups of Control-H2AZ1. (E) Module ring tree diagram showing the adjacency relationship 
between the co-expression modules of HCC-related dysregulated genes. Gene clustering is represented by different colors. (F) Scale 
independence and mean connectivity analysis for various soft threshold powers. (G) Heat map of the module clustering tree showing the 
gene members of the co-expression module of the H2AZ1 gene in the regulation of HCC. (H) Module-trait relationship showing the 
correlation of gene co-expression modules with H2AZ1 and tumor size (T), lymph node involvement (N), distant metastasis (M), overall 
survival (OS), age, and gender. 
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Poor prognosis in the high H2AZ1-based index group 

may be associated with the stemness of the tumor 

 

To explore the relationship between H2AZ1-based 

index genes and tumor stemness, we used the gene  

set variation analysis (GSVA) algorithm to assess 

stemness-related gene sets (Supplementary Table 4). 

The analysis showed that the high H2AZ1-based index 

group had higher scores in stemness, particularly in  

the Wnt and Notch signaling pathways (Figure 5A).  

In addition, correlation analysis showed that the high 

H2AZ1-based index group was positively correlated with 

the Wnt signaling pathway, Notch signaling pathway, 

Epcam upregulation, and proliferation upregulation 

signals. Conversely, it was negatively correlated with 

Epcam downregulation and proliferation downregulation 

signals. These findings suggest that the poor prognosis 

observed in the high H2AZ1-based index group might 

be related to the activation of tumor stemness-related 

pathways (Figure 5B). Further correlation analysis 

indicated that the genes of the H2AZ1-based index were 

positively correlated with tumor stemness pathways and 

stemness-related genes (Figure 5C, 5D). These results 

suggest that the increased expression of H2AZ1 index 

genes in HCC may enhance the stemness of tumor cells, 

thereby promoting HCC progression. 

 

Identification of upstream regulators of H2AZ1-

based index gene sets 

 

Subsequently, we explored the upstream regulators  

of the H2AZ1-based index gene set, including 

 

 
 

Figure 3. Biological functions and signaling pathways involved in the significant regulatory modules of H2AZ1. (A) Clustered 

bubble plot showing biological functions significantly regulated by H2AZ1. (B) Clustered bubble plot showing signaling pathways significantly 
regulated by H2AZ1. (C) Gene set enrichment analysis map showing signaling pathways significantly activated by H2AZ1. (D) Correlation 
between H2AZ1 expression and apoptosis, cell cycle, cell senescence, and the p53 signaling pathway gene set. (E) Network of H2AZ1 
regulating cellular response to oxidative stress through transcription factors. 
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miRNAs, lncRNAs, RNA-binding proteins (RBPs),  

and transcription factors (TFs), using pivot analysis. 

The results showed that the upstream miRNAs 

regulating the H2AZ1-based index gene set included 

hsa-mir-93, hsa-mir-100, and hsa-mir- 877 (Figure 6A). 

The upstream lncRNAs included CRND1, NRAV, and 

SBF2-AS1 (Figure 6B), and the RBPs included NCBP3 

and RBM15B (Figure 6C). Notably, NCBP3 targeted 

UBE2E1, a gene encoding the ubiquitin-conjugating 

enzyme E2E1. The expression level of NCBP3 was low 

 

 
 

Figure 4. Exploring the prognostic efficacy of H2AZ1-based index clinical model in hepatocellular carcinoma. (A) Bar graph 
showing the expression of H2AZ1-based index in the clinical cohort of patients with hepatocellular carcinoma. (B) Recurrence-free survival 
(RFS) survival curve of the H2AZ1-based index in TCGA-LIHC data. (C) Overall survival (OS) survival curve of the H2AZ1-based index in TCGA-
LIHC data. (D) Survival curves demonstrate the OS prognostic potential of the H2AZ1-based index in the GSE54236 data set. (E) Survival 
curves demonstrate the OS prognostic potential of the H2AZ1-based index in the GSE14520 data set. (F) Survival curves demonstrate the RFS 
prognostic potential of the H2AZ1-based index in the GSE76427 data set. (G) Bubble plot showing the correlation between the H2AZ1-based 
index and clinical indicators. (H) Forest plot showing the univariate prognostic power of the H2AZ1-based index and clinical indicators.  
(I) Nomogram showing H2AZ1-based index clinical model. (J) Survival curves demonstrating RFS prognostic potential of the H2AZ1-based 
index clinical model. (K) Survival curves demonstrate the OS prognostic potential of the H2AZ1-based index clinical model. (L) Time-
dependent receiver operator characteristic (ROC) curve of the H2AZ1-based index clinical model. (M) Time-dependent ROC curve of TNM 
stage. (N) Calibration curve demonstrating RFS prognostic potential of H2AZ1-based index clinical model. (O) Calibration curve demonstrating 
the OS prognostic potential of the H2AZ1-based index clinical model. 
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in the H2AZ1 high-expression group, whereas the 

expression level of RBM15B was increased in the 

control, H2AZ1 low-expression, and H2AZ1 high-

expression groups (Figure 6D). In addition, 10 TFs, 

including CREB1, E2F1, and E2F3 regulated genes in 

the H2AZ1-based index (Figure 6E, 6F). We also 

explored potential drug targets in the H2AZ1-based 

index gene set, including CDK1 and TTK (Figure 6G). 

 

Multi-omics global regulatory network of H2AZ1-

based index genes 

 

Additionally, we explored somatic mutations in H2AZ1-

based index genes in HCC. Mutations in KIAA1841, 

PSMD1, PYGO2, and RAD54B were the most frequent, 

and H2AZ1 mutations occurred at a frequency of  

3% (Figure 7A). The mutation site of H2AZ1 is shown 

in Figure 7B. In the H2AZ1-based index gene global 

regulatory network, an increase in copy number and 

deletions was observed (Figure 7C). Correlation analysis 

between the methylation modification level and the 

H2AZ1-based index gene showed that the expression of 

H2AZ1 was negatively correlated with the methylation 

sites cg08180459, cg14094543, cg16267491, and 

cg23752380 (Figure 7D). Some genes, such as MEX3A, 

were significantly negatively correlated with the 

methylation sites (Figure 7E). Finally, the expression 

profiles of some methylated sites that were significantly 

differentially expressed in the control and H2AZ1 

high/low expression groups are shown in Figure 7F. 

 

Cellular experimental validation of the potential 

function of H2AZ1 in HCC 

 

The above findings showed that dysregulated genes 

associated with H2AZ1 were significantly enriched 

 

 
 

Figure 5. Expression of stemness-related pathway scores in high and low H2AZ1-based index groups. (A) Heat map showing the 

expression of stemness-related pathway scores in high and low H2AZ1-based index groups. (B) Scatter plot showing the correlation between 
H2AZ1-based index and tumor stemness-related pathway score. (C) Bubble chart showing the correlation between H2AZ1-based index genes 
and tumor stemness-related pathway scores. (D) Bubble chart showing the correlation between H2AZ1-based index genes and tumor 
stemness-related genes. 
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in biological processes and pathways such as 

ubiquitination, oxidative stress, apoptosis, and the  

cell cycle, suggesting that H2AZ1 may influence  

HCC development through these pathways. Previous 

studies have demonstrated the ubiquitination properties 

of H2AZ. Therefore, we hypothesized a potential  

close association between H2AZ and ubiquitination  

in HCC. Therefore, we constructed an in vitro cell 

model by introducing point mutations at the H2AZ1 

ubiquitination sites (K120, K121, and K125) [25–27] 

using homologous recombination with CRISPR/Cas9 

technology. However, following numerous attempts,  

we could not obtain single clones with these point 

mutations, suggesting that ubiquitination-deficient cells 

 

 
 

Figure 6. Transcription factor prediction based on H2AZ1-based index. (A) Triangular correlation heatmap - miRNAs showing the 

regulatory role of miRNAs on the H2AZ1-based index gene set. (B) Sankey diagram showing the regulation of lncRNAs on the H2AZ1-based 
index gene set. (C) Circle network diagram showing the regulation of RNA-binding proteins (RBPs) on the H2AZ1-based index gene set.  
(D) Box plots showing the transcriptional expression levels of some RBPs. (E) Bubble line-motif logo showing the regulatory effect of TF on the 
H2AZ1-based index gene set. (F) Box plots showing transcriptional expression levels of transcription factors (TFs). (G) Network diagram 
showing potential drug targets of the H2AZ1-based index gene set. 
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might be too weak to survive. Therefore, an alter- 

native approach was employed using wild-type and 

ubiquitination-deficient mutant H2AZ1 overexpression 

constructs to establish the corresponding cell models. 

The expression levels of H2AZ1 in these constructed 

cell models were confirmed using quantitative real-time 

PCR (Figure 8A). We observed a significant decrease in 

the colony-forming ability of cancer cells after H2AZ1 

 

 
 

Figure 7. Multi-omics landscape of the global regulatory network of H2AZ1-based index genes. (A) Waterfall plot showing the 

mutational landscape (SNP) of H2AZ1-based index gene global regulatory network in liver cancer. (B) Lollipop diagram showing details of 
H2AZ1 mutation in liver cancer. (C) Chromosome bar graph showing the copy number spectrum of H2AZ1-based index gene global regulatory 
network in liver cancer. (D) Scatter plots of serial correlations showing the correlation of H2AZ1-based index gene global regulatory network 
in the methylation modification level and transcription level of liver cancer. (E) Bubble plot showing H2AZ1-based index genes are regulated 
by methylation. (F) Series of box plots showing the methylation level of H2AZ1-based index gene global regulatory network in liver cancer. 
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knockout (Figure 8B). Notably, when the H2AZ1-KO 

cell model was supplemented with H2AZ1(wt) and 

H2AZ1(mut) constructs, overexpression of H2AZ1(wt) 

partially restored the colony-forming ability, whereas 

overexpression of H2AZ1(mut) failed to do so (Figure 

8C). Additionally, immunoprecipitation (IP) analyses 

confirmed successful precipitation of ubiquitinated HA 

plasmids from H2AZ (wt) cells, displaying ubiquitination 

characteristics, whereas mutant H2AZ (mut) cells could 

not achieve this (Figure 8D). 

 
Subsequently, we conducted CCK8 proliferation, cell 

cycle, and apoptosis assays to verify the biological effects 

of H2AZ1 on HCC cells. The cellular experiments 

showed that H2AZ1 knockdown increased apoptosis 

ratio and altered cell cycle transitions in HCC cells 

(Figure 8E–8G). Moreover, H2AZ1 knockdown resulted 

in a decrease in superoxide dismutase (SOD) activity 

and an increase in malondialdehyde (MDA) levels, 

suggesting that changes in H2AZ1 expression could 

affect oxidative stress in tumor cells (Figure 8H). 

DISCUSSION 
 

As HCC is a malignancy with an extremely high mortality 

rate when diagnosed in late-stage cases [28], exploring 

HCC-related genes can help identify new and promising 

prognostic biomarkers and drug targets to improve  

the clinical prognosis of patients with hepatocellular 

carcinoma. In this study, we found that dysregulated 

HCC genes associated with H2AZ1 overexpression  

were significantly enriched in key biological processes 

and pathways, such as ubiquitination, oxidative stress, 

apoptosis, and cell cycle. Our findings indicate that 

ubiquitinated H2AZ1 may partially restore the colony-

forming capacity of HCC cells. Furthermore, we observed 

that H2AZ1 knockdown significantly influenced tumor 

cell proliferation, cell cycle transition, and apoptosis, 

which may provide a foundation for understanding the 

biological functions of H2AZ1 in HCC. 

 

Oxidative stress contributes to the development of many 

diseases and is an important factor in carcinogenesis 

 

 
 

Figure 8. Cell models of H2AZ1 ubiquitination variants of Flag-H2AZ1 (WT) and Flag-H2AZ1 (MUT). (A) Expression of H2AZ1 in 

the control, H2AZ1-KO, and rescued cell models. (B) Calculation of colony numbers in the control and rescued cell models. Colony numbers 
comprising more than 50 cells were calculated. (C) Representative images of colony formation assay. (D) Western blotting indicates impaired 
ubiquitination function after site mutation in H2AZ1. (E) Cellular activity of Control, H2AZ1-KO. (F) Apoptosis ratio of Control, H2AZ1-KO.  
(G) Cell cycle of Control, H2AZ1-KO. (H) MDA level and SOD activity of Control, H2AZ1-KO. 
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[29, 30]. Notably, oxidative stress is a key factor in  

the initiation and progression of HCC under various 

pathological conditions [31]. In this study, we found 

that H2AZ1 indirectly regulates oxidative stress by 

regulating the expression of YY1, JUN, and SIRT1. 

SIRT1 overexpression can reduce oxidative stress [32], 

and YY1 plays an important role in preventing 

pathological oxidative stress [33]. This suggests that the 

overexpression of H2AZ1 in hepatocellular carcinoma 

may indirectly regulate oxidative stress by targeting TFs 

such as SIRT1 and YY1. Cell experiments showed that 

H2AZ1 knockdown led to a decrease in SOD activity 

and an increase in MDA level in HCC cells, providing 

preliminary evidence that H2AZ1 overexpression 

promotes oxidative stress in HCC cells. However, the 

specific targets of H2AZ1 require further study. 

 
Ubiquitination is an important post-translational 

modification involved in regulating inflammatory cell 

death and is closely associated with cancer development 

[34, 35]. It has emerged as a key mediator and regulator 

of signaling in cell death and inflammation [36]. To 

investigate the potential role of H2AZ1 ubiquitination, 

we constructed an in vitro cell model with point 

mutations at the H2AZ1 ubiquitination sites using homo-

logous recombination with CRISPR/Cas9 technology. 

However, we were unable to obtain a clone with the point 

mutations. Histone variants are important regulators  

of embryonic development because their knockdown  

is often lethal. Successfully achieving knockdown in 

cultured cells can be challenging [13]. Therefore, this 

suggests that ubiquitination of H2AZ1 is also critical for 

its normal regulatory function in HCC cell activities. 

Using alternative cellular models, we observed a 

significant decrease in cancer cell colony-forming 

ability after H2AZ1 knockout, and overexpression  

of H2AZ1(WT) partially restored the colony-forming 

ability, whereas overexpression of H2AZ1(MUT) did 

not. Additionally, H2AZ1 knockdown reduced HCC 

cell viability, increased apoptosis, and caused cell  

cycle arrest at the G0/G1 phase. H2AZ1 regulates  

the expression of cell cycle genes such as Myc and  

Ki-67, and its depletion leads to G1 arrest and cellular 

senescence, consistent with our main findings [37]. 

These studies indicate that H2AZ1 may regulate the 

HCC cell cycle and inhibit apoptosis. 

 
Through correlation analysis, we found that high 

expression of the H2AZ1 index gene in HCC may 

enhance the stemness of tumor cells and promote the 

progression of HCC. In addition, we explored the 

upstream regulators of the H2AZ1-based index gene set. 

Some lncRNAs, including NRAV and SBF2-AS1, have 

been associated with predicting immune checkpoint 

blockade and HCC prognosis [38, 39]. High expression 

levels of RBPs, such as RBM15B, have also been 

associated with poor prognosis in patients with HCC 

and the promotion of cancer cell proliferation and 

invasion [40]. Furthermore, we identified two targets of 

fostamatinib, CDK1 and TTK, in the H2AZ1-based 

index gene set. Dysregulation of the cyclin-dependent 

kinase CDK1 has been closely linked to tumorigenesis, 

and its activation plays a key role in various cancers 

[41]; TTK is a dual-specificity protein kinase involved 

in cell proliferation and division [42] and is critical  

for chromosome arrangement at centromeres during 

mitosis and centrosome duplication [43]. CDK1 is 

overexpressed in HCC and associated with poor OS 

[44]. Moreover, TTK inhibitors induce aneuploidy and 

senescence in HCC cells [45], effectively eliminating 

tumors. Fostamatinib is an antitumor drug with HCC-

related targets [46]. This evidence indicates that CDK1 

and TTK are important targets in HCC cells, suggesting 

that they may be potential therapeutic drugs for HCC. 

 

Nonetheless, it is important to acknowledge the 

limitations of this study. The sample size in our analysis 

was relatively small, and further sample expansion  

is needed to verify these results. Additionally, the 

dysregulated genes related to H2AZ1 were primarily 

identified through bioinformatics analysis. The H2AZ1-

based index identified the top 50 genes showing the 

most significant correlation with HCC prognosis in the 

module of interest. Thus, the inclusion or exclusion of 

additional genes could lead to variations in this index. 

Further molecular experiments are required to validate 

the specific mechanisms of action of H2AZ1 and related 

dysregulated genes in HCC. 

 

In conclusion, we have elucidated the potential roles of 

H2AZ1 in HCC and constructed an H2AZ1-based index 

capable of predicting the survival of patients with HCC. 

Therefore, future research should focus on identifying 

and investigating the specific targets of H2AZ1 for 

tumor cell inhibition by knockdown or overexpression. 

 

MATERIALS AND METHODS 
 

Data sources 

 

The Cancer Genome Atlas-liver hepatocellular carcinoma 

(TCGA-LIHC) dataset, consisting of 374 HCC samples 

and 50 paracancerous control samples, was obtained 

from TCGA database (https://www.cancer.gov/) [47]. 

The data were normalized using the limma package [48]. 

Principal component analysis (PCA) was performed to 

differentiate HCC samples from normal samples based 

on their gene expression patterns [49]. In addition,  

we obtained HCC-related transcriptome data, including 

GSE54236, GSE14520, and GSE76427, from the Gene 

Expression Omnibus (GEO) database to validate the 

prognostic potential of the H2AZ1-based index in HCC. 

https://www.cancer.gov/
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All clinical data and mRNA expression data were 

retrieved and downloaded from the GEO database and 

TCGA, and the patients involved in the databases have 

provided their consent. 

 

Differential gene expression analysis of genes and 

miRNAs 

 

To explore the dysregulated genes affected by high 

H2AZ1 expression in HCC, differential expression 

analysis of miRNAs and mRNA was conducted using 

the limma package [48]. This analysis specifically 

focused on HCC control samples and samples with  

high and low expression levels of H2AZ1. DEGs that 

consistently exhibited upregulation or downregulation 

in both groups were identified as deregulated genes 

influenced by high H2AZ1 expression in HCC. 

 

Weighted correlation network analysis 

 

Weighted gene co-expression network analysis 

(WGCNA) is widely used to construct scale-free 

networks using gene expression data. To examine the 

effect of high H2AZ1 expression on gene deregulation  

in HCC, we used the WGCNA package [50]. The 

analysis used deregulated genes affected by high  

H2AZ1 expression in HCC. The hclust function of  

the WGCNA package was used to cluster samples. 

Subsequently, a suitable soft-thresholding power was 

determined to generate a proximity matrix that best 

matched the scale-free network characteristics of gene 

distribution (R2 = 0.85). Moreover, a heatmap illustrating 

the correlations between modules and phenotypes was 

generated to identify significant module-phenotype 

correlations. In this study, the modules that exhibited 

the most significant positive correlation with HCC were 

designated as candidate modules. 

 

Functional enrichment analysis of co-expression 

modules 

 

The clusterProfiler package [51] was used to perform 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analyses of modular genes to explore their potential 

biological functions. The reference gene set used  

for this analysis was c5.bp.v7.0.entrez.gmt and 

c2.cp.kegg.v7.0.symbols.gmt from the Molecular 

Signature Database (MSigDB) [52]. Subsequently, the 

phenotype and full gene expression profiles were input 

into the Gene Set Enrichment Analysis (GSEA) [53] to 

verify the signaling pathways that were significantly 

activated or inhibited by these genes. 
 

In addition, we obtained gene sets of interest from  

the KEGG and GO databases and performed a single-

sample gene set enrichment analysis (ssGSEA)  

using the GSVA package [54]. The correlation 

between H2AZ1 and gene set scores was subsequently 

calculated by correlation analysis, and a P-value < 

0.05 was considered statistically significant. 

 

Construction and validation of H2AZ1-based index 

clinical model 

 

The modules that were the most significantly 

correlated with H2AZ1 were identified using 

WGNCA. Kaplan–Meier (KM) survival analysis was 

performed on these module genes to identify genes 

associated with OS and RFS in HCC. Seven samples 

were excluded from the RFS analysis and one sample 

from the OS analysis due to missing survival data  

in TCGA-LIHC dataset. Univariate and multivariate 

Cox regression analyses were performed on the 50 

most significant genes and H2AZ1 expression to 

establish the H2AZ1-based index. A clinical model 

based on the H2AZ1 index was further refined using 

alignment diagrams. The sensitivity and specificity of 

this model were evaluated using time-dependent ROC 

analysis with the timeROC package. Additionally,  

the predictive ability of the model for patients with 

HCC prognosis was assessed through nomograms and 

calibration curves, implemented with the “rms” 

package. 

 

Upstream regulators and potential drug targets of 

H2AZ1-based index genes 

 

H2AZ1-based index genes were subjected to pivot 

analysis to determine the upstream miRNAs, lncRNAs, 

RNA binding proteins (RBPs), and transcription factors 

(TFs) that regulate these genes. In addition, this analysis 

aimed to investigate potential drug targets. Pivot 

analysis utilized data from the RNAInter, TRRUST, 

STRING, and DrugBank databases [55–58] to identify 

regulators that interact with the target genes through 

hypergeometric tests. Statistical significance was set  

at P <0.05. 

 

Construction of a multi-omics regulatory landscape 

of H2AZ1-based index genes 

 

To investigate the single nucleotide polymorphisms 

(SNPs) of H2AZ1-based index genes in HCC, we 

utilized TCGA-LIHC data and employed the R package 

maftools [59] to visualize the SNPs of these genes  

and the mutation details of H2AZ1. Subsequently, we 

determined the copy number spectra of these genes  

in patients with HCC. In addition, correlation analysis 
was used to explore the correlation between methylation 

modifications and the transcription levels of H2AZ1-

based index genes. 
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Cell culture, rescue experiment, and colony formation 

assay 

 
HepG2 cells were purchased from the Cell Bank of  

the Chinese Academy of Sciences (Shanghai, China)  

and cultured in Dulbecco’s modified Eagle’s medium 

(DMEM, Gibco, China) supplemented with 10%  

fetal bovine serum (FBS, Gibco, Australia) and 1% 

streptomycin-penicillin. The cells were maintained at 

37° C in a humidified atmosphere containing 5% CO2.  

A HepG2 H2AZ1-KO cell model was successfully 

established as previously described [23]. Subsequent 

rescue experiments were performed in HepG2  

H2AZ1-KO cells by overexpressing H2AZ1 (WT)  

with ubiquitination and H2AZ1 (MUT) without 

ubiquitination. The expression of H2AZ was assessed by 

PCR in different cell models. Primer sequences were as 

follows: 5’-GCAGTTTGAATCGCGGTG-3’ (forward) 

and 5’-GAGTCCTTTCCAGCCTTACC-3’ (reverse)  

for H2AZ1; 5’-CTCCATCCTGGCCTCGCTGT-3’ 

(forward) and 5’-GCTGTCACCTTCACCGTTCC-3’ 

(forward) for Actin. Colony formation assays were 

performed to assess the effect of H2AZ1 ubiquitination 

on the ability of cells to form colonies. In six well plates, 

approximately 500 cells per well were seeded for  

the HepG2 H2AZ1-KO, H2AZ1 (WT), and H2AZ1 

(MUT) cell lines, followed by incubation at 37° C in  

5% CO2. After 2 weeks, the cells were washed with 

PBS, fixed with 4% paraformaldehyde, and stained  

with a 0.1% Giemsa dye solution at room temperature. 

The colonies were observed under a microscope, and  

a colony comprising more than 50 cells was considered 

as one positive colony and captured as a photograph. 

Three replicates were prepared for each group, and  

the experiment was repeated thrice. The collected data  

were statistically analyzed using GraphPad software 

(GraphPad Prism 8). 

 
Immunoprecipitation (IP) and immunoblot analysis 

 
The HA-ubiquitin plasmid was co-transfected with  

Flag-H2AZ1(WT) and Flag-H2AZ1(MUT) in HEK293T 

cells respectively. Then, the histones were extracted,  

and IP was performed using IP buffer (10mM Tris-HCl 

PH 7.4, 10mM NaCl, 0.2 mM EDTA) followed by 

incubation with Monoclonal anti-Flag®M2-conjugated 

agarose beads at 4° C overnight. The immunoprecipitated 

complexes were washed and precipitated thrice with  

IP buffer. Flag-H2AZ1(WT) and Flag-H2AZ1(MUT) 

were pulled down and analyzed by immunoblotting. 

HA-tag and H2AZ antibodies were used to detect the  

IP products. The antibodies used were anti-FLAG  

®M2 (F3165, Sigma, USA) and anti-H2A, Z antibody 

(ab4174, Abcam, UK), and anti-HA tag antibody 

(ab9110, Abcam, UK). Three independent experiments 

were conducted, and triplicate samples from each group 

were analyzed. The density of the immunoblot bands 

was quantified using ImageJ software (ImageJ 1.8.0, 

National Institutes of Health, USA) for data analysis. 
 

CCK-8 cell proliferation and activity detection 
 

The Cell Counting Kit-8 (CCK8) method was used  

to measure cell viability. Briefly, 100 μL of cell 

suspension cells were inoculated on 96-well plates. 

Cell viability was assessed using the CCK8 reagent 

(MCE) according to the manufacturer’s protocols. The 

absorbance at 450 nm was recorded using a microplate 

reader. Three replicates were prepared for each group, 

and the experiment was repeated three times. The 

collected data were statistically analyzed using the 

SPSS software (SPSS 25). 
 

Cell apoptosis and cell cycle 
 

Apoptosis was induced according to the  

experimental protocol, and 1–10 × 105 cells were 

collected, stained with Annexin V-APC and 7-AAD, 

and loaded to the machine for flow analysis. In addition, 

cell cycle distribution was measured using the Cell 

Cycle Analysis Kit. Cells (1 × 105 cells/mL, 2 mL) were 

seeded in six-well plates. After treatment, the cells  

were fixed overnight in 70% ice-cold ethanol at 4° C. 

Subsequently, the cells were incubated with propidium 

working solution containing 10 μL RNase A for 30  

min at 37° C. Red fluorescence was detected using a 

flow cytometer (BD FACSCantoTM II) at an excitation 

wavelength of 488 nm, detecting light scattering. Three 

independent experiments were performed, and triplicate 

samples were analyzed for each group. Cell cycle data 

were analyzed using the MODFIT software (ModFit  

LT 5.0), whereas apoptosis data were analyzed using 

the FLOWJO software (FlowJo V10). 
 

Enzyme-linked immunosorbent assay (ELISA) 

detection of malondialdehyde (MDA) and superoxide 

dismutase (SOD) 
 

To detect MDA level and SOD activity in H2AZ1 

knockdown and control cells, MDA (MLbio-ml950271) 

and SOD (JYM2065Hu) were purchased from MLBio 

(USA) and Wuhan Colorful Gene Biological Technology 

Co., Ltd., (China) respectively. Standard and sample 

wells were prepared as instructed, and different 

concentrations of standards and samples were added  

to each well. After the reaction, the optical density  

(OD) at 450 nm was measured, and a standard curve 

was drawn using the standard product. MDA level  

and SOD activity of each sample were calculated using 

a curve equation. Three replicate wells were used for 

each group, and the experiment was repeated three 

times. Data were analyzed using the SPSS software 

(version 25). 
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Data analysis and statistics 

 

The bioinformatics analysis carried out in this study,  

such as WGCNA, KM survival, and ROC curve 

analysis was performed using the BioinforCloud 

platform (http://www.bioinforcloud.org.cn), Xiantao 

website (https://www.xiantaozi.com/) and RStudio 

software. An area under the curve (AUC) >0.7 

indicated that the model has good diagnostic potential. 

The normality and homogeneity of variance of the  

data distribution were compared in groups using the  

T-test, one-way ANOVA, or Wilcoxon rank sum  

test, respectively. Variables that satisfy the normal 

distribution are expressed as the mean ± standard 

deviation, and variables that do not satisfy the normal 

distribution are expressed as the median (interquartile). 

* P < 0.05, ** P < 0.01, *** P < 0.001, ns indicates  

no significant difference. P < 0.05 was considered 

statistically significant. 

 

Data availability 

 

The data used to support the findings of this study are 

included within the article, and are available from the 

corresponding author upon request. 
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Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 1. 
Cellular response to 
oxidative stress gene 
set enriched by black 
module genes. 

Gene 

AIFM2 

AKR1C3 

AKT1 

APEX1 

ATF4 

ATG7 

CBX8 

CCNA2 

CDK1 

ECT2 

EZH2 

FANCD2 

G6PD 

GPX1 

MAPK3 

MELK 

MPV17 

MYB 

NME2 

NONO 

NUDT2 

P4HB 

PARP1 

PCNA 

PLA2R1 

PRDX1 

PRDX5 

PRKCD 

PSAP 

PYCR1 

PYCR2 

RACK1 

ROMO1 

RPS3 

SFPQ 

SRC 

STK25 

STX4 

TLDC2 

TRAF2 

ZNF580 



www.aging-us.com 2561 AGING 

Supplementary Table 2. 
H2AZ1-associated HCC 
prognostic index gene 
set. 

Gene 

AL031985.3 

BAG2 

BRIX1 

CAD 

CCNB1 

CCT4 

CDK1 

CEBPZOS 

CIZ1 

CPSF3 

CSE1L 

DDX55 

DHX34 

FARSB 

G6PD 

GNL2 

GTPBP4 

GTSE1 

ISG20L2 

KDM1A 

KIAA1841 

KIF20A 

KPNA2 

MARCKS 

MAST2 

MEX3A 

MRPL9 

NAP1L1 

NDC80 

NUP43 

PAK1IP1 

PDSS1 

PRPF3 

PSMD1 

PYGO2 

RAD54B 

RBM17 

RBM28 

SLC39A1 

SMYD5 

SPATS2 

SRSF2 

SSB 

TCOF1 

TTK 
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UBE2E1 

WDR75 

ZFP69B 

ZNF207 

H2AFZ 

 

Supplementary Table 3. H2AZ1-based index model equation. 

H2AZ1-based index =  

(0.00207)*AL031985.3+(0.00033)*BAG2+(0.00009)*BRIX1+(0.00015)*CAD+ 

(-0.00014)*CCNB1+(0)*CCT4+(-0.00026)*CDK1+(0.00056)*CEBPZOS+(-0.00022)*CIZ1+ 

(-0.00017)*CPSF3+(0.00004)*CSE1L+(0.00065)*DDX55+ 

(-0.00006)*DHX34+(0.00003)*FARSB+(0.00006)*G6PD+(-0.00002)*GNL2+ 

(-0.00004)*GTPBP4+(0.00024)*GTSE1+(-0.00011)*H2AFZ+(-0.00025)*ISG20L2+ 

(-0.00001)*KDM1A+(0.00056)*KIAA1841+(0.00071)*KIF20A+(0.00003)*KPNA2+(0)*MARCKS+ 

(0.00037)*MAST2+(0.00021)*MEX3A+(0.00043)*MRPL9+(0.00001)*NAP1L1+(0.00031)* 

NDC80+(0.00005)*NUP43+(-0.00019)*PAK1IP1+(0.00079)*PDSS1+ 

(-0.00032)*PRPF3+(0.00011)*PSMD1+(0.00013)*PYGO2+(-0.00245)*RAD54B+ 

(0.00001)*RBM17+(-0.00025)*RBM28+(0.00003)*SLC39A1+(-0.00061)*SMYD5+ 

(-0.00001)*SPATS2+(0.00004)*SRSF2+(-0.0003)*SSB+(0.00025)*TCOF1+(0.00036)*TTK+ 

(-0.00007)*UBE2E1+(-0.00013)*WDR75+(-0.00166)*ZFP69B+(-0.00019)*ZNF207 

 

Supplementary Table 4. Tumor stemness-related gene set. 

 


