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INTRODUCTION 
 

Lung cancer is a malignant tumor with a high fatality rate 

worldwide [1]. About 85% of lung cancers are non-small 

cell lung cancers (NSCLC), and about 60% of NSCLCs 

are lung adenocarcinomas (LUAD). Nowadays, surgery, 

chemoradiotherapy, and targeted medication therapy are 

wildly used to treat lung cancer [2]. However, the 

therapeutic effect and the long-term survival rate of 
LUAD patients are still not ideal. Thus, identification of 

new prognostic markers for patients with LUAD is 

essential for early detection and precision medication. 
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ABSTRACT 
 

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system that has a poor 5-year survival 
rate. Anoikis, a type of programmed cell death, contributes to tumor development and metastasis. The aim of 
this study was to develop an anoikis-based stratified model, and a multivariable-based nomogram for guiding 
clinical therapy for LUAD. Through differentially expressed analysis, univariate Cox, LASSO Cox regression, and 
random forest algorithm analysis, we established a 4 anoikis-related genes-based stratified model, and a 
multivariable-based nomogram, which could accurately predict the prognosis of LUAD patients in the TCGA and 
GEO databases, respectively. The low and high-risk score LUAD patients stratified by the model showed 
different tumor mutation burden, tumor microenvironment, gemcitabine sensitivity and immune checkpoint 
expressions. Through immunohistochemical analysis of clinical LUAD samples, we found that the 4 anoikis-
related genes (PLK1, SLC2A1, ANGPTL4, CDKN3) were highly expressed in the tumor samples from clinical LUAD 
patients, and knockdown of these genes in LUAD cells by transfection with small interfering RNAs significantly 
inhibited LUAD cell proliferation and migration, and promoted anoikis. In conclusion, we developed an anoikis-
based stratified model and a multivariable-based nomogram of LUAD, which could predict the survival of LUAD 
patients and guide clinical treatment. 
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When a cell separates from the nearby extracellular 

matrix (ECM), a form of programmed cell death known 

as anoikis begins [3]. Under normal conditions, anoikis 

removes displaced cells and prevents them from 

attaching improperly [4]. However, several malignant 

tumor metastases are closely associated with anoikis 

resistance which enables carcinoma cells to escape 

apoptosis and establish a metastatic lesion, including 

lung cancer [5], hepatocellular carcinoma [6], gastric 

cancer [7], gliomas, and so on [8]. Nowadays, several 

pathways and essential genes have been identified to be 

involved in anoikis resistance. For example, the 

PLAG1-GDH1 axis promotes anoikis resistance and 

tumor metastasis through CamKK2-AMPK signaling in 

LKB1-deficient lung cancer [5]. Nuclear MYH9-

induced CTNNB1 transcription promotes gastric cancer 

cell anoikis resistance and metastasis [7]. SPIB 

promotes anoikis resistance via elevated autolysosomal 

process in lung cancer cells [9]. Thus, discovering 

essential anoikis genes and associated pathways in 

LUAD are critical for development of therapeutic drugs 

for LUAD. 

 

In the current study, we explored the differentially 

expressed genes (DEGs) that are associated with anoikis 

in healthy and LUAD specimens, and developed a 

predictive risk score signature of anoikis in LUAD. This 

signature could predict the malignant degree and 

prognosis of LUAD patients and effectively guide 

clinical chemotherapy. The results of this study may 

provide a new strategy for exploring the treatment of 

LUAD. 

 

RESULTS 
 

Identification of anoikis-related DEGs (ARGs) in 

LUAD 

 

Firstly, we analyzed the expressions of ARGs in LUAD 

using the mRNA profiles of 456 samples from the 

TCGA-LUAD dataset (https://portal.gdc.cancer.gov/), 

and identified 29 up-regulated ARGs and 29 down-

regulated ARGs in LUAD samples, compared to normal 

samples (Figure 1A, 1B and Supplementary Table 1). 

Next, we further investigated the biological functions of 

the identified ARGs in LUAD through Gene Ontology 

(GO) annotations and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis. As shown in 

Figure 1C, negative regulation of apoptotic process, 

positive regulation of cell migration and cell-matrix 

adhesion were enriched in the biological process (BP) 

category. Extracellular exosome, extracellular region and 

extracellular surface were enriched in the cellular 

component (CC) category (Figure 1D). Protein binding, 

identical protein binding and growth factor activity were 

enriched in the molecular function (MF) category (Figure 

1E). Furthermore, KEGG pathway enrichment analysis 

showed that these identified ARGs were mainly enriched 

in the pathways in cancer, microRNAs in cancer and 

transcriptional misregulation in cancer (Figure 1F). 

 

Construction of a prognostic signature based on 

ARGs 

 

Subsequently, through univariate Cox analysis of the 

aforementioned 58 ARGs, 10 genes (PLK1, SLC2A1, 

ANGPTL4, CDKN3, PBK, HMGA1, DAPK2, ITGA8, 

UBE2C, and BIRC5) were identified to be linked with 

LUAD prognosis (p<0.01) (Figure 2A and 

Supplementary Table 2). Then, we performed the least 

absolute shrinkage and selection operator (LASSO) Cox 

regression analysis to avoid excessive variables [10], 

and identified five ARGs (PLK1, SLC2A1, ANGPTL4, 

CDKN3, HMGA1) (Figure 2B). Meanwhile, we 

performed the random forest algorithm to rank the 

importance of ARGs [11], and selected the top five 

important ARGs (PLK1, SLC2A1, ANGPTL4, 

CDKN3, PBK) (Figure 2C). Furthermore, four ARGs 

(PLK1, SLC2A1, ANGPTL4, CDKN3) were obtained 

by intersections of ARGs screened by the above two 

machine learning algorithms (Figure 2D), and these four 

genes have been found to play essential roles in LUAD 

development [12–15]. Moreover, we examined the 

protein expression levels of the four ARGs (PLK1, 

SLC2A1, ANGPTL4, CDKN3) in cancer tissues and 

para-cancer tissues from clinical LUAD patients. As 

shown in Figure 3 and Supplementary Figure 1, the 

protein expression levels of PLK1, SLC2A1, 

ANGPTL4, and CDKN3 in LUAD tissues were all 

significantly higher than those in para-cancer tissues. 

Finally, we created a prognostic risk signature using the 

above four genes via multivariate Cox regression, and 

the formula is as: riskscore = 0.13445 * Exp 

(ANGPTL4) + 0.12767 * Exp (CDKN3) + 0.21102 * 

Exp (PLK1) + 0.042861 * Exp (SLC2A1). 

 

Evaluation of the 4 ARGs-based prognostic 

signature 

 

To further evaluate the prognostic risk signature, LUAD 

patients from the TCGA dataset were stratified into two 

groups based on the median risk score, and the high-risk 

score group had a shorter survival time, but had higher 

expressions of the above four genes (Figure 4A). 

Furthermore, we analyzed the correlation between risk 

score and clinicopathological characteristics of LUAD 

patients, and found that the levels of T, N, and stage of 

LUAD patients rose with risk score (Figure 4B). 

Moreover, through survival probability analysis using 
the model in the LUAD samples of the TCGA dataset or 

GSE50081 which were used as a validation set, we 

found LUAD patients with high-risk score had a bad 

https://portal.gdc.cancer.gov/
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Figure 1. Identification of ARGs in LUAD. (A) Volcano plot anoikis-related genes in TCGA dataset. |LogFC|>1 and adj.P-value < 0.05 were 
set to screen. (B) Heatmap of the ARGs in TCGA dataset. (C) BP analysis of ARGs. (D) CC analysis of ARGs. (E) MF analysis of ARGs. (F) KEGG 
analysis of ARGs. P-value <0.05 is considered significant. 
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Figure 2. Construction of a prognostic signature based on ARGs. (A) Forest maps of univariate Cox analysis. (B) a minimum value of λ 

was chosen as optimal. The black dot line on the left represents those 10 features that were reduced to 5 non-zero coefficient features by 
LASSO. (C) ARGs rank importance by random forest algorithm. (D) Venn diagram shows the intersection ARGs of Lasso and random forest 
algorithm. 
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prognosis (log-rank p<0.001) (Figure 4C). In addition, 

we assessed the risk score's predictive value using the 

ROC analysis, and found that risk score had the largest 

AUC area, compared to stage, T, N, M, gender, or age 

(Figure 4D). Collectively, these results suggest the good 

prognostic performance of our model. 

 

Developing a nomogram for predicting LUAD 

patients' survival probabilities  

 

Subsequently, the univariable analysis and multivariable 

analysis based on the risk score, stage, T, N, M, age and 

gender were shown in Figure 5A, 5B, respectively. 

Interestingly, risk score is an independent prognostic 

factor (Figure 5A, 5B). Furthermore, to increase the 

clinical application's viability for LUAD patients, a 

nomogram was constructed based on the riskscore, 

stage, T, M, and N (Figure 5C). The total points were 

calculated by adding the above factors’ scores. 

Moreover, calibration plots showed good consistencies 

between the predicted curves and the actual curves of 1, 

3, and 5 years (Figure 5D), suggesting the nomogram is 

beneficial for clinical prediction. 

 

Analysis of the correlation between the risk 

signature and genetic mutations  

 

Subsequently, we further investigated the differences in 

somatic mutation distribution between low and high-

risk scores in the TCGA set. As shown in the waterfall 

plot (Figure 6A, 6B), there are variations in the tumor 

mutational burden (TMB) of two subtypes, and the 

frequencies of TTN, CSMD3, MUC16, RYR2, LRB1P 

and ZFHX4 mutations in the high-risk group were 

considerably higher than those in the low-risk group. 

Furthermore, LUAD patients with high-risk scores had 

more TMB (Figure 6C) and the risk scores were 

positively correlated to the TMB values (R=0.48, 

p<0.001) (Figure 6D). Moreover, as indicated by DNA 

methylation levels, mDNAsi is a measure of stemness 

epigenetically, whereas mRNA expression is a 

measure of stemness transcriptomically [16, 17]. The 

risk scores of LUAD patients were positively correlated 

to the mRNA gene expression-based stemness index 

(mRNAsi) and DNA methylation-based stemness index 

(mDNAsi) (Figure 6E, 6F). These results indicate that 

the risk scores could predict the TMB and tumor 

stemness in the LUAD. 

 

Analysis of the risk signature, immune 

characteristics and therapy 

 

To further explore the immune characteristics of the 

LUAD risk signature, we analyzed the relationship 

between the tumor microenvironment and risk score. As 

shown in Figure 7A, the high-risk group had lower 

stromal scores, immune scores, and estimate scores, 

compared to the low-risk score group. Furthermore, we 

analyzed the relationship between tumor-infiltrating 

immune cells and riskscore by ssGSEA, and found that 

the abundance of activated B cells, eosinophil, and mast 

cells in the high-risk group was significantly lower 

(Figure 7B). While the abundance of activated CD4 T 

cells in the high-risk group was significantly higher 

(Figure 7B). Furthermore, to investigate the sensitivity 

of LUAD patients to immune therapy, we analyzed the 

relationship between the immune checkpoints and risk 

score, and found that IL-4, TGFB1, BTLA, VEGFB, 

 

 
 

Figure 3. Immunohistochemical staining of four ARGs in cancer tissues and para-cancer tissues from clinical LUAD patients.  
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Figure 4. Evaluation of the 4 ARGs-based prognostic signature. (A) The distribution of risk score, patients' survival and status for 
LUAD. The black dotted line divided patients into high-risk group and low-risk group. (B) The box plot shows the relationship between 
riskscore and T, N and stage in TCGA. (C) Kaplan-Meier survival analysis of patients stratified by the median risk score in TCGA and GSE50081. 
(D) The ROC curve was applied to compare the predictive power of riskscore and clinical features in TCGA and GSE50081. 
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Figure 5. Developing a nomogram for predicting LUAD patients' survival probabilities. (A, B) Univariate and multivariate analysis 

of clinical features and riskscore on LUAD prognosis. (C) Nomogram for the prediction of the LUAD patients’ survival probability at 1, 3 and 5 
years. (D) Calibration curves of TCGA dataset at 1, 3 and 5 years. 



www.aging-us.com 2894 AGING 

 
 

Figure 6. Analysis of the correlation between the risk signature and genetic mutations. (A) The top 20 driver genes with the 

highest alteration in the high-risk group. (B) The top 20 driver genes with the highest alteration in the low-risk group. (C) Box plot of the 
difference in risk score for patients with TMB. (D) Scatter plot of correlations between the TMB value and the risk score. (E, F) Scatter plot of 
correlations between the mRNAsi, mDNAsi and the risk score. 
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Figure 7. Correlation analysis between risk score and 
immune infiltration in LUAD. (A) Box plot of differences in 

ImmuneScore, StromalScore and EstimateScore between high- 
and low-risk groups. (B) Box plot of differences in immune cell 
infiltration in high- and low-risk groups. (C) Box plot of differences 
in checkpoint in high- and low-risk groups. (D) Box plot of 
differences in TIDE scores in high- and low-risk groups. *P < 0.05. 
**P < 0.01. ***P < 0.001. 

ADORA2A, and EDNRB expression levels were higher 

in the low-risk group, while KIR2DL3, LAG3, PDCD1, 

CD274, CD276, and VEGFA expression levels were 

higher in the high-risk group (Figure 7C). Moreover, the 

low-risk group had a higher TIDE score, indicating a 

poor immunotherapy response (Figure 7D).  

 

ARGs promote LUAD cell proliferation and 

migration 

 

To verify the effects of the 4 ARGs on the function  

of LUAD cell, the 4 ARGs was knockdown by 

transfection with specific siRNAs in A549 cells, and the 

results of WB confirmed the of effectiveness of siRNAs 

(Supplementary Figure 2). Furthermore, we explored 

the effects of the 4 ARGs on LUAD cell proliferation 

and migration, and found that downregulation of PLK1, 

SLC2A1, ANGPTL4, or CDKN3 significantly inhibited 

the migration and invasion of A549 cells, respectively 

(Figure 8A, 8B). 

 

Knockdown of ARGs promotes anoikis of LUAD cell 

 

Finally, we investigated the effects of 4 ARGs on the 

anoikis of LUAD cells via flow cytometry. As shown in 

Figure 9, knockdown of PLK1, SLC2A1, ANGPTL4, or 

CDKN3 significantly promotes anoikis of LUAD cells, 

respectively. 

 

DISCUSSION 
 

Lung cancer is the primary killer of cancer patients 

worldwide and LUAD accounts for about 40% of all 

diagnosed cases [18]. Although molecular targeted anti-

tumor drugs and immunotherapies have been wildly 

used to treat lung cancer [2], the survival time of LUAD 

patients is still not satisfying. Anoikis, a specific form 

of programmed cell death, is brought on by cell loss or 

improper adhesion [19, 20], and is closely associated 

with LUAD metastasis [21–23]. In this study, we 

screened four key ARGs (PLK1, SLC2A1, CDKN3, 

and ANGPTL4) by using two machine learning 

methods and constructed a riskscore prediction model to 

diagnose and predict LUAD patients, which may be 

useful in guiding clinical treatment for LUAD. The 

PLK1 plays a crucial role in regulating cellular mitosis, 

and is highly expressed many types of cancers, 

including LUAD [24, 25]. PLK1 is reported to enhance 

anoikis resistance via inhibiting β-catenin degradation 

in esophageal squamous cell carcinoma, and inhibition 

of PLK1 could trigger cell apoptosis to block LUAD 

progression [26–28]. SLC2A1, the glucose transporter, 

could encourage the growth, invasion, resistance to 

chemotherapy, and metastasis of cancer cells by 

controlling aerobic glycolysis [29, 30]. CDKN3,  

a cyclin-dependent kinase inhibitor, is usually 
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Figure 8. ARGs promote LUAD cell proliferation and migration. (A) Knockdown of 4 ARGs attenuated wound closure in A549 cells (n = 

3). (B) Silencing 4 ARGs attenuated invasion in A549 cells. The error bars indicate the mean ± SD, and each experiment was repeated at least 
three times. *P < 0.05. **P < 0.01. 



www.aging-us.com 2897 AGING 

high-expressed and regarded as a novel markers in 

several kinds of cancers [31–33]. CDKN3 promotes 

cancer growth via regulating cell cycle and DNA 

replication signaling [34], and inhibition of CDKN3 

reduces cell proliferation, invasion and promotes 

apoptosis in cancer cells [35]. ANGPTL4 plays an 

important role in regulating aerobic glycolysis, the 

consumption of glutamine, and the oxidation of fatty 

acids [36]. ANGPTL4 also promotes tumor growth and 

enhances anoikis resistance in the scirrhous gastric 

cancer cells and the head and neck squamous carcinoma 

cells [37, 38].  

 

Recently, Diao’s study identifies a 16 anoikis-related 

gene signature to predict prognosis and tumor 

microenvironment in LUAD [39]. In this study, we used 

two machine learning methods to avoid excessive 

variables, and screened four key ARGs (PLK1, 

SLC2A1, CDKN3, and ANGPTL4), three (PLK1, 

SLC2A1, and ANGPTL4) of which were also identified 

in Diao’s study. Whereas, we identified a novel anoikis-

related gene-CDKN3, which is associated with poor 

survival in LUAD [14]. Besides, we further examined 

the four protein expressions in the clinical LUAD 

tissues, and found these proteins were all significantly 

highly expressed in the LUAD tissues. Furthermore, 

knockdown of PLK1, SLC2A1, CDKN3, or ANGPTL4 

significantly inhibited the growth, invasion, and anoikis 

resistance in LUAD cells. Moreover, we found that the 

clinical features of LUAD, including T, N, and stages, 

were positively associated with the riskscore. In 

addition, the riskscore was more accurate at predicting 

prognosis of LUAD than other clinical data. LUAD 

patients with high riskscores experienced shorter 

survival durations. A nomogram with integrated clinical 

characteristics and riskscore showed good accuracy. 

Overall, these results suggest that the 4 ARGs signature 

might be applied in clinical prognosis of LUAD. 

 

Nowadays, the immune check-point inhibitors (ICIs) 

have been widely used for therapy in lung cancers [40], 

and the therapeutic effect is related to the expressions of 

immune check-points in tumors and TMB [41]. In this 

study, we found that LUAD patients with higher 

riskscore had higher levels of TMB, including TTN, 

CSMD3, MUC16, RYR2, LRB1P and ZFHX4 

mutations, which would produce more neoantigens and 

improve T-cell recognition [42]. Titin (TTN) mutation 

is proved to act a beneficial role in lung squamous 

carcinoma [43], and is related to high immunogenicity 

 

 
 

Figure 9. Knockdown of ARGs promotes anoikis of LUAD cell. Flow cytometry analysis of the apoptosis of A549 cells transfected with 

the indicated siRNAs. *P < 0.05. 



www.aging-us.com 2898 AGING 

and inflammatory tumor immune microenvironment 

(TIME) of LUAD [44]. MUC16 mutation is reported to 

be associated with genomic factors and response to ICI 

treatment in solid tumors [45]. Thus, LUAD patients 

with higher riskscore may be more suitable for ICB 

therapy, which needs further investigated. Besides, we 

also found the high-risk group of LUAD had lower 

stromal scores, immune scores, estimate scores, and 

IC50 of gemcitabine, compared to the low-risk score 

group. These results provided important information for 

the clinical precision treatment of LUAD. 

 

This study has some limitations. Firstly, our analytical 

data are derived from public databases with relatively 

small sample sizes. Secondly, important analysis results 

need to be further validated with clinical samples. 

Thirdly, further large-scale basic studies can be carried 

out to verify the conclusions of this study. 

 

In conclusion, the prognostic signature based on anoikis 

constructed in this study are helpful to predict the 

survival of LUAD and guide clinical treatment. Most 

importantly, LUAD patients in high-risk group are more 

suitable for immunotherapy and gemcitabine treatment. 

However, more experiments and clinical cases are 

needed to validate these findings. 

 

MATERIALS AND METHODS 
 

Data collection 
 

The training set consisted of the transcriptomic profiles 

and clinical information of LUAD patients from the 

Tumor Genome Atlas (TCGA-LUAD, https://portal.gdc. 

cancer.gov/) database, including 456 samples. Based on 

their identification, the transcriptomic data was compared 

to the clinical data of the patients. The following criteria 

were used to filter the transcriptome data: (1) a 

histological diagnosis of LUAD; (2) a profile of relevant 

RNA expression; and (3) survival durations over 30 days. 

The validation set is from GSE50081, which included 

expression profiling of tumor tissues corresponding to 127 

Stage I and II NSCLC cases collected at University 

Health Network. The information on the details of the 

LUAD patient in the TCGA-LUAD dataset and 

GSE50081 were shown in the Supplementary Table 3. A 

total of 347 anoikis-related genes were obtained from the 

GeneCard database (https://www.genecards.org/). 

 

Identification of anoikis-related DEGs (ARGs) 
 

DEGs were found using the “limma” software [46]. As 

a cut-off value, we chose an adjusted P-value of 0.05 
and a log2 foldchange (FC) greater than 1. The 

“ggpubr” and “ggplot2” packages were used for 

visualization of volcano maps and heat maps [47, 48]. 

Functional enrichment analysis 

 

The clusterProfiler tool [49] was used to compare 

biological topics among gene clusters. The BP, CC, 

and MF categories and signalling pathway enrichment 

analysis were performed using Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Gene Ontology 

(GO).  

 

Construction of a prognostic model for ARGs 

 

According to the criteria, the training set was filtered 

from the TCGA dataset (n=456). The training set  

was then subjected to univariate Cox regression  

to identify ARGs that were related to survival  

(P-value<0.05). The most crucial feature genes were 

then screened using LASSO regression and random 

forest. For this investigation, the “glmnet” and 

“randomForest” packages were used [50, 51]. Two 

machine learning algorithms’ intersection was shown 

using a Venn diagram. Using multivariate Cox 

regression, we determined the LUAD riskscore as 

following: each potential prognostic gene had a 

regression coefficient that reflected it, and its 

expression value was given as Expi. The connection 

between clinical characteristics and riskscore in the 

TCGA, GEO dataset was visualized using the 

“ggplot2” and “ggpubr” packages. Based on the 

riskscore median, they were divided into two groups: 

high-risk group and low-risk group. The “survival” 

and “survminer” programs were used to examine 

Kaplan-Meier (K-M) survival curves in order to 

assess the prediction potential. The receiver operating 

curve (ROC) curve was created using the “pROC” R 

software [52]. By calculating the area under the ROC 

curve (AUC), we determined the diagnostic model’s 

classification ability. 

 

Immunohistochemical assay 

 

Five LUAD tissues and five adjacent para-carcinoma 

tissues of LUAD patients were obtained from the 

Panyu Central Hospital. The study was approved by 

institutional ethics board of the Panyu Central 

Hospital (PYRC-2023-070). Immunohistochemical 

staining was performed, as previously described [52]. 

Sections were incubated with anti-ANGPTL4 rabbit 

primary antibodies (1:200; cat.no. 18374-1-AP; 

Proteintech), anti-PLK1 rabbit primary antibodies 

(1:200; cat.no. 10305-1-AP; Proteintech), anti-

SLC2A1 rabbit primary antibodies (1:1000; cat.no. 

21829-1-AP; Proteintech), anti-CDKN3 mouse 

primary antibodies (1:100; cat.no. D199341; Sangon 
Biotech) and secondary goat anti-rabbit  

IgG-HRP (1:200; cat. no.SA00001-2; Proteintech) 

antibodies. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org/
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Construction of the nomogram of the ARGs 

signature with clinical features 

 

Based on the clinical traits and the available ARGs 

signature, the nomogram was produced in TCGA using 

the “rms” package [53]. To assess the prediction 

performance, accuracy, and stability of this model, 

calibration curves for one, three, and five years were 

plotted. 

 

Analysis of tumor mutational burden, tumor 

microenvironment and drug sensitivity 

 

The mutation frequencies and oncoplot waterfall plots 

for the two risk groups were examined and presented 

using the “maftools” software [54]. The new stemness 

indices, such as mRNAsi and mDNAsi, produced by 

the OCLR machine-learning algorithm analyse the 

relationship with riskscore through spearman 

correlation analysis [55]. To explore the expression of 

28 immune cell types, single-sample gene set 

enrichment analysis (ssGSEA) was used to analyze 

each sample in high- and low-risk groups. The 

immunescore, stromalscore, and tumorpurity of each 

sample were determined using the expression data 

(ESTIMATE) tool and the “estimate” package [56, 

57]. To forecast each patient’s sensitivity to different 

medications, the “pRRophetic” software was 

employed [58]. To explore the underlying 

immunotherapy response of patients, tumor immune 

dysfunction and exclusion (TIDE) scores were 

examined. 

 

Cell culture and transfection 

 

The cell lines present in this study were obtained from 

the Procell Life Science and Technology Co., Ltd 

(Wuhan, China). LUAD line A549 cells were cultured 

in high glucosecontaining DMEM supplemented with 

10% fetal bovine serum in 95% humidified air and 5% 

CO2 at 37° C.  

 

For siRNA transfection, A549 cells were plated in 6-

well plates at 60-70% confluence, and then transfected 

with the mixture of lipofectamine 2000 (Invitrogen, 

Thermo Fisher Scientific, Shanghai, China) and 200 

ng siRNA. siRNA against ANGPTL4 (si-ANGPTL4, 

GCG AAU UCA GCA UCU GCA A), SLC2A1 (si-

SLC2A1, GUG UUU AGA ACA GCG UCU A), 

CDKN3 (si-CDKN3, AGA ACU AAA GAG CUG 

UGG UAU) and PLK1 (si-PLK1, CGA GGU GCU 

GAG CAA GAA A) and their negative control 

(scramble, UUC UCC GAA CGU GUC ACG U) were 
purchased from RiboBio Co., Ltd (Guangzhou, China). 

24 h after transfection, the cells were used for further 

experiments. 

Real-time PCR testing (qRT-PCR) 

 

Using the FastPure Cell/Tissue Total RNA Isolation Kit, 

total RNA was isolated from the cells (Vazyme, Nanjing, 

China). Reverse transcription was carried out using 

HiScript RT supermix for qPCR (Vazyme, Nanjing, 

China). The expression levels of the genes were assessed 

using ChamQ Universal SYBR qPCR Master Mix 

(Vazyme, Nanjing, China) via ABI 7500 Fast Real-Time 

System. The reaction mixtures underwent 35 cycles of  

95° C for 15 seconds, 60° C for 30 seconds, and 95° C for 

15 seconds after being incubated at 95° C for 2 minutes. 

The relative expression of mRNA was normalized using 

the 2-ΔΔCt method relative to GAPDH. Primer sequences 

were as follows: ANGPTL4, 5’-GTCCACCGACCTCC 

CGTTA-3’ (forward) and 5’-CCTCATGGTCTA 

GGTGCTTGT-3’ (reverse); CDKN3, 5’-TCCGGGG 

CAATACAGACCAT-3’ (forward) and 5’-GCAGCT 

AATTTGTCCCGAAACTC-3’ (reverse); PLK1, 5’-CC 

TGCACCGAAACCGAGTTAT-3’ (forward) and 5’-CC 

GTCATATTCGACTTTGGTTGC-3’ (reverse); SLC 

2A1, 5’-TCTGGCATCAACGCTGTCTTC-3’ (forward) 

and 5’-CGATACCGGAGCCAATGGT-3’ (reverse); GA 

PDH, 5’-GATCATCAGCAATGCCTCCT-3’ (forward), 

reverse: 5’-TTCAGCTCAGGGATGACCTT-3’ (reverse). 

 

Scratch wound healing assay 

 

4 × 105 A549 cells were plated into a 12-well plate. 

When the cells covered 90% of the plate's bottom area, 

a 20μL sterile pipette tip was used to scratch the plate 

vertically. To ensure the visual field was clear for 

photography, the culture medium in the plate was 

removed, gently washed with PBS, and then the cell 

debris was rinsed off. Microscopy was used to track cell 

movement after 24 hours. 

 

Transwell assay 

 

At the upper transwell chamber insert, A549 cells in the 

logarithmic growth phase were planted at a density of 3 

× 104 cells per well. Serum-free cell culture media was 

placed in the upper chamber of a 24-well plate, and 

10% FBS complete medium was placed in the lower 

chamber. For 24 hours, the culture was maintained. To 

count the migrating cells, the medium was discarded 

and stained with a crystal violet solution. 

 

Anoikis assay 

 

An ethanol solution containing 12 mg/ml of Poly-

HEMA (Sigma-Aldrich, St Louis, USA), a non-

adhesive substrate, was applied to each well of 6-well 
plates, and the solution was then allowed to evaporate to 

dryness at room temperature. Following washing with 

PBS for twice, the plates were then plated with the 
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transfected cells. Culture for 12 hours, and Annexin V-

FITC labeling was used to examine cell apoptosis 

(Vazyme, Nanjing, China). 

 

Statistical analysis 

 

R software (version R-4.1.0) and GraphPad Prism 8.0.2 

were used for all statistical analyses. The Wilcoxon test 

and Kruskal-Wallis test were used for continuous 

variable analysis between groups. For the bivariate 

correlation analysis, Spearman correlation analysis was 

performed. The significance level is denoted as follows: 

*P < 0.05, **P < 0.01, ***P < 0.001. 

 

Data availability 

 

The data analyzed in the present study are publicly 

available on the TCGA and GEO database. The datasets 

used and/or analyzed during the current study are 

available from the corresponding author on reasonable 

request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Immunohistochemical staining of four ARGs in cancer tissues and para-cancer tissues from clinical 
LUAD patients. (A) Immunohistochemical staining of PLK1. (B) Immunohistochemical staining of SLC2A1. (C) Immunohistochemical staining 

of ANGPTL4. (D) Immunohistochemical staining of CDKN3. 
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Supplementary Figure 2. Western blotting analysis of the indicated protein expression in A549 cells transfected with the 
indicated siRNAs.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Differentially expressed genes of LUAD from the TCGA-LUAD dataset, compared to 
normal samples (P<0.05, and adj.p.val>1). 

 

Supplementary Table 2. The RNA-sequencing details of the 10 genes in the Figure 2C. 

 

Supplementary Table 3. The information on the details of the 
LUAD patient in the TCGA-LUAD dataset and GSE50081. 

Characteristics 
Training set  

(TCGA-LUAD,n=456) 

Validation set 

(GSE50081, n=127) 

Age   

< 65 203(44.5%) 40(31.5%) 

≥ 65 243(53.3%) 87(68.5%) 

NA 10(2.2%) NA 

Gender   

Female 250(54.8%) 62(48.8%) 

Male 206(45.2%) 65(51.2%) 

Race   

White 374(82.0%) NA 

Non-white 59(12.9%) NA 

Unknown 23(5.0%) NA 

Ethnicity   

Hispanic or Latino 7(1.5%) NA 

Non-Hispanic or Latino 370(81.1%) NA 

Unknown 79(17.3%) NA 

Tumor stage   

Stage I 249(54.6%) 92(72.4%) 

Stage II 107(23.5%) 35(27.6%) 

Stage III 71(15.6%) NA 

Stage IV 22(4.8%) NA 

Unknown 7(1.5%) NA 

T classification   

T1 160(35.1%) 43(33.9%) 

T2 242(53.1%) 82(64.6%) 

T3 37(8.1%) 2(1.6%) 

T4 14(3.1%) NA 

Unknown 3(0.7%) NA 

Smoking history   

Ever 319(70.0%) 92(72.4%) 

Never 120(26.3%) 23(18.1%) 

Unknown 17(3.7%) 12(9.4%) 

Vital status   

Alive 168(36.8%) 76(59.8%) 

Dead 288(63.2%) 51(40.2%) 

 

 


