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INTRODUCTION 
 

Changes in DNA methylation with age, a component of 

“epigenetic aging”, are widely observed across the tree 

of life. Age-associated DNA methylation patterns 

manifest as two general phenomena; one leading to 

stereotypical shifts in mean methylation levels at 

individual cytosines that can be modeled to predict 

individual age with high accuracy [1], and the other 
leading to increased variability or “disorder” in DNA 

methylation states due to the erosion of the epigenetic 

landscape [2–4]. These phenomena are hypothesized to 

be linked as average methylation values of individual 

cytosines are reported to drift from hyper- or hypo-

methylated (e.g., ≥80%, ≤20%) states to more 

intermediate levels (e.g., 20–80%) with age [5]. 

However, the extent to which age-associated changes to 

the DNA methylome reflect distinct or similar 

underlying processes remains unresolved. 

 

Over the last decade, dozens of epigenetic clocks have 

been developed for a range of taxonomic groups 

including humans [6], rodents [7], fish [8], birds [9], 

and trees [10]. Epigenetic clocks are typically 
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constructed as linear models that predict chronological 

age or age-related phenotypes using mean methylation 

levels from a relatively small number of individual 

cytosines. The rate of epigenetic aging, measured as the 

discrepancy between chronological age and epigenetic 

age estimates, is associated with environmental 

conditions [6], life history traits (e.g., age at first 

menarche [11] and menopause [12]), and has become a 

widely used indicator of biological age and attendant 

disease risk [1, 13, 14]. More recently, epigenetic clocks 

have been applied to understanding epigenetic 

rejuvenation events occurring either naturally during 

early embryonic development or as a consequence of 

cellular reprogramming. Whereas epigenetic age 

estimates of induced pluripotent stem cells (iPSCs) are 

typically reset to zero [6], transient treatments with 

Yamanaka factors that do not fully induce 

dedifferentiation also reduce epigenetic age estimates 

and have been recognized as a promising anti-aging 

therapeutic avenue [15]. Kerepesi, et al. have also 

reported a period of epigenetic rejuvenation occurring 

during early development in which epigenetic age 

estimates decrease after conception until reaching a 

“ground zero” state coinciding with gastrulation [16]. 

Yet, age estimates derived from epigenetic clocks may 

not fully capture other facets of epigenetic aging, and 

here, we integrate multiple measures of age-associated 

DNA methylation patterns to examine these phenomena 

more broadly. 

 

The mechanistic underpinnings of epigenetic clock 

signals are still unclear, but with millions of CpG 

dinucleotides in the genome [17], and minimal overlap of 

individual CpGs included across different epigenetic 

clocks [18], the “ticking” of epigenetic clocks is 

suggested to be the product of a more general epigenetic 

maintenance system than can be reflected by the clock 

sites alone [1]. Commonly referred to as epigenetic 

“drift”, the failure of this maintenance system has many 

references in the recent literature [2, 5, 19–22]. Yet, 

despite an abundance of reports examining age-related 

epigenetic drift [5, 21, 23], a consensus definition is 

lacking, with studies often defining drift to mirror the 

analytical approach employed [24]. For example, 

“epiallele frequency” [25], “discordance” [26], 

“disorder” [3], “entropy” [27], and “heterogeneity” [3] 

have all been used to assess epigenetic drift and reflect 

different analytical approaches. Perhaps the most 

inclusive definition of epigenetic drift is a change in the 

status of DNA methylation over time [21, 23]. Yet, 

according to this definition, even programmed changes 

which guide developmental processes could be 

considered epigenetic drift, and it is likely more useful to 
define epigenetic drift as a stochastic, rather than a 

deterministic change in methylation states. One popular 

approach for assessing stochastic changes in methylation 

is using Shannon’s Entropy [28]. Originating in 

information theory, this metric measures the amount of 

uncertainty in an occurrence or event. However, when 

applied to DNA methylation, Shannon’s Entropy simply 

reflects average methylation values (whether genome 

wide or at a specific CpG) and is also likely influenced 

by heterogeneity among cells. Heterogeneity of 

epigenetic patterning within cells requires analyzing 

single cells or in the case of bisulfite sequencing 

experiments, can be inferred from linked CpGs occurring 

on individual reads [3, 29]. 

 

Herein, we apply novel read-based strategies to resolve 

age-associated epigenetic disorder across the mouse 

genome. By considering methylation states between 

individual CpGs and their immediate neighbors, we 

directly assess epigenetic disorder and investigate its 

relationship to epigenetic clock signals, embryonic 

development, lifespan interventions, and cellular 

reprogramming. Borrowing from the conceptual 

framework of Waddington’s epigenetic landscape, we 

hypothesize that low levels of epigenetic disorder 

characterize robust epigenomic states and that gains in 

disorder occurring with age lead to “erosion” of this 

landscape [2, 22, 30–32]. We find that approximately 

30% of the genome is disproportionately affected by 

age-related epigenetic disorder. Loci which act as 

predictors in conventional epigenetic clocks based on 

mean methylation levels appear to be enriched in regions 

that both accumulate and lose disorder with age, 

suggesting a direct link between epigenetic disorder 

dynamics and clock signals. We subsequently develop 

epigenetic clocks based on our regional disorder (RD) 

metric and compare age predictions with those produced 

using conventional epigenetic clocks and those based on 

entropy. Upon exploring the influences of development, 

lifespan interventions, and cellular dedifferentiation, we 

identify similarities as well as clear divergence between 

epigenetic clock signals based on either mean DNA 

methylation or regional DNA methylation disorder. 

Contrary to predictions based on prior studies, we find 

that disorder increases during early development and 

global levels of disorder are unaffected after cellular 

rejuvenation. Collectively, our findings suggest that 

DNA methylation disorder dynamics are a key 

contributor to epigenetic clock signals, yet also highlight 

a fundamental decoupling of disorder dynamics from 

canonical epigenetic aging that is likely to inform the 

potential of lifespan intervention strategies. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

Reduced representation bisulfite sequencing (RRBS) 

data from 255 mouse samples were acquired from 
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NCBI’s Sequence Read Archive (Accession: 

PRJNA319643). Individuals ranged in age from 0.67 to 

35 months, and represented both sexes, four strains 

(DW/J × C3H/HEJ)/F2, (C57BL/6J × BALB/cByJ)/F2, 

B6D2F1 and C57BL/6), and two diets (standard and 

caloric restriction). This dataset included methylomes 

from whole blood samples, induced pluripotent stem 

cells (iPSCs) derived from kidney (n = 3) and lung  

(n = 3), as well as the fibroblasts they were derived 

from (n = 3 lung, n = 3 kidney). Sample collection and 

library preparation methods are detailed in [33]. 

 

Data processing 

 

Raw sequence reads were trimmed of low-quality 

sequences using Trim Galore! (v0.6.5, options: --paired 

–rrbs –quality 25 –illumina). Trimmed reads were then 

aligned in paired end mode to a bisulfite index of the 

latest version of the mouse genome (GRCm39) using 

Bismark (v0.22.3), with mapping efficiency ranging 

from 54–70% among samples. Following alignment, 

reads were sorted by genomic coordinate, and 

converted to human readable SAM files using the 

Samtools (v1.10) functions ‘sort’ and ‘view’, 

respectively. The methylation call strings from each 

read were extracted in R (v3.6.1) using a custom  

R script. Reads with less than 2 CpGs were removed 

from the analysis. Each CpG within a methylation call 

string was then scored based on whether its 

methylation status matched the methylation status of its 

nearest neighbors. Because the first and last CpG on a 

string has only one nearest neighbor, the maximum 

disorder score is one (1), while each CpG in the 

internal part of a string has two nearest neighbors (one 

upstream and one downstream), giving a maximum 

disorder score of two (2). 

 

Calculation of disorder 

 

The proportion of disordered neighbor pairs (PDN) was 

calculated on a per read basis by taking the proportion 

of neighbor pairs within the read that were disordered 

(i.e. methylation state differed) over the total number of 

neighbor pairs within the read. Practically, this was 

calculated as follows: 

 

 PDN =
sum of disordered neighabor pairs

sum of totalneighabor pairs
 

 

Calculation of regional disorder and methylation 

 

Due to differences in coverage across individuals, we 

normalized our metric of disorder across 200 bp 

windows of the genome, subsequently referred to as 

regional disorder (RD; Figure 1A). To measure RD, we 

binned the genome into 200 bp windows using the 

Bedtools (v2.26.0) function ‘makewindows’ and used 

the Bedtools ‘map’ function to average the per-read 

PDN, methylation, and CpG density for all reads for 

which >51% of the read mapped to a specific window, 

preventing reads from being represented in more than 

one region. Regional methylation (RM) was calculated 

using the mean proportion of methylated cytosines 

within each region. Regions with less than five reads 

per sequencing run were excluded from analysis, and 

data from separate sequencing runs were merged 

together on a per individual basis using a weighted 

average based on the number of reads from each run. 

We then removed regions which were not present in at 

least 80% of all 255 samples. 

 

Calculation of regional entropy 

 

Regional entropy (RE) was calculated for each 200 bp 

window as follows: 

 

RE 2( ) (1 ) 2(1 )RM log RM RM log RM= −  − −  −  

 

Age-associated disorder, methylation, and entropy 

 

To test if disorder increased with age, we selected a 

subset of whole blood methylomes from 153 male, 

C57BL/6 mice fed a standard diet, with individuals 

ranging from 0.67 to 35 months of age. Using this 

subset, we performed individual Spearman correlations 

between age and both RD and RM with a false 

discovery rate (FDR) correction for multiple 

comparisons using the corr.test function from the 

package psych in R [34]. Regions with a correlation 

coefficient ≥0.5 and an FDR corrected p-value < 0.05 

were considered to gain disorder or methylation with 

age, and those with a correlation coefficient ≤−0.5 and 

p-value < 0.05 were considered to lose disorder or 

methylation with age. 

 

Calculation of global disorder 

 

For each sample we calculated global disorder using the 

mean RD values of those regions passing the filtering 

approach outlined above, which allowed us to directly 

compare disorder between individuals despite 

differences in coverage or depth of coverage across the 

genome. We also calculated global disorder using only 

regions which displayed any modest gain disorder with 

age (correlation coefficient ≥0.25; n = 45,668) and only 

regions which lost disorder with age (correlation 

coefficient ≤−0.25; n = 3,789). We then modeled the 

relationships between all three global disorder metrics 

and age using the lme package in R, and age-adjusted 
global disorder was calculated using the residuals from 

the quadratic relationship between global disorder  

and age. 
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Genomic enrichment of age-associated disorder 

 

We then classified each 200 bp region by its genomic 

localization according to annotations of genes, introns, 

exons, CpG density, promoters, enhancers, transcription 

factor (TF) binding sites, CTCF binding sites, polycomb 

repressive complex 2 targets (PRC2), and Petkovich 

epigenetic clock sites [33]. Coordinates for genes, 

introns, and exons were used as listed by the most 

recent Refseq annotation of the mouse genome 

(GRCm39) with genes considered as the entire interval 

between transcription start and end coordinates. 

Coordinates of promoters, enhancers, TF binding sites 

and CTCF binding sites were determined using the 

Expression and Regulation annotation track from  

UCSC Genome Browser (GRCm39), CpG density was 

calculated using the average number of CpGs per 

informative read over the 100 possible CpGs per region, 

and PRC2 target genes were determined by previously 

published ChIP-seq data of PRC2 subunit binding in 

mouse ESCs [35], with any gene binding at least one 

PRC2 subunit being considered a PRC2 target. 

Coordinates from the Petkovich epigenetic clock [33] 

were translated to the current mouse genome annotation 

using NCBI’s coordinate remapping service. Overlap 

between the 200 bp regions and each genomic category 

(at least 1 bp) was determined using a custom R script. 

Genomic enrichment was determined using binomial 

tests using all other covered loci as a background. 

 

Gene ontology 

 

Genes in regions determined to gain or lose RD with 

age were split into lists and compared against the 

background (all represented genes) for gene ontology 

enrichment using gProfiler. Genes spanning multiple 

age-associated regions were only counted once per gene 

list. 

 

CpG methylation 

 

Merged alignment files for each sample were also used 

to produce CpG methylation matrices using 

Bioconductor’s MethylKit. Individual cytosines from 

opposite strands were merged into single CpGs 

(destrand = TRUE). Only CpGs which were covered at 

a depth of 10× reads across all 153 male, C57BL/6, 

standard diet samples were retained for further analysis. 

 

Clock optimization 

 

To compare our measures of disorder with epigenetic 

aging, we developed four different epigenetic clocks 
based on RD, RM, RE, and CpG methylation as 

predictors of chronological age. We used the glmnet 

package in R to select predictors using elastic net 

regularized regression and a leave-one-out cross 

validation (LOOCV) approach to assess model 

performance. Alpha values for each model were set to 

0.5 (true elastic net) and lambda was cross validated 

across all samples in the training set for each individual 

model. Age estimates from test samples (i.e., remaining 

individuals not used to train the model) were used to 

assess the error of the clocks. To assess robustness of 

individual predictor sites, we extracted predictors from 

each model and determined the proportion of the 153 

data-type-specific clocks each was included in. The 

robustness of CpG clocks was assessed by assigning 

individual CpGs to their respective genomic region, 

with each region being counted only once per clock 

iteration (i.e. multiple clock sites per region were not 

multiply counted.) We then determined the overlap 

between selected clock regions between RM, RD, RE, 

and CpG clocks. 

 

Representative clock building 

 

While LOOCV approaches provide a more inclusive 

estimate of predictive power, they do not provide  

a singular model appropriate for downstream 

applications. Thus, we constructed an additional set of 

clocks by randomly splitting samples into a training set 

(n = 14) and a test set (n = 39), which consisted of 2 or 

3 individuals from each age class. We refer to these 

models as the “representative” clocks for each data type 

(Supplementary Figure 1), and the same training and 

test set were used for every data type. 

 

Testing the effects of lifespan interventions 

 

We then tested the effects of three lifespan 

interventions: caloric restriction beginning at 14-weeks 

of age, knock out of growth hormone receptor (GHR), 

and dwarfism using the representative clocks. The 

dataset consisted of 22 male and female individuals 

from mouse strain Snell Dwarf (DW/J × C3H/HEJ)/F2, 

split between Snell Dwarf (mutation in Pit-1 gene;  

n = 10) and their respective controls (“Snell Dwarf 

Control”; n = 12), 26 male and female individuals from 

strain (C57BL/6J × BALB/cByJ)/F2, split between 

GHR knock out (GHRKO, n = 11) and GHR wild type 

(GHR WT, n = 15), 22 male B6D2F1 mice, split 

between standard diet (n = 10) and caloric restriction  

(n = 12), and 20 male individuals from line C57BL/6 on 

a calorie restricted diet. Specific details of lifespan 

extending treatments can be found in Petkovich, et al. 

[33]. We calculated age adjusted global disorder, RD, 

RM, and RE as described above, and extracted CpG 

methylation information for each individual and then 
applied our representative epigenetic clocks from each 

data type to acquire epigenetic age estimates. Data from 

individuals experiencing lifespan interventions was 
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handled exactly as described above and any missing 

predictor was assigned a zero value so as to be dropped 

from the model. Differences between treatments were 

determined using a one-way ANOVA. 

 

Disorder during de-differentiation and development 

 

We analyzed DNA methylomes from mouse iPSCs and 

their respective lung (n = 6) or kidney (n = 6) fibroblast 

precursors. Specific details regarding the de-

differentiation of fibroblasts can be found in Petkovich, 

et al. [33]. Datasets for the analysis of methylation 

dynamics across embryonic development were acquired 

from SRA accessions PRJNA150129 and 

PRJNA221793. Methods for sample preparation and 

sequencing in these datasets are detailed in Kerepesi,  

et al. [16] and Smith, et al. [36], respectively. Sample 

selection and filtering for loci comprising the Stubbs 

epigenetic clock [7] was modeled after the epigenetic 

clock methods in Kerepesi, et al. [16] to reproduce 

reported results with the traditional CpG-based 

approach. This included removal of samples retaining 

the polar bodies, as well as those derived from pre-

fertilization gametes and ESCs. A similar sample-

selection strategy was utilized for the region-based 

metrics, but the filtering strategy instead followed that 

outlined earlier in this paper for RD,  

RM, and RE. Overall, 36 samples were included in the 

window-based analyses, and 38 in the CpG-based 

Stubbs clock (due to differences in filtering 

requirements between the two approaches). 

Developmental stages represented in the ‘early’ 

developmental group ranged from zygote to ICM 

(approximated to 0.5–3.5 days after [16]), with the 

‘late’ group consisting of embryonic and 

extraembryonic tissue from E6.5 and E7.5 embryos. 

 

Age adjusted global disorder, and epigenetic age 

estimates for embryonic samples were calculated using 

representative RD, RM, RE clocks and the Stubbs CpG 

clock [7] as described for the lifespan intervention 

experiments. As data originated from two different 

datasets and consisted of different tissues than those 

used to train representative clocks, age adjusted global 

disorder and epigenetic age predictions were normalized 

within their respective datasets. Differences between the 

epigenetic ages of iPSCs were determined using a two-

way ANOVA with cell type (iPSC or fibroblast) and 

tissue (kidney or lung) as predictors. To further 

investigate the role of disorder during development and 

de-differentiation, we performed two-tailed t-tests to 

determine differences in RD occurring after de-

differentiation (fibroblast vs iPSC), or across 
development. For this analysis, we grouped both 

fibroblast types (kidney and lung) to compare against 

the iPSCs, as well as grouping the developmental 

datasets into early (E0.5–3.5) and late (E6.5–7.5) 

development. Given the especially low sample size for 

the iPSC dataset (n = 12), we also removed any regions 

with missing values. P-values from t-tests were 

corrected using FDR, via the function p.adjust in R. 

Significant differences between groups were determined 

by an adjusted p-value ≤ 0.05 and a mean difference in 

disorder between groups of at least |0.1|. Significant 

differences in disorder were then further characterized 

into regions which gained disorder during development 

or de-differentiation, and regions which lost disorder 

during development or de-differentiation. To determine 

the effect size of any given region on epigenetic age 

prediction, we took the mean difference between groups 

(either de-differentiation or development) at that region 

and multiplied it by the beta value for that region used 

in the RD epigenetic clock model. The effect size for 

each region was then normalized to the percent of the 

total effect size for the clock. 

 

Data availability 

 

The data that support the findings of this study are 

openly available in NCBI’s Sequence Read Archive 

(Accession: PRJNA319643). Examples of custom R 

scripts used to calculate regional disorder are available 

on GitHub (https://github.com/embertucci/epigenetic-

disorder). 

 

RESULTS 
 

Disorder in DNA methylation patterns are strongly 

correlated with age on a regional and global scale. Of 

the 249,015 regions assessed, RD was significantly 

correlated with age in 76,353 regions (30.7%), with RD 

increasing with age in 70,094 genomic regions (91.8%; 

Figure 1B) and decreasing with age in 6,259 genomic 

regions (8.2%; Figure 1B). The average RD across all 

regions, or global disorder, increases with chronological 

age according to a quadratic relationship (R2 = 0.51,  

p < 2.2e-16; Figure 1C). Consistent with increases and 

decreases in RD being driven by distinct processes, 

regions experiencing increases in RD (cor ≥0.25) 

display a quadratic relationship to age (R2 = 0.74,  

p < 2.2e-16; Figure 1D), whereas regions experiencing 

decreasing RD (cor ≤0.25) display a linear relation with 

age (R2 = 0.77, p < 2.2e-16; Figure 1E).  

 

With the exception of the Y chromosome, every 

chromosome incurs significant age-related accumu-

lation of RD (Figure 1F). Given that more than 30% of 

the genome experiences age-associated RD, only sites 

with a p-value ≤ 0.05 and a correlation coefficient 

greater ≥0.5 (n = 4149) or ≤−0.5 (n = 286) were 

considered as age-associated for enrichment tests, with 

all other regions considered background (n = 244,580). 

https://github.com/embertucci/epigenetic-disorder
https://github.com/embertucci/epigenetic-disorder
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Regions accumulating RD with age were significantly 

enriched in genes (p < 2.2e-16; Figure 1G) and 

promoters (p < 2.2e-16; Figure 1H), depleted in 

enhancers (p < 2.2e-16; Figure 1I), enriched in PRC2 

target genes (p < 2.2e-16; Figure 1J), and depleted in 

both transcription factor (p = 0.00015; Figure 1K) and 

CTCF (p = 1.35e-12; Figure 1L) binding sites. Although 

enrichment scores were less robust, regions losing  

RD with age were significantly enriched in genes  

(p = 8.725e-05; Figure 1G), promoters (p = 7.073e-11; 

Figure 1H), and PRC2 target genes (p = 0.020; Figure 

1J) and were depleted in enhancers (p = 0.030; Figure 

1I). The mean CpG density did not differ in age-

associated regions when compared to background 

(Figure 1M). Genes which accumulate disorder with age 

(n = 1,635) were significantly enriched in 552 different 

biological processes (GO:BP) with the most significant 

terms relating to nervous system development and 

differentiation (Supplementary Table 1; Figure 1N). 

Genes losing disorder with age (n = 197) were enriched 

in 14 different biological processes, with the most 

significant terms relating to multicellular organismal 

development (Supplementary Table 2; Figure 1N). 

 

We next examined the relationship between RD and 

regional averages of Shannon’s Entropy, a commonly 

used measure of epigenetic drift. Regional entropy  

(RE) is calculated directly from mean methylation 

values, and thus has a strong relationship to regional 

methylation (RM), even when regional values are 

averaged across all individuals (Figure 2A). However, 

in loci where RE reaches its maximum (RE = 1, mean 

 

 
 

Figure 1. Epigenetic disorder increases across the murine lifespan. (A) Diagram of the approach for measuring regional disorder 

(RD). (B) Density of all genomic regions assessed with respect to their Spearman correlation coefficients between RD and age. (C) The 
relationship between global disorder and age in mice. (D) Average RD across all regions that gain disorder with age (correlation coefficient 
≥0.25), or (E) lose disorder with age (correlation coefficient ≤−0.25. (F) Manhattan plot of the distribution of FDR corrected p-values of the 
relationship between RD and age. Red line marks a commonly used genome wide significance value of p = 5 × 10−8. Enrichment of age 
associated RD in genes (G), promoters (H), enhancers (I), PRC2 target genes (J), transcription factor binding sites (K), CTCF binding sites (L), 
and average CpG density (M). (N) The six most significant gene ontology biological processes (GO:BP) for regions gaining or losing disorder 
with age. Regions which gain disorder with age are shown in blue and regions which lose disorder with age are shown in red. 
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methylation = 50%), RD spans from fully ordered to 

fully disordered (RD = 0–1). We found that the 

relationship between average RD and average RE is 

best explained by a quadratic relationship (R2 = 0.83, 

p < 2.2e-16; Figure 2B) with increasing RE generally 

indicating increases in RD. While the relationship 

between global RD and global RE does not change with 

age (Supplementary Figure 2), the relationship becomes 

increasingly variable at greater values of RE 

(Supplementary Figure 3). Age dependent changes to 

RM and RD are linked as 78.7% (n = 38,926) of regions 

experiencing modest age-associated RD (cor ≥ |0.25|) 

also incur modest age-associated RM (cor ≥ |0.25|); 

however, the remaining 21.3% (n = 10,531) of age-

associated changes in RD do not correspond with RM, 

and 34.1% (n = 20,152) of age-associated RM occur 

independently of changes in RD (Figure 2C). 

 

We also aimed to understand how signals underlying 

epigenetic clocks relate to epigenetic disorder. 

Interestingly, there is a clear enrichment of Petkovich 

epigenetic clock loci in regions which increase and 

decrease in RD with age (Figure 3A), with the absolute 

correlation coefficient of RD and age being 

significantly higher in Petkovich epigenetic clock 

regions when compared to those not included in the 

clock (p < 2e-16; Figure 3B). However, 37 of the 90 

total clock CpGs fall into the same 200 bp genomic 

region. To more thoroughly resolve the relationship 

between epigenetic clock signals and epigenetic 

disorder, we built a series of epigenetic clocks based on 

CpG, RM, RE, and RD states. Over the 153 LOO 

iterations for each clock type, there was no difference in 

absolute error across clocks, suggesting that each 

methylation metric is capable of predicting 

chronological age with equivalent accuracy (Figure 3C). 

Similarly, there was no difference in the mean  

absolute error produced by the representative clocks 

(Supplementary Figure 1). 

 

To further compare the influence of methylation context 

on clock composition, we assessed the overlap of loci 

incorporated into each clock type as well as the 

frequency in which they were selected (referred to as 

robustness). Of the LOO iterations, the CpG clocks 

selected 312 different regions with an average 

robustness of 0.11 (Figure 3D), RM clocks selected 106 

different regions with an average robustness of 0.05 

(Figure 3E), RE clocks selected 330 different regions 

with an average robustness of 0.11 (Figure 3F), and RD 

clocks selected 483 different regions with an average 

robustness of 0.13 (Figure 3G). Interestingly, the mean 

absolute RD correlation coefficients for age were 

significantly higher for CpG, RM, RE and RD clock 

regions when compared to non-clock regions (CpG p < 

2e-16, RM p < 2e-16, RE p < 2e-16, RD p < 2e-16; 

Figure 3H–3K). The majority of clock sites (86.5%) 

were specific to each clock type; however, seven 

regions were selected across all clock types. Pan-clock 

regions are all associated with genes (Map10, Nlrp5-ps, 

Rasef, Rnf220, Evx2, Gm21297, and Apba1), with five 

(71%) regions located within promoters, and all 

increase in disorder with age (Figure 3L). While all four 

datatypes produce low errors in age prediction (Figure 

3C), the discordance of chronological age with the age 

prediction (or “delta epigenetic age”) is highly 

correlated with age adjusted global disorder in all 

datatypes (CpG R2 = 0.09, p = 7.53e-05; RM R2 = 0.07, 

p = 0.0007, RE R2 = 0.12, p = 6.89e-06, RD R2 = 0.18; 

p = 3.00e-08; Figure 3M). 

 

We then tested the influence of common lifespan 

manipulations on epigenetic age estimates across 

different clock types. Caloric restriction led to a 

 

 
 

Figure 2. Regional disorder is distinct from Shannon’s entropy and age-associated changes in mean methylation. (A) The 

relationship of regional entropy (RE; black line) with regional methylation and regional disorder (RD; blue dots) with regional methylation 
(RM). Data points show a single region averaged across all samples. (B) Relationship between RD and RE averaged across all samples. (C) 
Correlation coefficients of RD with age and RM with age across the 153 samples used to build the epigenetic clock. Regions which increase 
in RM or RD with age have positive correlation coefficients, regions which decrease in RM or RD with age have negative correlation 
coefficients. 
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reduction in age-associated RD, but the effect varied 

across strains. Male C57BL/6 mice fed a calorie 

restricted diet had significantly younger epigenetic ages 

when compared to controls as determined by all clock 

types (CpG p = 0.00043, RM p = 2.16e-07, RE p = 

4.62e-06, RD p = 5.75e-08; Figure 4A). However, mean 

age adjusted global disorder appeared unaffected (p = 

0.62; Figure 4B). Conversely, male B6D2F1 mice fed a 

calorie restricted diet only had significantly younger 

epigenetic ages as determined by the RM epigenetic 

clock (CpG p = 0.46, RM p = 0.018, RE p = 0.073, RD 

p = 0.39; Figure 4C). However, there was a slight trend 

 

 
 

Figure 3. Epigenetic disorder underlies epigenetic clock signals. (A) Distribution of Petkovich epigenetic clock sites (red) across 

correlation coefficients between regional disorder (RD) and age. (B) Average absolute correlation coefficient between RD and age of 
regions which are included in the Petkovich epigenetic clock (red) compared to those which are not included. (C) Error of epigenetic age 
estimates produced by leave-one-out cross validation (LOOCV) for each data type. (D–G) Manhattan plots showing the robustness for each 
region (i.e., the proportion of clocks each region was selected in) across (D) CpG methylation (black), (E) regional methylation (RM; yellow), 
(F) regional entropy (RE; light blue), and (G) RD (dark blue) contexts. (H–K) Density plots showing the distribution of clock sites for each 
data type across correlation coefficients between RD and age. (L) Overlap between regions included in epigenetic clocks produced from 
each data type. (M) Relationship between delta epigenetic age (chronological age – predicted age) and age-adjusted global disorder for 
each data type. 
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for calorie restricted individuals to have greater mean 

age adjusted global disorder when compared to mice on 

a standard diet (p = 0.097; Figure 4D). Genetic 

interventions which extend lifespan resulted in a general 

decrease in epigenetic age. Snell Dwarf mice had 

significantly younger epigenetic ages when compared to 

controls according to the RD and RM clocks, but not 

the CpG or RE clocks (CpG p = 0.078, RM p = 0.0059, 

RE p = 0.23, RD p = 0.011; Figure 4E). Snell Dwarf 

mice also showed reduced mean age adjusted global 

disorder compared to control mice (p = 0.027; Figure 

4F). GHR knock out also resulted in significantly 

younger epigenetic ages according to the RM and RE 

clocks, but not the CpG or RD clocks (CpG p = 0.088, 

RM p = 0.0080, RE p = 0.031, RD p = 0.64; Figure 4G), 

and no difference in age adjusted regional disorder was 

observed between GHRKO and control mice (p = 0.39; 

Figure 4H). 

 

We next investigated the impacts of cellular 

dedifferentiation on epigenetic disorder by comparing 

DNA methylomes of iPSC cells and their differentiated 

precursors. A significant reduction in epigenetic age 

predictions after dedifferentiation was observed across 

all clock types except for RE (CpG p = 7.11e-08, RM p 

= 3.41e-06, RE p = 0.20, RD p = 3.93e-08; Figure 5A). 

Interestingly, there was no difference in the global 

disorder between kidney or lung fibroblasts when 

compared to their respective iPSCs (p = 0.28; Figure 

5B). Given that dedifferentiation led to a reduction in 

epigenetic age estimates but did not affect global 

disorder, we sought to identify those regions in which 

RD is affected by dedifferentiation. Upon comparing 

RD across all fibroblasts and iPSCs, 26,512 regions 

significantly increase in RD after differentiation and 

19,419 regions significantly decrease in disorder after 

dedifferentiation, but these regions do not dis-

proportionately acquire age-associated RD relative to 

background (Figure 5C). Interestingly, the influence of 

dedifferentiation on RD epigenetic clock estimates are 

driven by differences in RD at just several clock sites 

(Figure 5D), with four regions contributing 35.7% of 

the overall effect. 

 

Consistent with a previous report identifying an 

epigenetic rejuvenation event occurring during early 

development [16], we observed a significant decrease in 

epigenetic age predictions occurring between 

embryonic days 4 and 6 using the Stubbs CpG 

methylation epigenetic clock [7] (CpG p = 1.32e-08; 

Figure 5E) and the RM clock (RM p = 0.0019; Figure 

5F). Conversely, we observe a significant increase in 

 

 
 

Figure 4. Epigenetic disorder is influenced by lifespan extending manipulations. The effect of caloric restriction in C57BL/6 mice 
on (A) epigenetic age predictions from each data type and (B) age-adjusted global disorder. The effect of caloric restriction in B6D2F1 mice 
on (C) epigenetic age predictions from each data type and (D) age-adjusted global disorder. Comparison of Snell dwarf and control mice on 
(E) epigenetic age predictions from each data type and (F) age-adjusted global disorder. The effect of growth hormone receptor knock-out 
(GHRKO) on (G) epigenetic age predictions from each data type and (H) age-adjusted global disorder. All plots show median, upper, and 
lower quartiles, and maximum and minimum. Outliers beyond 1.5 interquartile range are plotted. 
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epigenetic age predictions during early embryonic 

development when using the RD and RE clocks (RD  

p = 3.81e-05; RE p = 1.90e-08; Figure 5G, 5H). In 

addition, global disorder is strongly increased during 

development (Figure 5I). Upon comparing RD across 

all samples from embryonic days 0.5–3.5 (n = 24) and 

embryonic days 6.5–7.5 (n = 12), 31,687 regions 

significantly increase in RD during development and 

368 regions significantly decrease in RD during 

development. These regions were not significantly 

enriched in regions with age-associated RD (Figure 5J). 

Similar to our findings examining the influence of de-

differentiation, the predictions of the epigenetic clock 

appear to be driven strongly by differences in RD at just 

several clock sites, with one region having a total effect 

size of 2.51 months, contributing 14.6% of the 

difference in ages between groups (Figure 5K). Given 

that the clock has 86 of the regions included as 

predictors represented, we would expect each region to 

contribute just 1.16% to the overall effect size. 
 

DISCUSSION 
 

Epigenetic drift is broadly hypothesized to be a primary 

contributor to epigenetic aging. However, drift is a 

multifaceted phenomenon encompassing both stochastic 

and deterministic processes and is unlikely to be fully 

captured by a single metric. In this study, we report an 

approach for spatially resolving genomic patterns of 

DNA methylation disorder, which is distinct from 

 

 
 

Figure 5. Epigenetic disorder during de-differentiation and development. (A) Epigenetic age predictions using each of the 

representative epigenetic clocks and (B) global disorder of kidney fibroblasts (black), kidney derived iPSCs (grey), lung fibroblasts (dark 
purple), and lung derived iPSCs (pink). Plot shows median, upper and lower quartiles, maximum, and minimum. Outliers beyond 1.5 
interquartile range are plotted. (C) Distribution of regions which gain (blue) or lose (red) disorder after de-differentiation across correlation 
coefficients between regional disorder (RD) and age. (D) Effect sizes of de-differentiation on the RD epigenetic clock. Stubbs CpG 
methylation (E), RM (F), RE (G), and RD (H) epigenetic clock predictions of samples during embryonic development. (I) Global disorder of 
samples during embryonic development. (J) distribution of regions which gain (blue) or lose (red) disorder during early development across 
correlation coefficients between regional disorder (RD) and age. (K) Effect sizes of development on the RD epigenetic clock. 
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measures of both average methylation and entropy. 

Age-associated changes in regional disorder (RD) are 

found in approximately one third of the genome and 

generally reflect the accumulation of disordered 

methylation; however, the opposite pattern is observed 

in a subset of regions in which DNA methylation 

patterns become more ordered with age. Given that 

epigenetic drift or disorder is thought to be driven in 

part by stochastic processes, we hypothesize that the 

directionality of changes in RD represent different 

functional pathways. Yet, the specific biological 

mechanisms that mediate losses of RD with age remain 

unclear. Age-associated gains and losses of RD were 

disproportionately observed in coding regions, 

promoters, and regions harboring PRC2 target genes, 

and age-associated increases in RD were strongly 

enriched in developmental genes, especially those 

functioning in neural development. These gains in 

disorder with age support the deleteriome model of 

aging [37], wherein small deleterious errors accumulate 

in the epigenome without effect until later in life, when 

epigenomic stability is compromised [2]. We suggest 

that disorder accumulates across the genome until it 

reaches a critical threshold – this may explain why the 

majority of regions across the genome are characterized 

by relatively low disorder (RD <0.5; data not shown). 

The value of this hypothetical threshold and the factors 

which contribute to the accumulation of disorder have 

the potential to explain the rate of aging and possibly 

maximum lifespan across species [32]. 

 

Consistent with the hypothesis that disorder in DNA 

methylation patterns underlies signals in conventional 

CpG clocks (i.e., those based on mean CpG methylation 

levels), we find that loci comprising clocks constructed 

using RD, RM, RE, and CpG contexts are all enriched 

for regions in which disorder changes with age, and loci 

which are shared across clocks are involved biological 

processes such as cell cycle, tumor suppression, and 

development. Interestingly, Evx2 is shared across all 

clock contexts, and is frequently reported as being age-

associated across a variety of vertebrate species  

[38–41]. However, we identify notable distinctions and 

minimal overlap across clock contexts. For example, 

while a subset of CpGs selected as predictors in an 

epigenetic clock were enriched in regions with age-

associated disorder, many CpG clock sites also fell into 

regions lacking age-associated changes in disorder. 

Thus, while disorder underlies some components of 

traditional CpG epigenetic clocks, other components 

may be attributed to other processes like coordinated 

changes in methylation or cell type composition. By 

contrasting the effects of caloric restriction, genetic 
manipulations, cellular reprogramming, and develop-

ment across different clock types, we further identify 

both similarities and clear distinctions according to 

DNA methylation context and genomic scale. For 

example, while traditional lifespan extending 

treatments, such as caloric restriction, broadly affect RD 

epigenetic clocks, there is no observable effects on 

global disorder. This may be because the magnitude of 

the effect of caloric restriction is too small to be seen 

when averaged across the entire genome. Similarly, 

while CpG and RM clocks demonstrate a “ground zero” 

occurring during mid-development [16], we see an 

increase in RE and RD clock predicted ages during the 

same period, suggesting that average methylation states 

may not fully reflect how the DNA methylome changes 

throughout development. Collectively, these findings 

demonstrate the connections between epigenetic drift 

and other aspects of epigenetic aging, while also 

highlighting a complexity that should be considered 

when assessing read outs from epigenetic clocks alone. 

 

In mice, global disorder changes with age according to a 

quadratic function, with decreases in disorder occurring 

rapidly earlier in life prior to a steady increase with age. 

This pattern is consistent with previous findings of a 

quadratic relationship between global DNA methylation 

entropy and age in the naked-mole rat [42]. The initial 

high level of global disorder suggests that development, 

as well as aging, may be characterized by a 

disorganized epigenetic landscape – possibly due to a 

transitionary period between methylation states. Given 

the dynamic nature of the DNA methylome during 

development [6, 43, 44], it is likely that RD metrics, 

like other measures of DNA methylation that provide 

temporal snapshots, capture this transition as high 

disorder. While data from embryonic samples suggest 

that disorder increases during early development, the 

trajectory of global disorder throughout development, 

and whether it corresponds with previous findings of an 

epigenetic “ground zero” during development [16], will 

require a more complete developmental series to fully 

resolve. 

 

Age estimates derived from epigenetic clocks are ideal 

for predicting chronological age (i.e., forensics, 

conservation and management applications [45, 46]) as 

well as identifying the consequences of accelerated 

epigenetic aging (i.e., biomarkers in biomedical 

approaches [1]). Yet, collapsing mean methylation 

levels into a single value presents challenges for 

understanding the drivers and biological pathways 

responsible for epigenetic aging. Given the push 

towards targeted, high-throughput approaches (e.g., 

bead-based assays) for acquiring data on age-associated 

methylation [38, 47], critical biological information is 

missed. While CpG level resolution has been integral in 
developing our understanding of epigenetic aging, 

clocks built using regionally averaged methylation 

perform with similar accuracy to those trained on 



www.aging-us.com 1013 AGING 

individual CpGs. We further demonstrate that the effect 

size of individual clock sites varies widely, and thus, 

changes in methylation states of just one or several 

clock loci can be misinterpreted as wholesale changes in 

epigenetic age. This is important especially when age 

estimates are compared across studies and different 

datasets. For example, we report that a single RD clock 

region accounted for nearly 10% of the difference in age 

estimation between fibroblasts and iPSCs. While the 

age predictions generated corroborate previous findings 

[6, 33], the inclusion (or exclusion) of this single region 

vastly changes our interpretation of the effects of de-

differentiation on epigenetic age. Thus, using epigenetic 

clocks of any kind gives us a narrow, and potentially 

easily skewed, understanding of epigenetic aging at the 

genomic scale. 

 

Overall, this study provides robust empirical evidence 

that epigenetic drift, as measured by epigenetic 

disorder, accumulates with age in non-random places of 

the mouse genome. Our analyses suggest that epigenetic 

disorder underlies aspects of traditional epigenetic 

clocks and highlights critical gaps in our interpretation 

of epigenetic aging. Although more work needs to be 

done to better resolve the drivers of epigenetic disorder 

– we provide an empirical basis for testing assumptions 

about this emerging phenomenon. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Representative epigenetic clocks from each datatype. (A, B) show results for the epigenetic clock 

constructed using CpG methylation data, (C, D) show results for the epigenetic clock constructed using regional methylation (RM) data, (E, 
F) show results from an epigenetic clock based on regional entropy (RE) data, and (G, H) show results from the epigenetic clock based on 
regional disorder (RD) data. Panel (I) indicates the number of predictors comprising each clock. 

 

F 

 

 
 

Supplementary Figure 2. The relationship between average regional disorder and average regional entropy across the 
lifespan of mice. Samples are broken up into distinct life stages which are denoted by different colors (immature – red, mature – orange, 

middle-aged – yellow, old – green, and very old – blue). 
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Supplementary Figure 3. Variation in average regional disorder increases with increasing values of average regional entropy. 
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Supplementary Tables 
 

Supplementary Table 1. Gene ontology results from regions with age-associated gains in disorder. 

Source GO term name GO ID Adjusted p-value 

GO:MF DNA-binding transcription factor activity, RNA polymerase II-specific GO:0000981 1.76E-28 

GO:MF DNA-binding transcription factor activity GO:0003700 7.58E-28 

GO:MF sequence-specific double-stranded DNA binding GO:1990837 5.72E-23 

GO:MF double-stranded DNA binding GO:0003690 4.64E-21 

GO:MF sequence-specific DNA binding GO:0043565 1.37E-20 

GO:MF RNA polymerase II transcription regulatory region sequence-specific DNA binding GO:0000977 1.79E-20 

GO:MF transcription regulator activity GO:0140110 5.41E-20 

GO:MF transcription cis-regulatory region binding GO:0000976 7.85E-19 

GO:MF transcription regulatory region nucleic acid binding GO:0001067 1.17E-18 

GO:MF RNA polymerase II cis-regulatory region sequence-specific DNA binding GO:0000978 1.70E-17 

GO:MF cis-regulatory region sequence-specific DNA binding GO:0000987 2.57E-17 

GO:MF binding GO:0005488 8.47E-17 

GO:MF protein binding GO:0005515 1.12E-15 

GO:MF DNA-binding transcription activator activity GO:0001216 1.01E-11 

GO:MF DNA-binding transcription activator activity, RNA polymerase II-specific GO:0001228 1.31E-11 

GO:MF gated channel activity GO:0022836 1.80E-11 

GO:MF DNA binding GO:0003677 8.54E-09 

GO:MF ion channel activity GO:0005216 8.80E-09 

GO:MF voltage-gated cation channel activity GO:0022843 1.21E-08 

GO:MF channel activity GO:0015267 2.18E-08 

GO:BP nervous system development GO:0007399 9.36E-84 

GO:BP neurogenesis GO:0022008 1.71E-68 

GO:BP system development GO:0048731 4.56E-67 

GO:BP multicellular organism development GO:0007275 3.14E-65 

GO:BP generation of neurons GO:0048699 4.99E-63 

GO:BP anatomical structure development GO:0048856 4.01E-61 

GO:BP neuron differentiation GO:0030182 3.05E-60 

GO:BP multicellular organismal process GO:0032501 5.25E-58 

GO:BP developmental process GO:0032502 5.17E-57 

GO:BP anatomical structure morphogenesis GO:0009653 1.15E-54 

GO:BP cell-cell signaling GO:0007267 1.09E-50 

GO:BP central nervous system development GO:0007417 4.10E-48 

GO:BP neuron development GO:0048666 2.56E-47 

GO:BP cell differentiation GO:0030154 5.75E-45 

GO:BP cell development GO:0048468 9.25E-45 

GO:BP cellular developmental process GO:0048869 1.71E-44 

GO:BP neuron projection development GO:0031175 2.60E-41 

GO:BP animal organ development GO:0048513 3.67E-41 

GO:BP brain development GO:0007420 2.06E-40 

GO:BP head development GO:0060322 4.07E-40 

Top 20 terms from molecular function (MF) and biological process (BP) based on significance values are shown. 
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Supplementary Table 2. Gene ontology results from regions with age-associated losses in disorder. 

Source GO term name GO ID Adjusted p-value 

GO:MF protein binding GO:0005515 0.00063605 

GO:MF binding GO:0005488 0.00159718 

GO:MF protein kinase activity GO:0004672 0.00357349 

GO:MF phosphotransferase activity, alcohol group as acceptor GO:0016773 0.01376325 

GO:MF transferase activity GO:0016740 0.04052106 

GO:BP developmental process GO:0032502 0.00019855 

GO:BP anatomical structure development GO:0048856 0.00021537 

GO:BP multicellular organismal process GO:0032501 0.00032362 

GO:BP anatomical structure morphogenesis GO:0009653 0.00042435 

GO:BP response to stimulus GO:0050896 0.00074356 

GO:BP signal transduction GO:0007165 0.0017411 

GO:BP regulation of cellular process GO:0050794 0.0030705 

GO:BP cellular response to stimulus GO:0051716 0.0044849 

GO:BP signaling GO:0023052 0.00807516 

GO:BP cell communication GO:0007154 0.01493627 

GO:BP regulation of biological process GO:0050789 0.01644778 

GO:BP biological regulation GO:0065007 0.02094827 

GO:BP intracellular signal transduction GO:0035556 0.03178697 

GO:BP multicellular organism development GO:0007275 0.04073998 

GO:MF protein binding GO:0005515 0.00063605 

GO:MF binding GO:0005488 0.00159718 

GO:MF protein kinase activity GO:0004672 0.00357349 

GO:MF phosphotransferase activity, alcohol group as acceptor GO:0016773 0.01376325 

GO:MF transferase activity GO:0016740 0.04052106 

GO:BP developmental process GO:0032502 0.00019855 

GO:BP anatomical structure development GO:0048856 0.00021537 

GO:BP multicellular organismal process GO:0032501 0.00032362 

GO:BP anatomical structure morphogenesis GO:0009653 0.00042435 

GO:BP response to stimulus GO:0050896 0.00074356 

GO:BP signal transduction GO:0007165 0.0017411 

GO:BP regulation of cellular process GO:0050794 0.0030705 

GO:BP cellular response to stimulus GO:0051716 0.0044849 

GO:BP signaling GO:0023052 0.00807516 

GO:BP cell communication GO:0007154 0.01493627 

GO:BP regulation of biological process GO:0050789 0.01644778 

GO:BP biological regulation GO:0065007 0.02094827 

GO:BP intracellular signal transduction GO:0035556 0.03178697 

GO:BP multicellular organism development GO:0007275 0.04073998 

Terms from molecular function (MF) and biological process (BP) are shown. 

 

 


