
www.aging-us.com 2866 AGING 

INTRODUCTION 
 

The rapid increase in the incidence of thyroid  

cancer (TC) has attracted worldwide attention. It is 

estimated that there will be 224,023 new cases in 

China [1] and 43,800 new cases in the United States  

in 2022 [2]. The widespread use of high-resolution 

imaging techniques such as ultrasonography has led to 

a sharp increase in the incidence of papillary thyroid 

carcinoma (PTC) [3–6]. The primary treatment option 

for PTC patients is surgical, with thyroid hormone 

supplementation required in all thyroidectomy and 

more than two-thirds of lobectomies [7, 8]. Given that 

some PTC cases display indolent behavior, surgeons 

have started considering active surveillance as an 

alternative to extensive surgery to reduce overtreatment 

and healthcare costs [9]. Further research on the 

pathogenesis and prognostic characteristics of PTC is 

needed to identify high-risk PTC patients and facilitate 

targeted treatment. 

The 2017, the American Joint Committee on Cancer 

(AJCC) emphasized the significance of age in TNM 

staging of thyroid cancer [10]. From 1990 to 2017,  

the age-standardized incidence of TC in both China 

and the United States showed an upward trend [11]. 

Therefore, it is particularly important to elucidate the 

pathogenesis and prognostic value of aging in PTC.  

 
Aging is defined as a decline in physiological function 

over time, leading to an increased likelihood of disease 

[12]. One of the major features of aged organs is the 

accumulation of cellular senescence [13–15]. Cellular 

senescence is originally defined as cells reaching their 

replication limit and being permanently arrested in 

their cell cycle [16]. Among the cancer hallmarks 

suggested for the third edition in 2022, four new ones 

were added, including senescent cells [17]. Targeting 

the activation or inhibition of cellular senescence is 

beneficial for tumor immunotherapy [18]. Although 

several lines of evidence indicate that young adults 
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ABSTRACT 
 

Senescence-induced therapy was previously considered as an effective treatment for tumors, and cellular 
senescence was initially regarded as an effective mechanism against cancer. However, whether cell senescence-
related genes can be used to predict the prognosis of papillary thyroid carcinoma (PTC) and immunotherapy 
remains unclear. We developed and validated a cell senescence-related signature (CSRS) by analyzing the gene 
expression of 278 genes related to cellular senescence in 738 patients with PTC. Additionally, further analysis 
showed that CSRS was a reliable predictor of patient outcomes in combination with immune checkpoint 
expression and drug susceptibility, and patients with high risk scores may benefit from immunotherapy. The 
findings of this study demonstrate that CSRS serves as an immunotherapeutic response and prognosis 
biomarker affecting the tumor immune microenvironment of PTC. 
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with cancers demonstrate unique histological and 

survival heterogeneity, their biology is incompletely 

understood [19, 20]. In our current study, we analyzed 

42,756 patients with PTC in the Surveillance, 

Epidemiology, and End Results (SEER) database and 

found that overall survival (OS), disease-specific 

survival (DSS), progression-free survival (PFS) were 

shorter in those aged 55 years or older. To 

comprehensively assess the role of cellular senescence 

in PTC progression and the potential to screen high-

risk patients, we performed cluster analysis on PTC 

patients using cellular senescence-related genes and 

constructed a cell senescence-related signature (CSRS) 

from the Genotype-Tissue Expression (GTEx), the 

Cancer Genome Atlas - Thyroid Carcinoma (TCGA – 

THCA) and eight cohorts in the Gene Expression 

Omnibus (GEO). Consensus clustering found that the 

overall OS of cluster 2 population was worse. 

Subsequently, we constructed CSRS through four genes 

(SNAI1, CDKN2A, HDAC4, NDRG1), and found that 

the degree of immune cell infiltration, clinico-

pathological characteristics of high-risk groups were 

significantly different, and the OS was worse. Finally, 

the CSRS can be used to predict the response of PTC 

patients to immunotherapy and chemotherapy drugs. 

 

MATERIALS AND METHODS 
 

SEER cohort, TCGA - THCA cohort, GTEx and 

GEO cohorts 

 

We followed the flowchart outlined in Figure 1 for our 

analysis. The SEER database is an authoritative cancer 

statistical database in the United States, recording  

the incidence, mortality, and morbidity of millions  

of patients with malignant tumors in various states  

and counties. Our study included patients diagnosed  

with PTC as their first primary tumor in the SEER  

cohort between 2004 and 2015. The TCGA-THCA  

dataset provides comprehensive information, including 

transcriptome profiling, copy number variation, DNA 

methylation, and somatic structural variation for a large 

number of cancer patients. We included PTC cases from 

the TCGA-THCA cohort with complete follow-up 

information, and we retrieved clinical data from the 

University of California at Santa Cruz (UCSC) Xena 

website (https://xena.ucsc.edu/). Transcriptome data of 

PTC tissues and normal tissues were obtained from the 

TCGA (T=510, N=58), GTEx (N = 337) and eight GEO 

cohorts (http://www.ncbi.nlm.nih.gov/geo): GSE33630 

(T=49, N=45), GSE60542 (T=33, N=30), GSE58545 

(T=27, N=18), GSE3467 (T=9, N=9), GSE3678 (T=7, 

N=7), GSE5364 (T=35, N=16), GSE27155 (T=51, 

N=4), GSE53157 (T=15, N=3). Since we obtained the 

data from public source websites, no ethical review was 

required.  

Consensus clustering analysis based on genes related 

to cellular senescence 

 

We extracted 278 genes related to cellular senescence 

from the CellAge website [21] (https://genomics. 

senescence.info/cells/) (Supplementary Table 1), which 

contains manually curated gene information related to 

cellular senescence. We analyzed the cell senescence 

genes extracted from PTC and normal tissues in TCGA, 

GSE33630, GSE60542 and GSE58545 through the 

“limma” package [22] of R software (R 4.1.0) to  

obtain differentially expressed genes (DEG) (FDR < 

0.05), and then took the intersection [23]. The TCGA-

THCA and GTEx data were batch corrected using the 

“normalizeBetweenArrays” function of the “limma” 

package. In cases where probe data shared the same 

gene name, we aggregated them to calculate the average 

expression. Subsequently, we performed Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) functional enrichment analyses on the genes in 

the intersection. We also constructed a protein-protein 

interaction (PPI) network using the STRING website 

(https://string-db.org/) and Cytoscape software (version 

3.8.2). Screening for prognostic genes associated with 

cellular senescence was done with a Cox analysis. 

Univariate Cox analysis was used to screen cellular 

senescence genes associated with OS (p < 0.05) and the 

expression levels of these genes were displayed with a 

heatmap. 

 
In accordance with the expression of OS-related  

cellular senescence genes, we conducted a consensus 

cluster analysis on PTC patients and examined Kaplan-

Meier (K-M) curves, clinicopathological characteristics, 

immune cell infiltration, immune microenvironment, and 

KEGG enrichment pathways among different clusters. 

 
The abundance of immune cell infiltration was assessed 

using the CIBERSORT algorithm [24, 25], which can 

determine the abundance of 22 types of immune cells in 

the tissue. The tumor microenvironment was evaluated 

using four indicators (ESTIMATEScore, StromalScore, 

ImmuneScore and TumorPurity) using the ESTIMATE 

algorithm [26]. 

 

Establishing and validating a prognostic model 

 

To quantitatively analyze the impact of cellular 

senescence genes on the prognosis of PTC patients,  

we randomly divided the TCGA-THCA cohort into  

a training cohort and a validation cohort (1:1). We 

constructed a CSRS by performing Least absolute 

shrinkage and selection operator (LASSO) regression 

analysis [27, 28] on the prognosis-related cellular 

senescence genes in the training cohort using the 

“glmnet” package [29]. Based on the prognostic model, 
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we performed risk score calculations for patients in  

the training cohort, validation cohort, and the entire 

TCGA-THCA cohort. The calculation formula of the 

CSRS was as follows [28]: 

 

1

n

i i

i

CSRS Exp Coef

=

=   

 
where Expi is the expression value of the i gene in  

the model, and Coefi is the coefficient calculated by 

LASSO. 

 
We conducted CSRS (Cellular Senescence Risk  

Score) calculations for patients within the training 

cohort, validation cohort, and the entire TCGA-THCA 

cohort. Based on the median risk scores, patients  

were stratified into high-risk and low-risk groups. 

Subsequently, we performed a comprehensive array  

of analyses, including K-M survival curves, receiver 

operating characteristic (ROC) curves, decision analysis 

curves, survival status maps, and heatmaps illustrating 

the genes associated with CSRS in distinct patient 

groups. 
 

The expression levels of genes involved in the 

construction of the CSRS were verified by the GEPIA2 

[30] website (http://gepia2.cancer-pku.cn/#index) and  

in five GEO datasets: GSE3467 (T=9, N=9), GSE3678 

(T=7, N=7), GSE5364 (T=35, N=16), GSE27155 

(T=51, N=4), GSE53157 (T=15, N=3). 
 

Hierarchical analysis 

 

To further mitigate the potential influence of 

clinicopathological features on CSRS as a prognostic

 

 
 

Figure 1. Flow chart of data analysis. (A) Prognosis by age group in SEERand TCGA-THCA cohorts; (B) Intersection of differentially 

expressed cellular senescence genes; (C) Prognosis-related cellular senescence genes; (D) Multi-omics analysis between two clusters;  
(E) Prognostic analysis between two clusters; (F) Consensus Cluster Analysis; (G) Construction of prognostic model of cellular senescence;  
(H) Analysis and validation of the performance of prognostic model of cellular senescence; (I) Multi-omics analysis. 

http://gepia2.cancer-pku.cn/#index
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factor, we conducted a stratified prognostic analysis 

based on various clinicopathological features within 

the entire TCGA-THCA cohort. These features include 

age [≥55 vs. < 55 years], gender [male vs. female], 

AJCC stage [III - IV vs. I - II], M [M1 vs. M0], N  

[N1 vs. N0], T [T3 - 4 vs. T1 - 2], BRAF [mutated  

vs. wild-type], RAS [mutated vs. wild-type], Cell 

Type [Classical vs. Follicular], Radiation therapy 

[Yes vs. No]. 

 

Multi-omics analysis 

 

In the entire TCGA-THCA cohort, using seven algorithms 

(TIMER [31], CIBERSORT [24, 25], CIBERSORT-ABS 

[24], QUANTISEQ [32], MCPCOUNTER [33], XCELL 

[34], EPIC [35]), and the analyzed algorithms will  

be employed to elucidate the extent of immune cell 

infiltration among different groups and identify immune 

cells playing pivotal roles. We created immune cell 

heatmaps to compare infiltration rates between high- and 

low-risk groups. 

 

To further analyze the differences in pathway 

enrichment between high and low risk groups, we 

performed Gene Set Variation Analysis (GSVA)  

with the “GSVA” package [36]. The gene set of 

“c2.cp.kegg.v7.4.symbols.gmt” was obtained from the 

MSigDB website [37], and statistics were considered 

significant was defined as p-values less than 0.05. 

 

Subsequently, we employed clinical correlation heatmaps 

to illustrate the distribution of clinicopathological features 

in the high and low-risk groups, along with the expression 

of genes involved in the CSRS. 

 

The immunophenoscore (IPS) serves as a valuable 

indicator for predicting the efficacy of anti-CTLA-4 and 

anti-PD-1 immunotherapy in tumor patients [25]. We 

obtained the IPS score of PTC patients from The Cancer 

Immunome Atlas (https://tcia.at/) and used the violin 

plot to display differences in IPS scores between high 

and low risk groups. 

 
A model for tumor immune evasion, known as  

Tumor Immune Dysfunction and Exclusion (TIDE: 

http://tide.dfci.harvard.edu/) can offer insights into the 

effects of immunotherapy on two primary mechanisms 

[38, 39]. We uploaded the gene matrix from TCGA-

THCA to the TIDE website and generated violin plots 

depicting TIDE scores, Dysfunction scores, Exclusion 

scores and CAF scores between high and low risk 

groups. 

 
Some advanced cancers have been treated better with 

immune checkpoint inhibitors (ICIs) [40]. Boxplots, 

based on 47 immune checkpoints obtained from the 

literature [41, 42], were used to illustrate the differential 

expression of immune checkpoints in high-risk and low-

risk groups. 

 

Based on information from the Genomics of Drug 

Sensitivity in Cancer (GDSC) database, an assessment of 

PTC patients’ response to chemotherapeutic and targeted 

treatment agents was conducted. The half maximal 

inhibitory concentration (IC50) of pharmacological agents 

was estimated with the “pRRophetic” R package, which 

has been extensively used in medical research [43]. 

 

Data availability statement 

 

All the data come from public databases. 

 

RESULTS 
 

Age is a prognostic indicator in SEER and TCGA-

THCA cohorts 

 

According to inclusion and exclusion criteria, we 

included a total of 42,756 patients in the SEER database. 

We divided patients into two groups based on age (<55 

years, ≥55 years). When OS was the outcome event, 

patients aged 55 or older also had a worse prognosis  

than the younger group (Figure 2A). Considering the 

differences in incidence and mortality of thyroid cancer 

in different gender populations [44–46], we presented the 

OS data for the younger and older age groups stratified 

by gender. The results showed that there was a 

statistically significant difference in overall survival 

between the young and old groups of women and men 

(Figure 2B, 2C). Similar results were obtained when  

we used DSS as the outcome event (Figure 2D–2F).  

In the TCGA-THCA cohort, when we used OS, DSS, 

and PFS as outcome events, the older group also had a 

worse prognosis than the younger group (Figure 2G–2I). 

 

The cluster with shorter overall survival could be 

distinguished based on cell senescence genes 

 

278 cellular senescence genes expression were 

differentially analyzed between tumors and normal  

tissues in the TCGA-THCA, GSE58545, GSE60542  

and GSE33630 cohorts. This analysis identified 76 genes 

that were common across these datasets (Figure 3A and 

Supplementary Tables 2, 3). GO functional enrichment 

analysis showed that 76 intersecting genes were mainly 

enriched in aging; cell aging; cellular senescence; DNA 

damage response, signal transduction by p53 class 

mediator; signal transduction in response to DNA damage 

(Figure 3B). GO functional enrichment analysis indicated 

that these genes were mainly involved in aging-related 

functions. KEGG pathway enrichment analysis showed 

that these genes were enriched in Bladder cancer, Cell 

https://tcia.at/
http://tide.dfci.harvard.edu/
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cycle, Endocrine resistance, Kaposi sarcoma - associated 

herpesvirus infection, p53 signaling pathway (Figure 3C). 

The PPI network diagram of the proteins corresponding to 

the 76 genes was shown in Figure 3D. It should be noted 

that P53 protein has many protein interactions, and both 

GO function enrichment analysis and KEGG pathway 

enrichment analysis involved p53 signaling mediated 

regulatory signals. It may be that P53 is involved in cell 

senescence process in PTC. 

 

We performed univariate Cox analysis on the OS of PTC 

patients based on the expression of these 76 genes, and 

obtained 16 prognosis-related cellular senescence genes 

(Figure 3E and Supplementary Figure 2). The expression 

levels of these 16 genes (ASPH, NINJ1, SNAI1, UBTD1, 

MAP3K6, CDKN2A, E2F1, HDAC4, PLA2R1, PRKCD, 

WWP1, ID4, NEK1, P3H1, NDRG1, SORBS2) in tumor 

tissue and normal tissue in the TCGA-THCA cohort were 

displayed by heat map (Figure 3F). Using consensus 

clustering analysis based on the expression levels of 

prognosis-related cellular senescence genes in PTC 

patients, we investigated the role of those genes in PTC. 

We divided PTC patients into two clusters (Figure 3G), 

and details of the consensus cluster analysis are provided 

in Supplementary Figure 1. 

 

K-M curve shows that cluster 2 had a worse OS (p = 

0.021) (Figure 3H), and the clinicopathological heatmap 

indicated that the number of PTC with pathological 

type, RAS, BRAF, T-stage, N-stage, M-stage were

 

 
 

Figure 2. Prognostic differences among different age groups in SEER and TCGA-THCA cohorts. OS between PTC with Age ≥55 
years and Age <55 years in all (A), female (B) and male (C) in SEER. DSS between PTC with Age ≥55 years and Age <55 years in all (D), female 
(E) and male (F) in SEER. OS (G), DSS (H) and PFS (I) between PTC with Age ≥55 years and Age <55 years in TCGA-THCA. 
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Figure 3. Consensus cluster analysis. Intersection of differentially expressed cellular senescence genes across four cohorts (A). GO 

functional enrichment analysis (B) and KEGG pathway enrichment analysis (C) of 76 intersecting genes. Protein-Protein interactions (PPI) 
network diagram of 76 intersecting genes (D). Forest plot of prognostic genes among 76 intersecting genes (E). Expression heatmap of 
prognostic genes (F). Consensus clustering matrix for k = 2 (G). K-M curve of OS probability between cluster1 and cluster2 (H). Heatmap of 
clinicopathological feature correlations between cluster1 and cluster2 (I). Violin plots of the infiltration of immune cells in cluster1 and 
cluster2 by CIBERSORT algorithm (J). Boxplot of ESTIMATEScore (K), TumorPurity (L), ImmuneScore (M) and StromalScore (N) on cluster1 and 
cluster2 by ESTIMATE algorithm. KEGG pathway enrichment analysis in cluster1 (O) and cluster2 (P). 
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statistically different between clusters (Figure 3I). 

These results suggest that these 16 prognostic cellular 

senescence genes can be used to predict OS in PTC 

patients and the expression of those genes can provide a 

new way to differentiate PTC subtypes. The results of 

the CIBERSORT analysis showed that the content of 

ten immune cells (T cells CD8, T cells follicular helper, 

T cells regulatory, Macrophages M0, Macrophages M1, 

Macrophages M2, Dendritic cells resting, Dendritic 

cells activated, Mast cells resting, Eosinophils) were 

statistically different between the two clusters (Figure 

3J). Furthermore, the ESTIMATE analysis showed 

lower ESTIMATEScore, ImmuneScore, StromalScore 

and higher TumorPurity in cluster 2 (Figure 3K–3N). 

The results of CIBERSORT and ESTIMATE analysis 

indicated that cellular senescence genes may affect  

the prognosis of PTC patients through the immune 

microenvironment. 

 

To further analyze the reasons for the differing 

prognosis of the two clusters, we performed KEGG 

pathway enrichment analysis for clusters 1 and 2, 

respectively. The results showed that cluster 1 was 

mainly enriched in allograft rejection, asthma, cell 

adhesion molecules (CAMs), intestinal immune network 

for IgA production, leishmania infection, leukocyte 

transendothelial migration, natural killer cell mediated 

cytotoxicity, pathogenic Escherichia coli infection,  

type I diabetes mellitus and viral myocarditis. The 

results showed that cluster 2 was mainly enriched  

in arginine and proline metabolism, ascorbate and 

aldarate metabolism, β alanine metabolism, butanoate 

metabolism, fatty acid metabolism, glycerolipid 

metabolism, glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis, lysine degradation, peroxisome, valine 

leucine and isoleucine degradation. The results of the 

analysis in cluster 2 suggest that cellular senescence 

genes may contribute to the worsening of the prognosis 

of PTC patients through metabolism-related pathways. 

 

Construction and validation of CSRS 

 

In the training cohort, we constructed CSRS 

(Supplementary Figure 2) by selecting four genes from 

16 prognosis-related cellular senescence genes by 

LASSO regression analysis for prediction OS. We got 

the following risk score formula for patients with PTC: 

Risk score = (0.05013 × expression value of SNAI1) + 

(0.097623 × expression value of CDKN2A) + (0.54932 

× expression value of HDAC4) + (0.02454 × expression 

value of NDRG1). Based on the median risk score, we 

divided the patients in the three cohorts into high and 

low-risk groups. 
 

The K-M survival curve analysis showed that patients 

with high-risk groups had shorter OS (Figure 4A–4C). 

The AUC value of PTC patients in 1-10 years was 

greater than 0.737 that the model has good accuracy 

(Figure 4D–4F). To compare the predictive power of 

CSRS and clinicopathological characteristics for OS, 

we evaluated the AUC value of CSRS and clinical 

pathological characteristics in the fifth year. The 

results demonstrated that the risk scores achieved the 

highest AUC value than other clinical pathological 

characteristics (Figure 4G–4I). These results indicated 

that CSRS has good predictive ability and clinical 

application value. Survival status, a heatmap of 4-gene 

expression levels, distribution of risk scores in high 

and low risk groups (Figure 4J–4O and Supplementary 

Figure 3). We analyzed gene expression data from the 

GEPIA2 website and five GEO cohorts, and the results 

further supported the previous conclusion (Figure 5) 

(the SNAI1 gene expression level showed a trend of 

lower expression in tumor tissues in GSE3678 and 

GSE27155, Figure 5A–5X). 

 

The risk score in hierarchical analysis is the 

predictor for PTC 

 

To further mitigate the effect of clinicopathological 

features on risk scores predicting OS, we conducted a 

stratified analysis based on the clinicopathological 

features of the entire TCGA-THCA cohort. The K-M 

survival curve results in the stratified analysis showed 

that the high-risk group had a shorter OS, except for 

patients with age < 55, M1, RAS-Mutation, Follicular 

Cell Type, Radiation therapy−NO (Figure 6). 

 

Multiple omics differences between high - and low-

risk groups 

 

A heatmap of immune cells with statistically  

significant differences between high and low risk 

groups based on the analysis algorithms of immune  

cell contents (TIMER, CIBERSORT, CIBERSORT-

ABS, QUANTISEQ, MCPCOUNTER, XCELL, EPIC) 

was presented in Figure 7A. These results provide a 

basis for further elucidating the relationship between 

cell senescence and immune cells. To investigate the 

biological behavior of the high-risk group, we analyzed 

by GSVA and found that the high-risk group was mainly 

enriched pathway in adipocytokine signaling pathway, 

lysine degradation, glycosaminoglycan biosynthesis-

heparan sulfate, glycosaminoglycan biosynthesis-chon-

droitin sulfate, acute myeloid leukemia, gap junction, 

axon guidance, focal adhesion, TGF-β signaling 

pathway, dorso-ventral axis formation, hypertrophic 

cardiomyopathy (HCM), ECM-receptor interaction, 

hedgehog signaling pathway, basal cell carcinoma 
(Figure 7B). Furthermore, the heat map of the 

correlation between clinicopathological characteristics 

and risk scores showed that there were statistical 
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Figure 4. Construction and validation of prognostic models. K-M curve of OS probability between high and low risk groups in training 
cohort (A), validation cohort (B) and all TCGA-THCA (C). The ROC curves of prognostic signature of prognostic model in 1-10 years in training 
cohort (D), in validation cohort (E) and in all TCGA-THCA cohort (F). The ROC curves of risk score, age, gender, stage, M, N, T, BRAF, and RAS in 
5 years in training cohort (G), in validation cohort (H) and in all TCGA-THCA cohort (I). Survival status of patients in the training cohort  
(J), validation cohort (K) and all TCGA-THCA (L). Expression heatmap of prognostic model genes in the training cohort (M), validation cohort 
(N) and all TCGA-THCA (O). 
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differences in radiation therapy, RAS, Age and  

Cluster in the high and low risk groups (Figure  

7C). Additionally, four IPS scores were statistically 

different between high and low risk groups (Figure 7D–

7G). The data provided by the TIDE website showed 

that TIDE scores, Dysfunction scores, Exclusion scores 

and CAF scores were statistically different between 

high and low risk groups (Figure 7H–7K). 

 

 
 

Figure 5. Validation of gene expression levels in prognostic models. Expression of SNAI1 in GTEx (A), in GSE3467 (B), in GSE3678  

(C), in GSE5364 (D), in GSE27155 (E), in GSE35157 (F). Expression of CDKN2A in GTEx (G), in GSE3467 (H), in GSE3678 (I), in GSE5364 (J), in 
GSE27155 (K), in GSE35157 (L). Expression of HDAC4 in GTEx (M), in GSE3467 (N), in GSE3678 (O), in GSE5364 (P), in GSE27155 (Q), in 
GSE35157 (R). Expression of NDRG1 in GTEx (S), in GSE3467 (T), in GSE3678 (U), in GSE5364 (V), in GSE27155 (W), in GSE35157 (X). 
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Through an analyzing the expression levels of immune 

checkpoints, we found that 13 immune checkpoints 

(ADORA2A, TNFSF9, CD274, NRP1, IDO2, CD40, 

CD28, IDO1, CD160, TNFSF4, CD80, TNFSF15, 

CD44) were differentially expressed in high and low 

risk groups (Figure 7A). Subsequently, we identified ten 

drugs (BX.795, PF.562271, PF.02341066, Pazopanib, 

PAC.1, MK.2206, IPA.3, Imatinib, GDC0941, Embelin) 

that were more sensitive in high-risk patients by drug 

sensitivity analysis (Figure 8B–8K). 

 

 

 

Figure 6. Hierarchical analysis. K-M curve analysis of OS probability was based on risk scores grouped by age (A, B), sex (C, D), stage (E, F), 
T (G, H), M (I, J), N (K, L), BRAF (M, N), RAS (O, P), pathological subtype (Q, R) and radiation therapy (S, T). 
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Figure 7. Multi-omics analysis. Analysis results of six immune cell infiltration algorithms in high and low risk groups (A). KEGG pathway 
enrichment analysis in high and low risk groups (B). Heatmap of clinicopathological features in high and low risk groups (C). Comparison of 
immunophenoscores (IPS) between high and low risk groups who have not been treated with anti-CTLA4 or anti-PD-1 immunotherapy  
(D), who have been treated with anti-CTLA4 and anti-PD-1 immunotherapy (E), who have been treated with anti-CTLA4 and anti-PD-1 
immunotherapy, who have only been treated with anti-PD-1 immunotherapy (F), and who have only been treated with anti-CTLA4 
immunotherapy (G). Comparison of TIDE (H), Dysfunction (I), Exclusion (J), CAF (K) between high and low risk groups. 
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DISCUSSION 
 

Aging is a significant contributing factor to death  

and illness, especially cancer [12] and is closely 

associated with cellular senescence. Two studies, 

utilizing data from The Cancer Genome Atlas 

(TCGA), have identified robust correlations between a 

patient’s age and various aspects of pan-cancer, 

including the genome, transcriptome, epigenetics, copy 

number alterations, structural rearrangements, immune 

cell infiltration, and immune checkpoints [47, 48]. 

Shah et al. further emphasized specific differences  

in signal among different tumor types through multi-

omics analyses, and pointed out that TC had the 

highest HR values when HR for OS were used as an 

indicator of age at tumor diagnosis [12]. We obtained 

similar results by analyzing SEER cohort and TCGA-

THCA cohort. Another study showed that upregulated 

genes in TC significantly overlap with overexpressed 

senescence genes, and were the only cancer type with 

this condition and cellular senescence was associated 

with younger TC patients [49]. Studies have also 

revealed the presence of senescent tumor cells in the 

leading edge of collective invasion in PTC, as well as 

lymphatic and lymph node metastases, and senescence-

associated secretory phenotype (SASP) of aging tumor 

cells exhibit high invasive capacity [50, 51].  

 
Several studies have highlighted the potential of cellular 

senescence-related genes can be used as prognostic 

indicators of tumors [52, 53]. This study screened 76 

cellular senescence genes by TCGA-THCA cohort and 

eight GEO cohorts for differential expression between 

tumor and normal tissues. GO and KEGG enrichment 

 

 
 

Figure 8. Analysis of drug treatment. There are differences in immune checkpoint expression between groups at high and low risk  
(A). Ten drugs with lower half-maximum inhibitory concentration in the high-risk group (B–K). 
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analyses showed that 76 genes were closely related  

to aging and p53 signaling pathways. Further  

PPI network showed that P53 protein had more 

interactions with other proteins. These results are 

consistent with previous conclusions that P53 is 

considered to be a hallmark of cellular senescence 

[54]. We further performed univariate Cox analysis to 

investigate the relationship between the expression 

levels of 76 genes and the OS of PTC patients to  

find 16 prognosis-related cellular senescence genes. 

Consensus clustering analysis was performed on PTC 

patients according to the expression levels of these 16 

genes and the patients were divided into two clusters. 

Among them, cluster 2 had a worse OS. These results 

suggest that cellular senescence genes can be used to 

predict OS in PTC patients. Through further LASSO 

regression analysis, we screened out four genes 

(SNAI1, CDKN2A, HDAC4, NDRG1) to construct a 

prognostic model.  

 

Each gene within the signature underwent a detailed 

analysis to gain a better understanding of its functions. 

SNAI1 is a zinc finger transcription factor that induces 

epithelial-mesenchymal transition (EMT) in various 

cancers and epithelial cells [55]. Previous studies have 

shown that downregulating SNAI1 expression can 

suppress EMT and slow down the progression of PTC 

[56–58]. It has been reported that inhibition of SNAI1 

can induce cellular senescence in prostate cancer and 

various cell lines, but the relationship between SNAI1 

and senescence in PTC remains unclear [55, 59].  

The CDKN2A (also known as ARF, INK4A, MTS-1) 

encodes two tumor suppressor proteins p16INK4A  

and p14ARF [60]. Previous study reported that high 

p16INK4A expression in PTC was associated with 

poor prognosis [61], and our findings suggested that 

CDKN2A was a risk factor for PTC patients. Based  

on a meta-analysis of 734 PTC patients, it was found 

that cancer tissues had significantly more CDKN2A 

promoter methylation than benign and normal tissues 

[62]. The p16INK4A is considered a marker of cellular 

senescence in a variety of diseases, including PTC,  

but the specific role of the p16INK4A is unclear  

[50, 51, 63]. Class IIa histone deacetylase 4 (HDAC4), 

a zinc-dependent enzyme, deacetylates histones by 

removing acetyl groups in a zinc-containing catalytic 

domain, resulting in the condensation of nucleosomes 

in the nucleus [64]. HDAC4 is polyubiquitinated and 

degraded during all types of senescence [65] and our 

findings also suggest that the mRNA expression of 

HDAC4 is decreased in PTC tissues. Previous evidence 

has revealed that triple mutants of HDAC4 in fibroblasts 

can trigger TP53 stabilization and oncogene-induced 
senescence, and HDAC4 inhibits p16INK4A promoter 

activity in a dose-dependent manner [65, 66]. NDRG1 

belongs to the NDRG protein family and has been 

extensively demonstrated to possess anti-oncogenic and 

anti-metastatic properties [67]. A study showed that 

the inhibition of NDRG1 suppresses hepatocellular 

carcinoma growth and reactivates senescence signaling 

[67]. However, the relationship of NDRG1 in PTC to 

cellular senescence requires further exploration. 

 

The K-M survival curve and ROC curve results for  

the training dataset, validation dataset and the whole 

TCGA-THCA showed that the CSRS had a good 

ability to predict the OS of PTC. Even after accounting 

for the effect of clinicopathological features on the 

prognosis of patients with PTC, patients with high- 

risk scores had poorer OS. The results of previous 

studies have demonstrated that when PTC occurs and 

develops, the immune system level increases, and the 

proportion of tumor-promoting immune cells increases 

substantially [68]. In our investigation, we applied 

seven different algorithms to analyze immune cell 

populations that differed between high and low-risk 

groups. Furthermore, we conducted an analysis of 

KEGG pathways enriched in the high and low-risk 

groups. Notably, distinct results were observed in 

terms of immune cell populations and enriched KEGG 

pathways between the high and low-risk groups. Thus, 

elucidating the role of cellular senescence in PTC 

through the lens of immune cells and KEGG pathway 

analysis represents a promising avenue for future 

research. Moreover, IPS serves as an evaluative index 

for ICI treatments, and higher IPS means better 

immunotherapy results. Utilizing the TIDE algorithm, 

we predicted the ICI response rates for two patient 

subtypes and assessed whether the risk score might 

benefit PTC patients undergoing immunotherapy.  

Our study revealed statistically significant differences 

in IPS and TIDE scores between patients with  

high risk and those with low risk, suggesting  

that immunotherapy may be advantageous for high-

risk patients. Further immune checkpoint and drug 

sensitivity analysis identified 13 potential immune 

checkpoints (ADORA2A, TNFSF9, CD274, NRP1, 

IDO2, CD40, CD28, IDO1, CD160, TNFSF4, CD80, 

TNFSF15, CD44) and ten sensitive drugs (BX.795, 

PF.562271, PF.02341066, Pazopanib, PAC.1, MK.2206, 

IPA.3, Imatinib, GDC0941, Embelin). This provides 

potential therapeutic targets and drugs for inducing 

cell senescence in PTC. 

 

Our study had some limitations. Firstly, our consensus 

cluster analysis and CSRS were solely based on TCGA-

THCA, without multi-center clinical information and 

sequencing data for verification, which may weaken the 

clinical promotion value of CSRS. Finally, the specific 
mechanism of action of the four key genes screened in 

the prognostic model has not been explored in vitro and 

in vivo, which requires further studies in PTC. 
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CONCLUSIONS 
 
Consequently, our study has identified and validated 

CSRS as a prognostic significance marker for patients 

with PTC based on four genes related to cellular 

senescence. Finally, we have demonstrated an intricate 

relationship between these risk scores and their 

implications for immunotherapy, drug therapy, and 

immune checkpoint genes. The combination of risk 

scores with specific immune checkpoint factors could 

be used to develop predictive biomarkers of ICI 

response. This approach may enable a more precise 

selection of patients who are likely to benefit from 

checkpoint inhibitors. As a consequence, identifying 

and further researching cellular senescence-related 

genes involved in tumor immune response might assist 

with the risk stratification of PTC and PTC may be 

treated more effectively with immunotherapy if these 

targets are identified. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Consensus cluster analysis process. Results of consensus cumulative distribution function analysis (A), Delta 
area (B) and Tracking plot (C). 

 

 
 

Supplementary Figure 2. Determination of prognostic model. (A) LASSO coefficient path map for 16 risk factors; (B) Cross verification 
curve. 
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Supplementary Figure 3. Distribution of risk scores in the training cohort, validation cohort, and all TCGA-THCA cohort. Rank 
the patient's risk scores in the training cohort (A), validation cohort (B) and entire cohort (C). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. A list of cellular senescence-related genes. 

 

Supplementary Table 2. Genes associated with cellular senescence are differentially expressed between tumor 
tissue and normal tissue in the TCGA-THCA. 

 

Supplementary Table 3. 76 intersecting genes. 

 


