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INTRODUCTION 
 

The first case of a disease displaying signs of premature 

aging was reported by dermatologist Dr. Moritz Kaposi 

who described the syndrome Xeroderma Pigmentosum 

in 1874 [1]. He presented case reports of several young 

individuals who suffered from severe skin abnormalities 

commonly associated with aging of the skin. In 1886 

Dr. Jonathan Hutchinson described a disease displaying 
signs of premature aging in a 3.5-year-old boy who 

presented with ‘a very peculiar and old-mannish look’ 

[2]. Hutchinson further provided a detailed description 

of the boy’s phenotypic features including a large head, 

open anterior fontanel, thin scalp and skin, lack of 

subcutaneous fat, alopecia, prominent veins, and muscle 

atrophy. Due to the striking overlap with normal aging, 

Dr. Hastings Gilford introduced the term progeria 

(Greek for prematurely old) and later the syndrome was 

referred to as Hutchinson-Gilford Progeria syndrome 

(ref: Gilford, Hastings. “Progeria: a form of senilism.” 

Practitioner 73 (1904): 188-217). Several progeroid 

syndromes have since been identified, and the infor-
mation coming from understanding the pathogenesis of 

the syndromes has proven to be of great value in the 

research of normal aging. For instance, the identification 

that loss of DNA repair in multiple disease leads to 
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ABSTRACT 
 

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with 
pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the 
diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To 
accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean 
prevalence of their associated phenotypes, defining what we term the ‘progeria phenome’. The data were used 
to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias 
based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and 
syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We 
detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display 
strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized 
progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being 
progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging 
disorder and how to diagnose them. 
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premature aging has contributed to adding “genomic 

instability” as a hallmark of aging [3]. Strikingly, 

almost all progerias have been associated with  

genome instability while loss of other hallmarks in 

general have not been considered leading to a progeria 

phenotype [4]. However, what constitutes a progeria  

is not well defined and there are few tools to identify  

a progeroid patient. Furthermore, progeroid diseases 

are generally difficult to diagnose due to the large 

variations in clinical presentation [5]. Notably, whole 

exome sequencing only leads to diagnoses in 30- 

50% of patients [6] suggesting additional diagnostic 

strategies are needed. 

 

In this study, we have utilized phenome explorations  

to define the phenotypes associated with progerias  

and to develop tools to diagnose patients and identify 

new progeroid syndromes. We compiled a list of known 

progerias and manually curated literature describing 

phenotypes associated with each disease. We then 

performed agglomerative hierarchical clustering, network 

investigations and principal component analysis on  

this data to identify correlations between disorders of 

different etiology. This allowed us to define the average 

phenotypes (the progeria phenome) of the progeroid 

patients and compare it with diseases that have  

been associated with premature aging (mitochondrial, 

autophagy and DNA repair disorders). In sum, we  

have defined what a premature aging disease is and 

developed tools to allow diagnostics of patients and 

disease population. 

 

RESULTS 
 

Identification of progeroid syndromes 
 

The syndrome database on https://www.mitodb.com 

was used in this study as a source of data concerning 

known progeroid syndromes and other groups  

of syndromes. To first identify premature aging  

diseases previously unrecognized by the mitodb 

database, putative progeroid diseases in the Online  

Mendelian Inheritance in Man (OMIM) were identified  

using the search strategy ‘Progeroid’, ‘Progeria’ and 

‘Premature aging’. Hits were sorted based on a 

predefined inclusion and exclusion criteria allowing 

the identification of 32 premature aging syndromes 

(Figure 1 and Table 1). For each disease, published 

papers on PubMed were identified and prevalences  

of phenotypes in each disease were added to the 

database (see Supplementary Figures 1, 2 and Methods  

“Mean Prevalence of Phenotypes”). This quantified 

description of each disease allowed to compare and 
cluster diseases and phenotypes from all known 

progerias similar to what we have previously done 

with mitochondrial disorders [7]. 

Hierarchical clustering identifies five phenotypical 

groups of progerias 

 

To understand the overlap and differences in  

clinical phenotypes between these rare diseases, 

principal component analysis, hierarchical clustering 

and networking tools were used on all 32 progeroid 

syndromes in the database. We also included normal 

human aging that consists of the human phenome as 

previously defined by us [8]. The hierarchical clustering 

(Figure 2A) showed progeroid syndromes clustered  

in groups indicating phenotypic diversity: one group 

contained syndromes such as Cockayne syndrome, 

Xeroderma Pigmentosum A (XPA) and Ataxia-

Telangiectasia sharing phenotypes like cerebellar atrophy 

and short stature, a second group contained syndromes 

such as Werner syndrome, Rujis-Aalfs syndrome and 

Hutchinson Gilford sharing phenotypes like micrognathia 

and short stature, a third group contained Seckel 

syndrome and Nijmegen breakage sharing phenotypes 

like microcephaly, developmental delay and prominent 

nose, a fourth group contained Bloom syndrome and 

Xeroderma Pigmentosum (B, C, F, G, V and E) sharing 

phenotypes like cancer and sun sensitivity and a fifth 

group contained syndromes such as KPLB syndrome, 

GAPO syndrome and SHORT syndrome sharing 

phenotypes like micrognathia and skin wrinkles. 

Brachiooculofacial syndrome (BOFS), Geroderma 

osteodysplasticum (GO) and Acromicric dysplasia 

deviated from the other syndromes indicating a 

substantial difference in phenotypic traits and perhaps a 

weaker progeria phenotype. 

 

To identify potential outliers in our dataset we used 

Principal Component Analysis (PCA) of the quantified 

traits (Figure 2B). Surprisingly, the PCA did not result 

in a strong separation between diseases, indicating that 

there are no clear phenotypic differences in the dataset. 

While the analysis indicated a considerable variation in 

the clinical presentation, it did not provide evidence to 

exclude any syndrome from our dataset. 

 

Transcriptomics reveals altered pathways in 

premature aging diseases 

 

To understand if the clinical phenotypes could  

be reflected in molecular changes, we explored gene 

expression data from premature aging diseases. We  

were able to identify published gene expression  

data from 13 progeroid syndromes allowing us to 

investigate the similarity between diseases (Figure 2C). 

Interestingly, we observed that Cockayne syndrome, 

Xeroderma Pigmentosum group A (XPA), and Ataxia-
Telangiectasia, three diseases associated with premature 

neurological aging, formed a close cluster. Pathway 

analysis revealed that DNA damage and multiple 

https://www.mitodb.com/
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inflammatory processes were common between  

these diseases (Supplementary Table 1). For Werner 

syndrome and Hutchinson Gilford Progeria Syndrome 

pathway analysis showed perturbation of growth  

signals and the DNA damage response (Supplementary 

Table 2). Further, Bloom syndrome was found to cluster 

with Nijmegen breakage syndrome supporting their 

biochemical role in double stranded DNA break repair 

and shared pathways were growth signaling, DNA 

damage response pathways, transcription and 

inflammation (Supplementary Table 3). Lastly, Seckel 

syndrome clustered together with Nestor-Guillermo 

progeria and dyskeratosis congenita perhaps suggesting 

issue with DNA replication and cell division leads to 

similar transcriptional outcomes. However, almost no 

pathways were found to overlap between Nestor-

Guillermo progeria and Seckel syndrome (Supplementary 

Table 4). 

 

 
 

Figure 1. Identification of progeroid syndromes for database. Flow diagram illustrating the process of identifying new progeroid 
syndromes for mitodb.com including search, inclusion and exclusion criteria. 
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Table 1. The progeroid syndromes. 

Syndrome Gene 

Branchiooculofacial Syndrome TFAP2A 

Acromicric Dysplasia FBN1 

Ataxia-Telangiectasia ATM 

Bloom Syndrome BLM 

Cockayne Syndrome ERCC6 

Dyskeratosis Congenita TERC 

Fanconi Anemia FANCA 

Fontaine Syndrome SLC25A24 

GAPO Syndrome ANTXR1 

Geroderma Osteodysplasticum GORAB 

Hutchison-Gilford Progeria Syndrome LMNA 

Keppen-Lubinsky Syndrome KCNJ6 

Mandibular hypoplasia, Deafness, Progeroid features, and Lipodystrophy Syndrome POLD1 

Marbach-Rustad Progeroid Syndrome LEMD2 

Nestor-Guillermo Progeria Syndrome BANF1 

Nijmegen breakage Syndrome NBS1 

Penttinen Syndrome PDGFRB 

Rahman Syndrome HIST1H1E 

Rothmund-Thomson Syndrome RECQL4 

Ruijs-Aalfs Syndrome SPRTN 

Saul-Wilson Syndrome COG4 

Seckel Syndrome ATR 

Seckel Syndrome 2 RBBP8 

Short stature, Hyperextensibility, Hernia, Ocular depression, Rieger anomaly, and Teething delay Syndrome PIK3R1 

Werner Syndrome WRN 

Wiedemann-Rautenstrauch Syndrome POLR3A 

Xeroderma Pigmentosum group A XPA 

Xeroderma Pigmentosum group B XPB 

Xeroderma Pigmentosum group C XPC 

Xeroderma Pigmentosum group E XPE 

Xeroderma Pigmentosum group F XPF 

Xeroderma Pigmentosum group G XPG 

Xeroderma Pigmentosum group V XPV 

Table listing the progeroid syndromes by name and respective affected gene. 

 

A support vector machine accurately classifies 

progeroid diseases 

 

A major hurdle for rare diseases is the possibility of  

fast diagnosis. We therefore generated a support vector 

machine (SVM) classifier that can identify premature 

aging diseases based on their phenotype alone. The SVM 

was trained to recognize progeroid syndromes by training 

it on the prevalence of phenotypes associated with the 

32 progerias and to a control group of 29 non-progeroid 
syndromes from the database, which showed the least 

correlation with progeroid syndromes when using 

hierarchical clustering. The control syndromes are all 

non-mitochondrial syndromes with known pathogenesis. 

This yielded good results and the SVM accurately 

separates both progeroid and non-progeroid diseases in 

the database (Figure 2D). Notably, the SVM is available 

online at https://www.mitodb.com where inputted pheno-

types will automatically receive an SVM score. 

 

Mitochondrial diseases show minor overlap to 

progeroid syndromes 

 
Mitochondrial alterations are known to occur with  

age and have been proposed to be a hallmark feature  

of aging. A connection has previously been established 

https://www.mitodb.com/
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Figure 2. Progeroid syndrome overview. (A) Agglomerative hierarchical cluster based on phenotype prevalences using uncentered 

similarity and average linkage. (dark green are new to the database, other colors represent different clusters). Each syndrome group is color 
coded in the inner circle. (B) Principal component analysis of diseases based on the prevalence of phenotypes. (C) Hierarchical clustering of 
publicly available dataset for some premature aging diseases and the shared pathways between closely associated diseases. (D) Support 
vector machine scores for premature aging diseases (available at https://www.mitodb.com). 

https://www.mitodb.com/
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between mitochondrial syndromes and certain 

premature aging diseases such as Cockayne syndrome, 

xeroderma-pigmentosum and Ataxia-Telangiectasia  

[7, 9]. Therefore, we performed hierarchical clustering 

with the progeroid diseases and mitochondrial 

disorders (Figure 3A). Cockayne syndrome, xeroderma 

pigmentosum and Ataxia-Telangiectasia clustered  

with mitochondrial syndromes as expected. Notably, 

Rahman syndrome also clustered with mitochondrial 

syndromes suggesting phenotypic overlap. However, 

all other progeroid syndromes appeared to cluster 

exclusively with other progeroid syndromes. 

 

To further investigate the link between mitochondrial 

and progeroid syndromes, we created a network to 

explore the connection between diseases. Each dot is a 

disease and a connecting line between dots represents 

a shared phenotype. The shorter the distance the  

more phenotypes are shared. This showed progeroid 

syndromes group in one end of the network indicating 

that they share significantly more traits among them-

selves even though they connect with mitochondrial 

syndromes (Figure 3B). Cockayne syndrome, Ataxia-

Telangiectasia, Rahman syndrome and XPA were 

found scattered between the mitochondrial syndromes 

confirming their correlation as seen in the hierarchical 

cluster. 

 

DNA-repair syndromes show strong overlap with 

progerias 

 

The progeroid syndromes in the data set are caused  

by mutations in single genes often associated with 

defect genome maintenance resulting in acceleration  

of some features in aging. Hutchinson-Gilford progeria, 

Cockayne syndrome and Werner syndrome are 

progeroid syndromes known to be caused by altered 

DNA-repair [10]. Creating a hierarchical cluster and a 

network for progeroid syndromes and DNA-repair 

syndromes allowed further analysis of their correlation. 

To investigate this, we clustered the premature aging 

diseases with diseases known for defects in DNA  

repair. As opposed to syndromes with mitochondrial 

pathogenesis, the DNA-repair syndromes were seen 

scattered between progeroid syndromes within the 

hierarchical cluster (Figure 3C). For instance, epileptic 

encephalopathy, childhood-onset (EEOC) and ataxia-

telangiectasia like disorder 2 (ATLD2) clustered with 

Cockayne syndrome and XPA, Warsaw breakage 

syndrome (WABS) clustered with Seckel and Nijmegen 

breakage syndrome and Meier-Gorlin syndrome 

(MGORS) clustered with acromicric dysplasia. 

 
Additionally, we created a network to compare with the 

hierarchical cluster. The network (Figure 3D) illustrated 

how certain progeroid syndromes such as SHORT 

syndrome were grouped in one end, suggesting that  

they share more traits among themselves than they  

do with other syndromes in the network. However, 

multiple DNA-repair syndromes such as ATLD2, 

neurodegeneration, childhood-onset, stress-induced, with 

variable ataxia and seizures (CONDSIAS) and MGORS 

were placed close to this group of progeroid syndromes 

indicating a large amount of shared traits and confirming 

our results from the hierarchical clustering. 

 

Syndromes characterized by abnormal autophagy 

show minor overlap with progerias 

 

In healthy humans, the basal activity of autophagy  

in living cells decreases with age giving rise to 

accumulation of damaged cells. Notably, defective 

autophagy has recently been added as a hallmark of 

human aging [11]. To investigate the possible correlation 

between progeroid syndromes and autophagy we build a 

hierarchical cluster and a network comparing progeroid 

syndromes and syndromes displaying abnormal auto-

phagy (Figure 3E, 3F). Surprisingly, the hierarchical 

clustering showed little clustering between progeroid 

syndromes and syndromes characterized by abnormal 

autophagy. Similarly, the hierarchical cluster with 

mitochondrial syndromes, Cockayne syndrome, XPA, 

Rahman syndrome and Ataxia Telangiectasia appeared 

to correlate phenotypically with syndromes presenting 

abnormal autophagy while the rest of the progeroid 

syndromes stayed clustered to each other. Notably 

defective mitophagy, a mitochondrial specific macro-

autophagy pathway, has been shown for some premature 

aging disease [12]. The network complemented this 

result, showing progeroid syndromes distanced from  

the syndromes with abnormal autophagy. However,  

the syndromes spastic paraplegia 49 (SPG49), Vici 

syndrome and Zellweger syndrome were located close to 

the group of progeroid syndromes in the network making 

them potential candidates for further investigation. 

 

The premature aging phenome 

 

Finally, we calculated the mean prevalence of phenotypes 

in each group of syndromes. Short stature, micrognathia, 

sun sensitivity, alopecia, skin pigmentation changes  

and microcephaly were discovered as being the most 

common phenotypes in progeroid syndromes (Figure 4). 

This showed considerable overlap with diseases with 

abnormal DNA-repair where short stature, microcephaly, 

ataxia, cerebellar atrophy and developmental delay  

were the most common phenotypes. In mitochondrial 

syndromes lactate accumulation, hypotonia, develop-

mental delay, muscle weakness, seizures and ataxia 
were the most common phenotypes [7]. Lastly, 

developmental delay, cerebellar and cerebral atrophy, 

ataxia and dysarthria were the most common phenotypes 
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Figure 3. Hierarchical clusters and syndrome networks. Agglomerative hierarchical clustering and network algorithms of 

mitochondrial syndromes (A, B), DNA-repair syndromes (C, D) and syndromes with abnormal autophagy (E, F). 
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Figure 4. Mean prevalence of phenotypes. (A) Mitochondrial syndromes, (B) DNA-repair syndromes, (C) syndromes with abnormal 

autophagy and (D) progeroid syndromes. 



www.aging-us.com 2034 AGING 

in syndromes with abnormal autophagy perhaps 

illustrating that defective authophagy can lead to 

mitochondrial dysfunction. In conclusion, progeroid 

syndromes therefore seem to share most phenotypes 

with DNA-repair syndromes as shown previously in our 

hierarchical cluster and networks. 

 

Identification of possible progeroid syndromes 

 

In order to find potential progeroid syndromes amongst 

the mitochondrial syndromes, DNA-repair syndromes 

and syndromes with abnormal autophagy, we applied  

a high threshold when working with networks (see 

Methods). The majority of these syndromes were not 

associated with progeroid syndromes when the threshold 

was raised and were mainly connected to others of  

the same classification. However, three syndromes  

were more strongly linked to progeroid syndromes in 

their respective networks, suggesting a correlation  

of phenotypic traits. They included ATLD2 (Ataxia 

Telangiectasia like Disorder 2) and MGORS (Meier-

Gorlin syndrome) that are both DNA-repair syndromes 

and SPG49 (Spastic Paraplegia 49), a syndrome 

displaying abnormal autophagy. 

 

To test their potential to be progeroid, we incorporated 

them in a network with all progeroid syndromes (Figure 

5A–5C) with the aim of investigating how the addition 

 

 
 

Figure 5. Possible progeroid syndromes. (A) A network containing progeroid syndromes and MGORS, (B) network containing progeroid 
syndromes and SPG49, (C) network containing progeroid syndromes and ATDL2 and (D) a hierarchical cluster with progeroid syndromes, 
MGORS, ATLD2 and SPG49. 
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of the syndromes would alter the network. Firstly, we 

tested our network exclusively containing progeroid 

syndromes by raising the threshold, which led to the 

syndromes GO, XPC, XPF and XPV to disconnect  

from the rest. After adding the three syndromes 

ATLD2, SPG49 and MGORS the same four progeroid 

syndromes disconnected from the network, indicating a 

strong connection between the three tested syndromes 

and the main cluster of progeroid syndromes. 

Furthermore, when looking at the position of syndromes 

within the networks there seemed to be few changes. 

All tested syndromes were located near the center  

group of progeroid syndromes. This indicated that  

the incorporated syndromes have similar phenotypic 

profiles and do not result in change in the correlation 

between known progeroid syndromes. 

 

To further investigate this hypothesis, we created  

a hierarchical cluster containing the three tested 

syndromes and all progeroid syndromes known to the 

database (Figure 5D). The known progeroid syndromes 

clustered in their usual groups as previously visualized 

in Figure 2A, showing little interference when adding 

the three new syndromes. ATLD2 clustered with the 

group of progeroid syndromes containing Xeroderma 

Pigmentosum A and Cockayne syndrome, SPG49 

clustered with Ataxia Telangiectasia, and MGORS 

clustered with Seckel syndrome and Nijmegen breakage 

syndrome. Lastly, we used the SVM to predict the 

syndromes’ likelihood of being progeroid. ATLD2 

scored 3.49, SPG49 scored 1.75 and MGORS scored 

1.56 supporting the hypothesis of these syndromes 

being progeroid. 

 

To further illustrate the predictive power of our 

algorithms we further decided to test if Charcot-Marie-

Tooth disease (CMT2Z), a disease recently associated 

with Cockayne Syndrome [13], could be a possible  

new progeria. Hierarchical clustering indeed showed 

close phenotypical correlation with Cockayne syndrome 

(Supplementary Figure 3A) and a relatively high SVM 

score of 1.24 suggesting that the disorder could be 

classified as progeroid. 

 

DISCUSSION 
 

In this study, we analyzed the prevalence of  

phenotypes observed in progeroid syndromes to  

define the progeroid phenome. This allowed us to 

identify the combination of traits which presented  

with the highest prevalence in progeroid syndromes. 

The phenotypes with the highest prevalence included 

short stature, micrognathia, sun sensitivity, alopecia, 

skin pigmentation changes, microcephaly and cancer. 

The full set of phenotypes create the foundation for the 

‘progeria phenome’, which can be used for comparisons 

and diagnostics in the future and is accessible on 

https://www.mitodb.com. Of note, anyone can test if a 

patient or disease display phenotypical overlap with 

these diseases by inputting features on the website and 

test the disease. 

 
To better understand the correlation between  

progeroid syndromes internally, we modulated the data 

sets through networks and hierarchical clustering. The 

progeroid syndromes seemed to cluster and network  

in groups indicating a certain variety within progerias. 

The syndromes SHORT, Saul-Wilson, Penttinen, 

Fontaine, WRS, GAPO and KPLB presented with  

close correlation independent of which category of 

syndromes they were compared to throughout the study. 

Interestingly, gene mutation in each of these syndromes 

have been linked to defects in cell differentiation and 

proliferation suggesting common pathogenesiss [14–19]. 

Several other groupings repeatedly clustered together  

in hierarchical clustering and networks, indicating  

the presence of subgroups within the progeroid  

syndromes. Accordingly, some progeroid syndromes  

have been linked with mitochondrial syndromes, DNA- 

repair syndromes and syndromes displaying abnormal 

autophagy. However, we saw weak correlation between 

progerias and either mitochondrial syndromes or 

syndromes displaying abnormal autophagy as opposed 

to progeroid and DNA-repair syndromes with which 

there was a clear correlation. This suggests that  

the pathogenesis of progeroid syndromes is related  

to DNA-repair syndromes or that the gestalt of  

progeroid syndromes is more in line with aging, while 

autophagy and mitochondrial disease perhaps show 

aging phenotypes linked with internal organs such as 

the brain. 

 
Our transcriptomics analysis of premature aging 

diseases provides further understanding of expression 

signatures within analogous disease subsets. We 

observe that in some diseases, the gene expression-

based clustering demonstrates consistency with 

phenotypic clustering, however, this is not the case  

for all diseases. Notably, specific disorders such  

as Cockayne syndrome, Xeroderma Pigmentosum A 

(XPA), Ataxia-Telangiectasia, Werner syndrome, and 

Hutchinson Gilford exhibited a tendency to cluster 

based on the congruity of their gene expression patterns. 

However, it should be noted that certain significant 

discrepancies reveal that occasionally, the distinctions 

between the molecular mechanisms of a disease may 

not be accurately captured by phenotypic information 

alone. For instance, we identified divergences in 

clustering patterns, as evidenced by Bloom syndrome 

clustering with Nijmegen breakage syndrome and 

Seckel syndrome clustering in conjunction with Nestor-

Guillermo progeria syndrome. 

https://www.mitodb.com/
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Furthermore, the hierarchical clusterings and  

networks led to the discovery of possible new progeroid 

syndromes. Focusing on the networks we identified 

tendencies in three non-progeroid syndromes, ATLD2, 

MGORS and SPG49, suggesting that they had  

similar clinical traits as those of progeroid syndromes. 

However, this assumption seemed imprecise when using 

hierarchical clustering as only MGORS had significant 

clusters to progeroid syndromes. Nevertheless, it is 

important to differentiate between hierarchical clustering 

and networks, as hierarchical clustering forces syndromes 

into clusters solely based on the level of correlation. 

Consequently, a syndrome will be forced in a cluster 

containing the specific syndrome with which it shares 

the most traits. In contrast, a syndrome maintains links 

to all other syndromes they share phenotypes with in a 

network. The location of a syndrome is based on the 

amount it correlates with others, placing syndromes 

close if they share many traits and further apart if they 

only share a few. Therefore, we maintain our suggestion 

that the three diseases could possibly be classified as 

progeroid syndromes. 

 
As progeroid syndromes have historically been 

diagnosed and described based solely on phenotypes, 

comparing syndromes’ phenotypes to the progeroid 

phenome using hierarchical clusterings, networks and 

mean prevalence is a useful and reliable tool for the 

potential identification of new progeroid syndromes. 

Further, tools such as this can identify patterns not 

previously recognized in known progerias, for instance 

we observe that XPA, CS and AT cluster closely 

together while XPB [20] and XPG [21] that in rare 

cases can lead to a CS like phenotype are in a separate, 

but associated, cluster. This could be explained by  

the rarity of the XPG and XPB-CS patients leading  

to only minor contributions to the overall XPB and 

XPG phenotype. Creating a machine learning algorithm 

based on the progeria phenome, giving the tested 

syndrome a score based on its likelihood of being 

progeroid, could be an opportunity to optimize the, 

often slow [22] diagnostic process for these disorders. 

However, as phenotypes are predominantly a subjective 

parameter relying on the observing physician and  

their focus, we argue that having objective tools  

for diagnosing and analyzing progeroid syndromes 

would further strengthen the process. This may aid in 

other diagnostic tools such as whole genome or exome 

sequencing. Consequently, having objective parameters 

for progeroid syndromes would strengthen the diagnosis 

of patients as well as create a more detailed picture of a 

syndrome and its further progression. 

 
In conclusion, we can analyze and evaluate  

a syndrome’s likelihood of being progeroid by  

using hierarchical clustering, networks and the mean 

prevalence of phenotypes seen in known progeroid 

syndromes. Additionally, defining the progeria phenome 

optimizes clinical diagnosis of patients presenting  

with a variety of phenotypes and has allowed us to 

develop a support vector machine that can predict a 

syndrome’s likelihood of being progeroid solely based 

on phenotypes. Notably, this can already be explored on 

https://www.mitodb.com. The prospect of identifying 

clear phenotypic profiles and comparing objective 

parameters such as pathogenesis, biochemical markers 

and physiological markers can serve as the basis for 

early diagnosis, improved patient treatment, and the 

hope of developing innovative medicines. 

 

MATERIALS AND METHODS 
 

OMIM.org 

 

This study is a literature review based on the  

selection of relevant articles focusing on reviews, 

meta-analysis and clinical studies. The primary source 

of articles was PubMed Central (PMC) and the process 

of selecting articles occurred October 1st - November 

5th. When designing our search, we used the website 

https://www.OMIM.org as a base. OMIM.org is an 

online compendium of the human genes and genetic 

phenotypes. The site contains PMC referenced full-

text overviews on all known Mendelian disorders and 

over 16.000 genes. OMIM additionally has a unique 

search feature facilitating the option of focusing the 

search on diseases with phenotype description and 

known molecular basis. 

 

The literature search was based on an “Advanced 

Search” using relevant medical subject heading and 

keywords. The relevant terms and keywords were then 

combined by exploiting the Boolean Operators ‘OR’, 

‘AND’, ‘NOT’. The process of specifying the search 

originated from the terms ‘Progeriod’ and ‘Progeria’ 

with opt in ‘# phenotype description, molecular basis 

known’ due to the purpose being phenotypic analysis. 

This search was revealed to be insufficient, seeing as the 

result excluded several confirmed progeroid syndromes. 

Therefore, we added ‘premature aging’ in addition to 

the original terms as keywords with a proximity search 

to limit the distance in words between two keywords to 

1. The second search resulted in 66 hits including all 

previously reported as well as unreported progeroid 

syndromes on https://www.mitodb.com, making this the 

base of further selection. 

 

To reinforce the quality of the study we supplemented 

the OMIM search with an additional PMC search 

focused on articles published later than those referenced 

on OMIM. This thoroughness ensured that using OMIM 

as the original source of literature did not lead to 

https://www.mitodb.com/
https://www.omim.org/
https://www.mitodb.com/
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insufficient or inadequate literature for the study.  

As an example, the Brachiooculofacial syndrome had 

24 articles referenced on OMIM, the latest dating  

back to 2015. To account for research made after 2015, 

we supplemented with an additional PMC search using 

the keyword “branchiooculofacial” and focusing the 

search on articles published from Jan 1st 2015 and 

forward. This resulted in 7 hits, giving us a total of 31 

articles on the syndrome. After screening all articles, 24 

were excluded on the basis of the exclusion criteria, 

thereby limiting the result to accessible English articles 

describing the syndromes phenotype in 2 or more 

unrelated individuals. The articles excluded were case 

reports, articles without phenotypic description, non-

English articles and articles without full text link. As 

illustrated in Figure 1A, an identical processing was 

performed for all 9 syndromes leading to a total of 26 

articles [14, 17, 23–46]. 

 

Inclusion and exclusion 

 

Originally, we included 19 syndromes (see Figure 1) 

since they all presented with phenotypic traits of 

progeroid syndromes and had monogenic originance 

therefore fulfilling our inclusion criteria. However, to 

ensure the quality of the study we excluded 10 disorders 

presenting with only 1 studied patient or based purely 

on biologically related patients. Other syndromes 

already existed in the database and therefore, naturally, 

were excluded. The remaining 9 mendelian disorders 

met the inclusion criteria by respectively being new to 

the database, showing phenotypic signs of progeria, 

having a monogenic origin and having been studied in 

two or more unrelated patients. 

 

Hierarchical clustering 

 

Hierarchical clustering illustrates how diseases cluster 

with each other based on correlation of their traits by 

creating a dendrogram [47]. The dendrogram connects 

diseases sharing similar traits by measuring similarity 

and linkage methods. In the dendrogram two closely 

correlated diseases will be portrayed with a short 

distance and short leg. Furthermore, the tool calculates a 

cophenetic correlation when clustering diseases to 

ensure resemblance of the original sample distance and 

the cophenetic distance in the dendrogram. The value 

measures how well the clustering result matches the 

original resemblance by identifying what uncentered 

similarity and average linkage will produce the best 

correlation [48]. 

 

The disease network 

 

The Disease Network is a network connecting 

syndromes by shared phenotypic traits. Each dot 

represents a syndrome and each line between dots 

represents a shared trait. If multiple traits are shared  

by two syndromes, the line will appear darker, thicker 

and shorter. It is possible to apply different thresholds  

in order to limit the network so that it only displays 

diseases with a significant number of shared traits. 

Some features occur in almost all patients and are 

therefore perhaps more biologically relevant for the 

particular disease. However, patients may also suffer 

from features that are not seen in all patients and 

therefore are not as biologically relevant. By applying  

a threshold where only high prevalence features  

are considered, less common features are excluded. 

Thresholding is performed by summing the product of 

percentage prevalence for each shared phenotype. For 

instance, if two diseases share one phenotype (e.g. short 

stature) with 10% each, the product score is 100. The 

same product score would be calculated in the case for 

1% in one disease and 100% percent in another disease. 

However, if one disease has 100% and another 100% 

then the product score is 10.000. The product score is 

thus exponentially higher for diseases with higher 

percentage phenotypic overlap. If there are more than 

one shared phenotype then the product score for each 

phenotype is summed. The lowest threshold is a product 

score of 1000 which indicates at least an overlap of at 

least 34% in at least one phenotype while the highest 

threshold currently available is 20.000 which indicates 

at least two shared phenotypes with 100% prevalence in 

both diseases. 

 

Mean prevalence of phenotypes 

 

The mean prevalence of phenotypes was calculated 

from manually curated literature where each phenotype 

was mentioned. We calculated the mean prevalence  

of phenotypes for a disease by calculating the sum  

of all individuals with the phenotype and divide it  

with all individuals examined for that phenotype. The 

prevalence of phenotypes for disease categories is the 

mean prevalence for each phenotype in each disease  

in that category. 

 

Principal component analysis 

 

Principal component analysis was performed on the 

disease and phenotype matrix using cluster 3.0 [49]. 

 

Support vector machine 

 

The support vector machine (SVM) was created by 

exporting the symptom-vectors of the known progeria 

and non-progeria diseases. The symptom-vectors were 
processed in python using the ‘SVC’ class from scikit-

learn to generate an SVM. The SVM was trained using 

a “linear kernel”. The parameters of the SVM were 
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then exported and the classifier functions for the web-

page was created (with php) using these parameters 

[50, 51]. 

 

Omics data collection and hierarchical clustering 

 

Publicly available gene expression data for 13 progeroid 

syndromes were collected using PandaOmics [52],  

an AI-driven target discovery platform with its 

proprietary pathway analysis approach, iPANDA  

[53]. The syndromes included Branchio-Oculo- 

Facial Syndrome (GSE108521 (RNA-seq, Neural crest  

cell line)), Ataxia-telangiectasia (GSE75852 (RNA-

seq, NPCs), E-MTAB-1217 (Microarray, NPCs), 

GSE142842 (RNA-seq, blood), GSE61019 (Microarray, 

cortex), GSE152287 (Microarray, fibroblasts), 

GSE35347 (Microarray, fibroblasts), GSE35347 

(Microarray, IPSCs), GSE75852 (RNA-seq, IPSCs)), 

Bloom Syndrome (GSE54502 (Microarray, 

fibroblasts), GSE123447 (Microarray, fibroblasts)), 

Cockayne syndrome (GSE144557 (Microarray, 

Cerebellum), GSE36648 (Microarray, IPSCs)), 

Dyskeratosis congenita (GSE64023 (Microarray, 

MSCs), GSE77525 (Microarray, T cells), GSE83501 

(RNA-seq, lung)), Hutchinson-Gilford progeria 

syndrome (E-MEXP-2597 (Microarray, fibroblasts), 

GSE28863 (Microarray, fibroblasts), GSE113957 

(RNA-seq, fibroblasts), GSE137083 (RNA-seq, 

fibroblasts), GSE3860 (Microarray, fibroblasts)), 

Nestor-Guillermo progeria syndrome (GSE65170 

(Microarray, fibroblast), GSE65172 (Microarray, 

Mesenchymal stem cell)), Nijmegen breakage 

Syndrome (GSE83686 (Microarray, NPCs), GSE94707 

(Microarray, fibroblasts), GSE13909 (Microarray, 

lymphoblasts)), Seckel syndrome (GSE121384 (RNA-

seq, IPSCs)), Werner Syndrome (GSE48761 

(Microarray, fibroblasts)), Xeroderma Pigmentosum 

group A (GSE55484 (Microarray, fibroblasts)), 

Xeroderma Pigmentosum group C (GSE119501 

(RNA-seq, fibroblasts), GSE133084 (Microarray, 

fibroblasts)), and Xeroderma Pigmentosum group  

V (GSE70818 (Microarray, fibroblasts)). 

 

All gene expression datasets were processed according 

to platform-specific protocols. Differential expression 

analysis was performed using the limma package. For 

each disease, the results of gene expression comparisons 

were combined into a meta-analysis, which was 

utilized to identify disease expression signatures. 

Using PandaOmics, disease-expression signatures were 

extracted from the meta-analysis section, which allowed 

users to calculate logarithmic fold-changes (LFCs)  

and Q-values across all gene expression datasets. This 
was achieved using min-max normalization for LFC 

values and Stouffer’s method for combining p-values. 

Disease-expression signature vectors with combined 

LFC values were aggregated into a matrix, which  

was then used for hierarchical clustering analysis. 

Genes not expressed in all 13 progeroid syndromes 

were excluded from the expression table. Hierarchical 

clustering was performed using the scipy python 

package and the cluster.hierarchy.linkage function 

with metric=‘euclidean’ and method=‘average’. The 

hierarchical clustering results were visualized using 

the ete3 python package Tree, TreeStyle, NodeStyle, 

and TextFace functions. 

 

Signaling pathway analysis 

 

Pathway analysis for 13 progeroid syndromes was 

performed using iPANDA algorithm [53]. Reactome 

signaling pathway graph was used as a database for the 

iPANDA algorithm [54]. Using a linear combination 

of logarithmic fold-changes, statistical weights, and 

topological weights applied to each pathway member 

gene, iPANDA algorithm estimates the direction  

and intensity of pathway activation. Accordingly,  

the output of iPANDA represents the difference in 

gene expression between disease and control groups, 

and the iPANDA score is used to calculate the score 

for each signaling pathway. A high iPANDA score 

indicates an upregulation of a pathway, whereas  

a low score indicates a downregulation. Combined 

iPANDA scores for each disease were calculated  

using min-max normalization for iPANDA values  

and Stouffer’s method for combining p-values. Lists 

with significantly (Combined iPANDA p-value < 

0.05) positively upregulated and downregulated 

pathways were collected and overlaps between groups 

of progeroid syndromes (Group 1 includes Xeroderma 

Pigmentosum group A, Cockayne syndrome, and 

Ataxia-telangiectasia, Group 2 includes Werner 

syndrome and Hutchinson-Gilford progeria, Group 3 

includes Bloom syndrome and Nijmegen breakage, 

Group 4 includes Nestor-Guillermo and Seckel; Group 5 

includes Hutchinson-Gilford progeria, Werner syndrome 

and Nestor-Guillermo; Group 6 includes Bloom 

syndrome, Xeroderma Pigmentosum group C and 

Xeroderma Pigmentosum group V) were performed 

and visualised using upsetplot python package. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Identification and visualization of phenotypes in identified progeroid syndromes. Bar charts showing 

the prevalence (%) of phenotypes for (A) Keppen-Lubinsky syndrome (KPLB), (B) SHORT syndrome, (C) Saul-Wilson syndrome and (D) 
Fontaine syndrome. 
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Supplementary Figure 2. Identification and visualization of phenotypes in identified progeroid syndromes. Bar charts showing 
the prevalence (%) of phenotypes for (A) Braciooculofacial syndrome (BOFS), (B) Penttinen syndrome, (C) Geroderma osteodysplasticum 
(GO), (D) Marbach-Rustad progeroid syndrome (MARUPS). 
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Supplementary Figure 3. Charcot-Marie-Tooth type 2Z (CMT2Z) may be a premature aging disorder. (A) Hierarchical clustering 

of premature aging diseases and CMT2Z. (B) Progeria SVM score of some premature aging diseases and CMT2Z. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

 

Supplementary Table 1. Gene expression pathway analysis of Cockayne syndrome, Xeroderma Pigmentosum 
group A, and ataxia-telangiectasia. 

 

Supplementary Table 2. Gene expression pathway analysis of Werner syndrome and Hutchinson Gilford 
progeria syndrome. 

 

Supplementary Table 3. Gene expression pathway analysis of Bloom syndrome and Nijmegen breakage 
syndrome. 

 

Supplementary Table 4. Gene expression pathway analysis of Seckel syndrome, Nestor-Guillermo progeria and 
dyskeratosis congenita. 

 


