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ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth
exploration of cell death manners, numerous studies found that anoikis is an important mechanism that
associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of
anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-
related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then,
immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in
ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients
with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all
highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated
with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower
levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations.
Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to
immunotherapy and tended to not achieve remission after treatment. Last, HMGA1l was chosen as the
representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in
tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert
tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the
recognition of immunological characteristics and an immunotherapeutic response in NSCLC.

INTRODUCTION

With over 1,600,000 newly diagnosed patients each
year, lung cancer is an extraordinarily heterogeneous
illness and the acknowledged leading cause of the
majority of cancer-related mortalities globally [1]. Non-
small cell lung cancer (NSCLC), containing lung
adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) [2], is the most common histological
type of lung cancer, accounting for around 85% of all
occurrences [3]. Despite tremendous advances in
clinical screening and therapeutic therapies for NSCLC,
the limited therapeutic benefit of first-line treatment
resulted in a low overall cure and survival rate for
NSCLC, particularly in metastatic disease. Despite
tremendous advances in clinical screening and
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therapeutic  therapies for NSCLC, the limited
therapeutic benefit of first-line treatment resulted in a
low overall cure and survival rate for NSCLC,
particularly in metastatic disease [4]. As a result,
additional research is needed to uncover more relevant
biomarkers in order to extend clinical advantages
to a larger patient population and enhance NSCLC
outcomes.

Immunotherapy, which strengthens the patient’s immune
system to fight malignancies, has received massive
attention in recent years in the context of cancer
treatment. Immunosurveillance, or the ability of immune
cells in the tumor microenvironment (TME) to recognize
and destroy cancer cells under normal conditions, is now
widely acknowledged [5, 6]. Nevertheless, further
investigation showed that cancer cells can control the
host immune system to avoid immune monitoring by
enlisting immunosuppressive cell populations and
reducing the immunogenicity of tumors [7, 8]. In
addition, tumors with different phenotype have distinct
therapeutic responses. To be specific, hot tumors,
featured by T-cell inflammation, showed a favorite
therapeutic response to immunotherapy, while cold
tumors are resistant to many treatments [9-12]. Thus, it is
crucial to investigate the alteration of the TME to guide
the personalized immunotherapy.

In the recent years, with the intensive investigation of
different manners of cell death, numerous researchers
found that anoikis is an important mechanism that can
be introduced to treatment. Anoikis is a type of
programmed cell death that takes place when cells
separate from the proper extracellular matrix. This
mechanism is essential for maintaining plastic cell
development and attachment [13]. Notably, cancer cells
are resistant to anoikis because they do not depend on
extracellular matrix adherence for survival and growth
[14], indicating that malignancies are a better example
of anoikis resistance. Therefore, understanding the
NSCLC anoikis regulators helps researchers find new
treatments, particularly for cancer metastasis [15, 16].
For instance, through altering the JAK2/STAT3 and
SHP2/Grb2 signaling pathways, the TGF-1/SH2B3 axis
can control lung cancer cells’ anoikis resistance and
EMT [17]. In addition, the enhancement of anoikis
sensitivity could enhance immune cell-mediated
cytotoxicity [18]. However, the association between
anoikis and TME features in NSCLC is still unclear.

At present, several studies explored the correlation
between the anoikis feature and immunological
characteristics. Here, in this study, we first recognized
the up-regulated anoikis-related genes (ARG) in
NSCLC tumor tissues, and then construct a prognostic
model based on these genes. Subsequently, we

confirmed that the ARGs in the prognostic model were
expressed on tumor cells at the single-cell level. Finally,
further analysis was performed to explore the
correlation between ARGs and immunological
characteristics and the predictive value of ARGs model
in immunotherapeutic response. Taken together, our
study provided a new perspective to understand the
clinical and immunological-related functions of ARGs,
which contributes to the advancement of more precise
and precise treatment strategies.

MATERIALS AND METHODS
Data collection and processing

The gene expression matrices of NSCLC patients were
downloaded from public online databases —the UCSC
Xena website and the Gene Expression Omnibus (GEO)
portal. The transcriptional omics and clinical
annotations of tumors and paracancerous of NSCLC
patients in the TCGA-LUAD and TCGA-LUSC cohorts
were obtained from the UCSC Xena. In the GEO
database, we identified three NSCLC cohorts
(GSE30219 [19], GSE37745 [20], and GSE3141 [21])
with prognosis information. Besides, two clinical
cohorts (GSE126044 [22] and GSE135222 [23]) of
NSCLC patients received immunotherapy, were also
obtained from the GEO database. Diagnostic patients
with follow-up information, including survival out-
comes or therapeutic responses were chosen for further
analysis.

Establishment of the anoikis-related gene model

To establish the anoikis-related gene (ARGs) model, we
collected the ARGs from the the genecards website
(https://www.genecards.org/, accessed on 12 October
2022) [24] and the Harmonizome portals
(https://maayanlab.cloud/Harmonizome/, accessed on
12 October 2022) [25] firstly. Then, after performing
differential expressions analysis by “limma” package,
ARGs up-regulated in tumor samples (fold-change (FC)
> 1.5 and adjusted P-values < 0.05) were selected. The
univariable COX regression analysis was used to
identify genes that were significantly (P-value < 0.05)
linked to OS. Next, the least absolute shrinkage and
selection operator (LASSO) regression algorithm was
performed on these OS-related genes to further screen
prognostic parameters and construct the model. The risk
score of the prognostic model based on NSCLC-related
ARGs (ARGRS) of patients was assess according to the
linear combination of the expression values of NSCLC-
related ARGs multiplied by the relevant LASSO
coefficients. To validate the risk score’s predictive
power, the 50% ARGRS cutoff was used to divide the
NSCLC patients into high- and ARGRS-low groups.
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Assessment of biological functions

The R package “clusterProfiler” [26] was used to assess
the biological functions of gene signatures in terms of
Gene Ontology (GO) [27] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [28] pathways. The top
ten enriched pathways with the most significantly P-
values were displayed.

Single-cell RNA sequencing datasets analysis

To further elaborate the tumor-specific of gene
signatures in the prognostic model, single-cell RNA
sequencing (scRNA-seq) datasets (GSE150660 [29] and
GSE148071 [30]) were downloaded from the GEO
protocol (All additional analyses were using the Seurat
R toolkit [31].

For each sample, we summarized the expressed
percentage of mitochondrial genes (percent.mt). Cells
with percent.mt < 10% and 200 < nFeature_ RNA <
5,000 were preserved. Then, for each dataset, the
“RunHarmony” function [32] was applied to minimize
the batch effects and integrate the transcriptional gene
profiles from different patients. Principal component
analysis (PCA) was performed based on the top 4,000
genes with highest variability. Then, the high
dimensionality of data was reduced based on the top 30
PCs. The cells were unsupervised clustered via shared
nearest neighbor (SNN) algorithm with one resolution.
To annotate cell types, many well-known signatures
were collected from previous studies [33, 34], such as
EPCAM for tumor cells, CD3E for T cells, CD14 for
macrophages, and CD1C for dendritic cells.

Cell-cell communication analysis

“CellPhoneDB” software [35] was utilized to deconstruct
the cell-cell communications among cell types at the
single cell level. To define the ARGRS+ and ARGRS-
tumor cells, “AddModuleScore” function was applied to
estimate the enrichment scores of the ARGRS based on
the transcriptional level of the five genes in the model.
Then, tumor cells with ARGRS > 0 were defined as
ARGRS+ tumor cells, and other were ARGRS- tumor
cells. The ligand-receptor pairs with P-value < 0.05 were
included in further analysis.

Immune infiltration analysis

The gene signatures of immunomodulators, immune cell
subpopulations and immunological signaling pathways
were obtained from previous studies [36-38]. R package
“estimate” was employed to examine the abundance of
infiltrating immune cells (ImmuneScore) and tumor purity
(TumorPurity). The R package “GSVA” (version 1.46.0)

[39] was utilized to assess the enrichment scores of
characteristics based on the gene signatures.

Clinical samples, immunohistochemistry, and
guantitative evaluation

The NSCLC tissue microarray (TMA) section
(HLugC120PT01) was obtained from Outdo Biotech
(Shanghai, China). Ethical approval (YB-M-05-02) for
the study of the TMA was granted by the Clinical
Research Ethics Committee, Outdo Biotech (Shanghai,
China). The TMA was used for immunohistochemistry
(IHC) assay to measure the expression of HMGA1 protein
in tumor and non-tumor breast tissues. IHC assay was
performed on these sections according to the established
steps. These sections were given three 5-minute xylene
washes and rehydrated using a series of washes in ethanol
grades of 70%, 90%, and 100%. For twenty minutes,
endogenous peroxidase activity was inhibited using
hydrogen peroxidase. The antigen retrieval solution is
EDTA. The primary antibody utilized in the study was
anti-HMGAZ1 (1:200 dilution, Cat. sc-393213, Santa Cruz)
and anti-CD8A (ready-to-use, Cat. PA577, Abcarta).
Antibody staining was visualized with DAB and
hematoxylin counterstain. Using the immunoreactivity
score standard, two senior pathologists assessed stained
TMA to determine HMGA1 expression [40]. Two senior
pathologists used The Cancer Genome Atlas Network’s
criteria to determine the CD8 score for tumor-infiltrating
CD8* T cell assessment [41]. For every sample, a CD8
score, which is the total of the density and distribution
scores (0-6), was determined. Samples classified as
immune-cold are those with a CD8 score < 2 (0, 2) and
immune-hot samples with a score > 3 (3, 4, 5, 6).

Statistical analysis

R-4.2.2 was used to perform all statistical analyses. The
chi-square test was used to compare categorical variables,
while the Wilcoxon rank-sum test was for continuous
variables between the two groups. The log-rank test was
used to assess the prognostic values. A two-paired p-value
of less than 0.05 was considered statistically significant
for all analyses, and the results were categorized as
follows: *p-value < 0.05, **p-value < 0.01, ***p-value <
0.001, and ****p-value < 0.0001.

Availability of data and materials
The TCGA data are openly available at

https://portal.gdc.cancer.gov/, and the GEO data are
openly available at https://www.nchi.nlm.nih.gov/gds.

Consent for publication

All authors are consent for publication.
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RESULTS

Identification of differentially expressed overlapping
anoikis-related genes

From the genecards websiteand the Harmonizome
portals, a total of 244 anoikis-related genes (ARGS)
were obtained. By performing PCA on the
transcriptional matrix of anoikis-related genes, the
normal samples and NSCLC patients clearly differed
(Figure 1A). Therefore, a differential expression
analysis was carried out to better identify NSCLC
patients who had anoikis (Figure 1B). 33 anoikis-related
genes were shown to be up-regulated in NSCLC
patients, according to the results (Figure 1C-1E).
Additionally, given the correlation between genomic
variants and tumorigenesis, we summarized the
mutation rate and copy number variation (CNV) of
these genes. Results showed most of genes carried
genomic mutations or amplifications in NSCLC patients
(Figure 1F-1G), indicating the potential malignant
functions of these in tumorigenesis.

Establishment of a prognostic model of anoikis-
related genes in NSCLC

By performing univariable COX regression analysis
and LASSO analysis, five independent prognostic
genes (HMGAL, PLK1, ETV4, PHLDAZ2, and ITGB4)
were screened for establishing the prognostic model
(Figure 2A-2B and Supplementary Figure 1). The risk
scores based on the five anoikis-related genes
(ARGRS) were calculated according to the
combination of the expression levels of these genes
multiplied by the corresponding coefficients. As
shown in Figure 2C, the mortalities were centralized in
the ARGRS-high group, while the living patients were
enriched in the ARGRS-low group. Besides, in
patients with higher ARGRS, signatures (HMGAL,
PLK1, PHLDAZ2, and ITGB4) associated with poor OS
were significantly highly expressed, while ETV4,
correlated with favorable clinical outcomes showed the
opposite (Figure 2C). Consistently, compared with the
ARGRS-low group, patients with high ARGRS
showed a worse prognosis (Figure 2D). In addition,
further analysis showed that patients with higher
pathological stages or grades had higher levels of
signatures in the prognostic model and ARGRS
(Figure 2E, 2F and Supplementary Figure 2), which
further supported the finding that ARGRS was
associated with worse clinical outcomes in NSCLC.

In addition, due to the consequence of genomic
alterations in diagnosis and therapeutic guidelines, we
also compared the mutant frequencies of genes between
the high and low ARGRS groups. Compared with the

ARGRS-low group, the ARGRS-high group had more
complex genomic mutations (Supplementary Figure 3).
Some  well-known  mutations  associated  with
tumorigenesis and progression, such as TP53 [42, 43]
and PTEN [44], were enriched in the ARGRS-high
group, further supporting the association between
ARGRS and worse clinical outcomes in NSCLC.

Validation of the prognostic model in NSCLC

We further confirmed this finding in additional
independent cohorts after discovering the prognostic
predictive utility of ARGRS in the TCGA cohort.
Patients in the GSE30219 cohort who had higher
ARGRS had worse OS than those with lower ARGRS,
which is consistent with the findings from the TCGA
cohort (Figure 3A, 3B). ARGRS levels were also higher
in patients with higher clinical stages and grades (Figure
3C), indicating its role in the malignancy of NSCLC.
Patients in the ARGRS-high group similarly exhibited
inferior clinical outcomes in the GSE37745 and the
GSE3141 cohorts (Figure 3D, 3E). Based on the
findings from the TCGA and additional independent
cohorts, the ARGRS was linked to a worse OS for
NSCLC patients and may have contributed to tumor
progression.

The five anoikis-related genes in the model
expressed specifically in tumor cells at the single-cell
level

To further clarify the tumor-specificity of signatures in
the model, scRNA-seq datasets were include. A
SCRNA-seq dataset contained five NSCLC patients were
collected and integrated firstly (Supplementary Figure
4A, 4B). After quality control, integration and
unsupervised clustering, the cells were divided into 19
clusters (Supplementary Figure 4B). Then, based on the
expression distribution of canonical signatures of
different cell types, the cells were identified as tumor
cells, T cells, macrophages and cDC (Figure 4A—4C).
Then, we explored the distribution and expression levels
of five crucial genes. Results showed that compared
with non-tumor cells, tumor cells had higher levels of
ARGRS (Figure 4D, 4E). Besides, the signatures in the
model were specific highly expressed in the tumor cells
(Figure 4F), suggesting the tumor-specificity of the five
genes, and implying that the risk score can represent the
status of tumor cells.

Additionally, given of the heterogeneity among NSCLC
patients, another SCRNA-seq dataset was used to further
confirm the results found in the GSE150660 dataset.
After preprocessing, a total of 9,563 individual cells of
the GSE148071 cohort were passed quality control.
Subsequently, unsupervised clustering and cell
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Figure 1. Identification of anoikis-related genes in NSCLC patients in the TCGA NSCLC cohort. (A) Principal component analysis of
TCGA samples based on the expression matrix of anoikis-related genes obtained from the genecards website and the Harmonizome portals.
(B) Volcano plot showing the differentially expressed genes (DEGs) for the NSCLC tissues and paracancerous in the TCGA-NSCLC cohort. (C) 33
anoikis-related genes were up-regulated in NSCLC patients in the TCGA cohort. (D) Heatmap showing the expression values of anoikis-related
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chromosomes. (F) Mutation frequency of 33 overlapping signature genes in the TCGA NSCLC cohort. Each column represented a single
patient. The upper bar plot showed TMB. The number on the right indicates the mutation frequency of each regulatory gene. The right bar
plot showed the proportion of each variant type. The stacked bar plot below showed a fraction of conversions in each sample. (G) CNV
frequency of 33 overlapping genes in the TCGA NSCLC cohort. The height of the column represented the alteration frequency. Blue dot: the
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2912 AGING

www.aging-us.com



>

§ 6666666555543210 o 6 6 5 Index Pvalue  Hazard Ratio
cn 5
234 ) ; HMGA1  0.015 1.28 (1.05-1.56) .
o 2 54
28] 8 ; PLK1 0.0069 1.32 (1.08-1.61) B
™ - = =
$° 5 ° ETV4A 0015 078 (0.64-0.95) B
X 08
=y S PHLDA2  0.031 1.24 (1.02-1.52) .
= S
€97 S ITGB4 00041 1.34 (1.1-1.63) B
Q T T T T r 1
® Log Lamgda 0.5 1 1.5
TCGA - NSCLC TCGA - NSCLC
o 2.5{@Dead J 1.00
% 2.0 |@Alive
$ 15 K’ >
£0.75
250 3
w 200 ] T . < @High-ARGRS g
L 2 - e, —
S 150 s e t.a .Low ARGRS 50.50
g 2
= &
(2]
Low-ARGRS
0.25 e N
e WM\W { l | | il High-ARGRS
PLK1 ‘ -
0.00{ p=0.00055
ETV4 I H I‘I PN H‘I
PHLDA2 ’ » }H\ W| { | |‘| | Highl49s 84 22 5 1 0
ate: 2 1) I A il Lowl499 95 21 & 2 0
Expression [Y[[}% Max
0 50 100, 150 200 250
Time
E F M_Stage N_Stage T_Stage
I ., i 000 Rovoss
2.5 2.5 2.5
- pathotogic _stage
OOV TENTET ORIy Y pethologic T £20| A — 220|
_ pathologic_N E(: % %
X N TR Y MININTN pathologic_pa 15 15 15
gender
ARGRS
I | MO M1+ NO  Ni+ T1.T2 T3 T4
Stage Gender
) . 0.047 4.4e-09
Group pathologic_stage pathologic_T 25 ! 25 ! !
High-ARGRS M stage | T
Low-ARGRS [ Stage Il T2
M Stage Il W3 20 El @20 EH
pathologic_N M Stage IV T4 8 g
¥ unknown unknown < <
M No . 1.5 15
B N pathologic_M : '
B N2 gender = vo
N3 FEMALE M1
unknown MALE [ unknown Stage | Il Stagelll_ IV FEMALE MALE

Figure 2. Construction of prognostic model in the TCGA NSCLC cohort. (A) The LASSO coefficient profiles were constructed using the
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annotation were performed, and these cells were
classified into tumor cells, T/NK, macrophages, and
fibroblasts (Supplementary Figure 5A-5D).
Consistently, tumor cells had higher levels of ARGRS
(Supplementary Figure 5E, 5F) and the genes in the
prognostic model (Supplementary Figure 5G), further
confirming the tumor cell-specificity of the five genes.

Patients with higher ARGRS exhibit low immune
infiltration

Having observed the existence of many immune cells in
the NCLSC patients at the high dimensional datasets, we
next explored the correlation between ARGRS and the
fraction of each cell type. Notably, the ARGRS was
negatively correlated with the fraction of T cells at the
single-cell level (R?=-0.93, p = 0.02, Figure 5A). Also, in
the TCGA cohort, patients with higher ARGRS had lower
levels of ImmuneScore but higher levels of tumor purity

(Figure 5B), consistent with the results found in the
single-cell datasets. In addition, a functional analysis of
up-regulated genes in ARGRS-low group was highly
related to immunological processes, such as cytokine
activity, chemokine receptor binding and activity, and
cytokine-cytokine receptor interaction (Figure 5C).
Meanwhile, compared with the ARGRS-high group, the
ARGRS-low group expressed higher transcriptional levels
of immunological signatures, such as the biomarkers of
CD8+T cells and NK (Figure 5D and Supplementary
Figure 6). Also, the ARGRS-low group had higher
fraction of CD8+T cells, and enriched some immune
activation characteristics, such as the molecules of HLA,
MHC, and immunostimulatory (Figure 5E, 5F). To be
sum up, combined with the results found at the single-cell
and omics transcriptional datasets, we found that ARGRS
was negatively correlation with the fraction of T cells, and
patients with the ARGRS-high phenotype exhibited low
immune infiltration.
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Figure 3. Validation of prognostic model in other independent cohorts. (A) Distributions of ARGRS, survival status of NSCLC patients,
and expression profiles of the gene signatures in the GSE30219 cohort. (B) Survival analysis showing the prognostic value of ARGRS in the
GSE30219 cohort. (C) Comparison of ARGRS among different clinicopathologic features. (D, E) Survival analysis showing the prognostic value
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In another independent cohort, we also found the
similar results. ARGRS was negatively correlated with
ImmuneScore (R? = -0.32, p < 0.0001), but positively
with tumor purity (R? 0.36, p < 0.0001,
Supplementary Figure 7A-7C). Patients with the
ARGRS-low phenotype had higher enrichment scores

of immune-related characteristics, such as receptors
and MHC molecules (Supplementary Figure 7D).
Additionally, patients in the ARGRS- low groups also
had higher levels of the immune-related signaling
pathways and subpopulations (Supplementary Figure 7E),
indicating activate immunological status of patients with
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the ARGRS- low phenotype. To further investigate the
potential factors mediating the formation of inflamed or
dessert TME, we deconstructed the interactions among
cell populations. Results showed that compared with
ARGRS- tumor cells, ARGRS+ tumor cells presented
significantly more specific interactions with immune
subpopulations (Supplementary Figure 8A). ARGRS+
tumor cells can communicate with T cell via many ligand-
receptors (Supplementary Figure 8B), such as TIGIT-
NECTIN2 [45] and LGALS9-CD44 [46], which were
involved in suppressing tumor T cell infiltration, and
promoted the cell state transition of immune cells towards
a more immunosuppressive and exhaustive status,
indicating the potential mechanism in mediating the
dessert TME in the ARGRS-high group.

Patients with higher ARGRS were resistance to
immunotherapy

Previous studies reported that the reactivity of
immunotherapy was affected by the immunological status
of patients. To be specific, hot tumors, featured by T-cell
inflammation, were more sensitive to immunotherapies,
while cold tumors are resistant to many treatments [9, 10].
Combined with the distinct immunological status between
the ARGRS-high and low groups, the two groups may
have different response of immunotherapy.

Here, to investigate the immunotherapeutic in the
high- and ARGRS-low groups, we downloaded the
expression matrix and clinical annotations of NSCLC
patients in the cohorts received immunotherapy. In
accordance with results above, ARGRS was negatively
correlated with almost all immunological characteristics
in the GSE126044 dataset (Figure 6A). Also, patients
with the ARGRS-high phenotype had higher levels of
ImmuneScore, but low tumor purity (Figure 6B, 6C).
Besides, patients in the ARGRS-high group were
centralized in the NR group (Figure 6D), indicating the
immunotherapeutic resistance of them. Consistently,
analysis of another immunotherapy cohort also showed
the same results. Patients in the ARGRS-high group
exhibit lower immune infiltration but higher tumor
purity (Figure 6E-6G). Moreover, NSCLC patients in
the ARGRS-high group were more likely to recurrence
or progress after immunotherapy than the ARGRS-low
group (Figure 6H), further supporting the immuno-
therapeutic resistance of them.

HMGA1 was the representative biomarker for
NSCLC

Next, we chose a representative biomarker from the
five genes in the model for further experiments.
Firstly, we summarized the expressed fraction of these
genes at the single-cell levels. Compared with other

genes in the model, tumor cells had obviously
transcriptional levels and the highest expressed
fraction of HMGALl (Figure 7A, 7B, and
Supplementary Figure 9A, 9B). Besides, at the high-
resolution dataset, compared with other four genes,
HMGAL1 showed the most significant negative
correlation with T cell inflamed and positive with
tumor cells (Supplementary Figure 10). A
Additionally, HMGAL expressed was negatively
correlated with ImmuneScore, but positively with
tumor purity in multiple independent cohorts (Figure
7C-7F), suggesting the guidance of HMGA1L in
distinguishing the hot and cold NSCLC tumors.

Next, we verified the expression pattern of HMGAL in
the in-house cohort. We found that HMGA1 expression
was significantly higher in tumor tissues than in para-
tumor tissues (Figure 8A, 8B), and HMGA1l was
specifically expressed in NSCLC (Figure 8C, 8D). We
also classified NSCLC into immune-hot and cold
tumors based on the CD8 scores. Besides, HMGA1 was
significantly reduced in immune-hot tumors (Figure 8E,
8F) and negatively correlated with CD8 scores (Figure
8G). Overall, the negative correlation between HMGAL
expression and T cell infiltration can be verified in the
in-house cohort, which greatly improves the confidence
of the public cohort results.

DISCUSSION

Nowadays, with the more profound of molecular and
microenvironment characteristics of NSCLC, immuno-
therapy strategies, such as immune checkpoint
inhibitors, has changed first-line treatment of advanced
NSCLC, as we all know. Meanwhile, more than 10
indications for immunotherapies in NSCLC clinical
practice has been approved by Chinese official
organization [47—49].

Even while some patients have benefitted from this new
therapy strategy in terms of survival, some individuals
are still unable to get lasting relief. Tumor cell apoptosis
can result in medication resistance, which in turn affects
tumor cell survival in the bloodstream, which is
essential for the development of metastasis. Jin et al.
found that PLAG1 GDH1 axis promotes apoptotic
resistance and tumor metastasis in LKB1-deficient
malignancies via CamKK2 AMPK signaling pathway
[50]. According to research, CPT1A-mediated fatty acid
oxidation can encourage the spread of colorectal cancer
cells by impairing the process of cell death [51].
Anoikis has been extensively investigated in relation to
tumor growth and metastasis, but little is known about
how it alters the tumor immune milieu and hence
mediates tumor progression. We concentrate on the part
anoikis play in the microenvironment of the tumor and
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investigate if anoikis can mediate the regulation of
immunization, altering the growth and metastasis of the
tumor.

We identified tumor-specific anoikis-related genes in
NSCLC patients and used these genes to build a
predictive model. Patients with higher ARGRS
exhibited worse clinical outcomes, showing that
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with minimal immune infiltration. Further investigation
revealed that the results from the independent NSCLC
cohorts were compatible with the findings at the high
dimensionality datasets. Patients in the ARGRS-high
group, in particular, showed lower levels of immune
features but higher tumor purity.

Given of the important role of immunological status of
TME in immunotherapeutic response [9, 10, 52], we
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further investigated the responses of the ARGRS-high
and low groups in immunotherapy cohorts.
Approximately 87.5% of patients in the ARGRS-high
group did not achieve remission after immunotherapy,
and were more likely to recurrence or progress,
suggesting the immunotherapeutic resistance of these
patients. There is now evidence that NSCLC patients
can benefit from immunotherapy. However, limited by
the inadequate research of characteristics to distinguish
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Figure 7. HMGA1 was the representative biomarker. (A) Right: bar plot showing the expressed fraction of HMGA1 between the non-
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(F) the GSE135222 cohorts.
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the inflamed and desert TME, numerous patients
received immunotherapy without obtaining effective
results. Therefore, we performed a comprehensive
study on explore the ARGs and delved into
the prognosis and immune microenvironment
characteristics of NSCLC. Additionally, given the
regulating upstream feature of ARGRS, targeting it
can activate the patient’s immune system coincident
with tumor cell killing.

In addition, we further validated the expression and
immuno-correlations of HMGA1 in NSCLC in
the in-house cohort. We found that HMGA1 was
highly expressed in tumor tissues and enriched in
immuno-cold tumors, indicating that HMGAL could
shape immuno-cold TME and promote immuno-
suppression. In fact, reversal of HMGAL-mediated
immunosuppression could improve hepatocellular
carcinoma therapy [53]. In the term of molecular
mechanisms, HMGAL acted as a crucial regulator
of tumor-promoting macrophage recruitment by
activating NF-xkB-CCL2 signaling and also regulated
PD-L1 expression to promote immunosuppression
[54, 55].

CONCLUSIONS

In this study, we investigated NSCLC-specific anoikis-
related genes and constructed a prognostic model.
Patients with higher ARGRS had worse clinical
outcomes. Besides, we proved that the ARGRS and
signatures in the models were highly expressed on
tumor cells, compared with the non-tumor cells at the
single-cell level. Notably, we found that the ARGRS
was negatively correlated with the fraction of T cells.
And other independent cohorts also showed the same
results. To be specific, the ARGRS-high group had low
immune infiltration, while the ARGRS-low group
showed more active immunological status. Furthermore,
in the immunotherapy cohort, patients who did not
achieve remission or had tumor progression after
immunotherapy were enriched in the ARGRS-high
group, suggesting that patients with the ARGRS-high
phenotype were more likely to be resistant to
immunotherapy. To sum up, we constructed an anoikis-
related gene model, and explained the relationship
between ARGRS and immunological status, which can
help to develop more personalized and precise treatment
strategies in clinical practice.
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Supplementary Figure 1. Survival analysis showing the prognostic value of the five genes in the prognostic model in the
TCGA cohort.
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Supplementary Figure 2. Comparing the gene expression of signatures in the prognostic model among patients with
different pathological characteristics. (A-E) Boxplot showing the expression levels of HMIGA1 (A), PLK1 (B), ETV4 (C), PHLDA1 (D), and
ITGB4 (E) among patients with different pathological characteristics.
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Supplementary Figure 3. Comparison of mutant alterations between the high- and low-ARGRS groups. Genes with p-value <
0.01 were displayed.
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Supplementary Figure 4. Unsupervised clustering of five NSCLC patients from the GSE150660 dataset at the single-cell level.
(A) The distribution of NSCLC patients across all profiled single cells. (B) Unsupervised clustering of all profiled single cells.
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Supplementary Figure 5. Transcriptomic clustering of NSCLC patients in the GSE148071 cohort. (A)Unsupervised clustering of
9,563 cells. (B) The distribution of NSCLC patients across all profiled single cells. (C) Marker-based cell type identification analysis allowed the
prediction of four broad cell types across all profiled single cells. (D) Expression levels of cell type signatures overlaid on the t-SNE
representation. EPCAM and KRT8 for tumor cells, CD3E and CD3G for T cells, CD86, LYZ, CD163 and CD14 for macrophages, COL1A1 and DCN
for fibroblasts. (E) ARGRS overlaid on the t-SNE representation. (F) Boxplot showing the levels of ARGRS between tumor and non-tumor cells.
Horizontal lines in the boxplots represent the median, the lower and upper hinges correspond to the first and third quartiles, and the
whiskers extend from the hinge up to 1.5 times the interquartile range from the hinge. (G) Expression levels of the five genes in the
prognostic model overlaid on the t-SNE representation.
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Supplementary Figure 6. The correlation among 29 immune cell types and immune-related pathways and ARGRS in the
TCGA cohort.
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Supplementary Figure 7. Correlation between immunological characteristics and ARGRS in the GSE3141 cohort. (A, B)
Correlation between ARGRS and ImmuneScore (A) and tumor purity (B). (C) Comparison of ImmuneScore, StromalScore, ESTIMATEScore, and
tumor purity between ARGRS-high and low groups. (D) Comparison of the enrichment of receptors, MHC molecules, Inmunostimulator, and
Chemokine between ARGRS-high and low groups. (E) Heatmap showing the enrichment scores of 29 immunological characteristics.
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Supplementary Figure 8. Cell-cell communications among cell types in NSCLC (GSE150660). (A) Heatmap showing the interaction
numbers among cell types. (B) Heatmap showing the ligand-receptors between tumor (ARGRS+ and ARGRS-) and T cells.
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Supplementary Figure 9. Comparison of expressed fraction of genes in the model between non-tumor and tumor cells.
(A) Bar plot showing the expressed fraction of PLK1, ETV4, PHLDA2, ITGB4 between the non-tumor and tumor cells in the GSE150660 cohort.
(B) Bar plot showing the expressed fraction of PLK1, ETV4, PHLDA2, ITGB4 between the non-tumor and tumor cells in the GSE148071 cohort.
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Supplementary Figure 10. Correlation between expressed fractions of genes in the model and tumor/T cell percentage in
GSE150660. (A) Correlation between HMGA1+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (B)
Correlation between PLK1+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (C) Correlation between
ETV4+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (D) Correlation between PHLDA2+ cells in
tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (E) Correlation between ITGB4+ cells in tumor cells and tumor
(left) and T cell percentage (right) in GSE150660 dataset.
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