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INTRODUCTION 
 

Osteoporosis in the elderly (SOP) is an age- 

related disorder [1]. Elderly osteoporosis accounts  

for 20% of primary osteoporosis cases [2]. Factors 

such as Vitamin D deficiency, hormonal imbalance, 

protein-energy malnutrition, and dysfunction of the 
neuromuscular system, among others, may accelerate 

the progression of osteoporosis in the elderly [3]. In 

osteoporosis, the dynamics between osteoblasts and 

osteoclasts are altered. Osteoblasts, responsible for 

bone tissue formation, exhibit reduced activity, leading 

to a decreased rate of new bone tissue formation. 

Conversely, osteoclasts, responsible for bone resorption 

and degradation, increase in activity, resulting in 

accelerated bone resorption [4, 5]. 

 
Ovariectomy is frequently utilized as an animal model 

for osteoporosis and is also related to aging [6]. Post-

ovariectomy, there is a notable increase in cognitive 
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ABSTRACT 
 

The primary objective of this study was to explore the extensive implications and complex molecular 
interactions arising from the confluence of excessive glucocorticoids and RANKL on the differentiation process 
of BMM into osteoclasts, profoundly impacting osteoporosis development. The methodology encompassed  
X-ray analysis and HE staining for evaluating bone loss in mice, while immunohistochemical staining was 
utilized to observe phosphorylated SHP2 (p-SHP2) expression. The assessment of several phosphorylated and 
total protein expression levels, including NF-κB, SHP2, SYK, JAK2, TAK1, NFATC1, c-fos, and Cathepsin K, was 
conducted via Western blotting. Additional experiments, involving CCK8 and monoclonal proliferation assays, 
were undertaken to determine BMM proliferation capacity. Immunofluorescence staining facilitated the 
quantification of TRAP fluorescence intensity. In vivo analysis revealed that glucocorticoid surplus triggers SHP2 
signaling pathway activation, accelerating osteoporosis progression. Western blot results demonstrated that 
SHP2 inhibition could decrease the expression of specific proteins such as p-NF-κB and p-SHP2, with minimal 
effects on p-SYK levels. In vitro findings indicated that glucocorticoid and RANKL interaction activates the SHP2 
pathway through NF-κB and SYK pathways, enhancing expressions of p-JAK2, p-TAK1, NFATC1, c-fos, and 
Cathepsin K, thereby promoting BMM to osteoclast transformation. 
Conclusion: Excessive glucocorticoids and RANKL interaction advance osteoclast differentiation from BMM by 
activating the SYK/SHP2/NF-κB signaling pathway, expediting osteoporosis progression. 
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impairments and a significantly higher risk of 

Alzheimer’s disease [7]. Significant degenerative 

changes are detected in the skeletal muscle, 

musculotendinous junctions, tendons, tendon-bone 

interface, and periosteum post-ovariectomy [8]; 

cardiovascular aging is accelerated [9]. Ovariectomy 

leads to repercussions in the female reproductive 

system, subsequently elevating glucocorticoid levels 

[10]. Glucocorticoids, a class of synthetic steroid 

hormones, inhibit bone formation and promote bone 

resorption, thereby facilitating the development of 

osteoporosis. Long-term use of corticosteroids leads to 

osteoporosis, significantly increasing morbidity and 

mortality [11]. Cumulative corticosteroid doses greater 

than 10 g, age over 50, and pre-existing low bone mass 

are risk factors for corticosteroid-induced osteoporosis 

[12]. Glucocorticoids exert their anti-inflammatory 

effects by inhibiting the activation of NF-κB and 

subsequent expression of inflammation-related genes. 

This interaction between glucocorticoids and the NF-

κB signaling pathway, especially involving the P65 

subunit, a component of the transcription factor 

complex nuclear factor kappa B (NF-κB), is notable 

[13]. Osteoclasts, large multinucleated bone-resorbing 

cells derived from the fusion of monocyte/macrophage 

precursors, are thought to undergo apoptosis once 

resorption is complete [14]. Bone resorption and 

formation in bone tissue are continuously alternating 

processes. Bone resorption is carried out by multi-

nucleated bone-resorbing cells from the monocyte/ 

macrophage lineage, responsible for absorbing bone 

tissue. Conversely, bone formation is mediated by 

osteoblasts expressing the nuclear factor-kappa B 

ligand (RANKL), expressed as a cell membrane-

associated cytokine. Osteoprotegerin (OPG) is a soluble 

RANKL interception receptor primarily produced by 

osteoblasts, inhibiting the interaction between RANKL 

and its receptor, thereby preventing bone resorption 

and the formation of bone-resorbing cells [15]. 

Monoclonal antibodies against RANKL can effectively 

inhibit the development and activity of osteoclasts 

[16]. RANKL’s mechanism of action mainly involves 

regulating bone metabolism by binding to the RANK 

receptor on bone marrow cells and osteoblasts. Studies 

have shown that the interaction between RANKL  

and the RANK receptor on bone marrow cells and 

macrophages promotes the production and activation 

of osteoclasts (bone-resorbing cells), leading to an 

increase in bone mineral substance and bone loss. 

Apart from directly promoting bone resorption, 

RANKL also indirectly inhibits bone formation by 

interfering with the differentiation of osteoblasts on 

bone marrow cells, further affecting bone healing and 
metabolism post-fracture [17, 18]. In osteoporosis, 

BMM (bone marrow macrophages) generally refers to 

macrophages present in the bone marrow. These cells 

play a key role in regulating bone metabolism  

and homeostasis. Studies indicate that bone marrow 

macrophages participate in critical processes in osteo-

porosis, including bone resorption during pathological 

processes. They promote the activation of osteoclasts 

by releasing cytokines and pro-inflammatory factors 

related to bone resorption, leading to bone loss [19, 

20]. BMMs can differentiate directly into osteoclasts 

under M-CSF stimulation [21], with multiple signaling 

pathways playing a role. The PI3K/AKT pathway 

mediated by ATF4 can directly participate; elevated 

expressions of c-Fos and NFATc1 can also promote 

the generation of osteoclasts; the MEK/ERK, p38 

MAPK, and JNK pathways inhibit the differentiation 

of bone marrow macrophages induced by RANKL 

[22]. In the skeleton, SYK is considered to be involved 

in regulating the bone resorption process, the cell-

mediated loss of bone tissue, such as that caused by 

macrophages. SYK may influence the balance of bone 

remodeling by regulating the activity of macrophages 

and other skeletal cells, thereby affecting bone density 

and the development of osteoporosis [23, 24]. 

 

SHP2 plays a significant role in bone development and 

cartilage homeostasis, influencing the transdifferentiation 

of hypertrophic chondrocytes into osteoblasts and 

providing insights into the pathogenesis and potential 

treatments for skeletal diseases, such as osteoporosis and 

osteopenia [25]. SHP2 negatively regulates osteoblast 

differentiation through the MEK2 and AKT2 signaling 

pathways [26]. SHP2 regulates osteoclast generation  

by promoting the fusion of pre-osteoclasts [27]. NF- 

κB influences the development of osteoporosis in the 

skeletal system by regulating inflammatory responses, 

proliferation and differentiation of bone cells, and  

bone remodeling. Upregulation of the NF-κB pathway 

inhibits osteoblast formation and promotes osteoclast 

differentiation, increasing the risk of osteoporosis in rats 

[28]. Glucocorticoid-induced osteoporosis in neonates 

can be prevented by SIRT1 and NF-κB [29]. By 

regulating the NF-κB and p38 signaling pathways, 

osteoclast generation is inhibited, thereby alleviating 

postmenopausal osteoporosis [30]. 

 

Therefore, glucocorticoids can stimulate an increase in 

P65, further promoting an increase in SHP2 levels. 

Another pathway is RANKL stimulation of SYK 

phosphorylation, promoting an increase in SHP2 levels. 

The increase in SHP2 levels can promote an increase in 

P-JAK2 and P-TAK1. Through in vivo and in vitro 
experiments, the effects and molecular mechanisms  

of glucocorticoid overuse and RANKL on BMM 

differentiation into osteoclasts and the progression  
of osteoporosis have been explored. This study will 

provide new therapeutic targets and methods for the 

treatment of osteoporosis. 
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METHODS 
 

Construction of SHP2 silencing vector 

 

The coding sequence (CDS) region of SHP2 was 

obtained from the NCBI database by searching for  

its transcript number. The pSIH1-H1-copGFP-T2A-

Puro vector was used as the backbone for designing 

specific shRNAs through the GPP Web Portal to 

knock down the SHP2 gene in mice. The synthesized 

shRNAs were annealed and cloned into the pLKO_005 

vector. This construct was then introduced into the 

pHAGE-CD19 vector equipped with a macrophage-

specific synthetic promoter through PCR, enzyme 

digestion, and T4 ligase linking. The pHAGE-CD19, 

psPAX2, and pMD2.G plasmids were co-transfected 

into 293T cells using Lipo8000. The medium was 

changed to DMEM containing 10% FBS the next day. 

After 72 hours, the supernatant was collected, and 

centrifuged at 3000 rpm for 15 minutes at 4°C, and the 

viral fluid was stored at −80°C. 

 

Experimental animal model 

 

Twenty-four SPF-grade female BABL/C mice were 

obtained from Henan Scot-Bios Biotechnology Co., 

Ltd. Before the experiments, the animals were 

acclimatized for a week in a laboratory with a 

temperature of 18–22°C, the humidity of 65 ± 5%, 

good ventilation, and a quiet environment. They had 

free access to water and were fed standard feed.  

A 3% solution of sodium pentobarbital (40 mg/kg) was 

used for intraperitoneal anesthesia. After the mice 

were anesthetized and immobilized, their abdomens 

were shaved below the xiphoid process. The surgical 

site was disinfected with 75% alcohol, and covered 

with a sterile drape, and a 2 cm longitudinal incision 

was made below the abdominal midline to expose the 

abdominal cavity. The ovaries were located along the 

uterine horns and carefully removed. The fallopian 

tubes, surrounding blood vessels, and adipose tissues 

were ligated with catgut. Post-surgery, the mice were 

placed in sawdust-lined cages and received daily 

intramuscular injections of penicillin for five days to 

prevent infection. BMMs transfected with SHP2-NC 

and shRNA-SHP2, and BMSCs were injected into 

mice via the tail vein. Mice were divided into non-

SOP, SOP, and SOP+ shRNA-SHP2 groups. An X-ray 

examination was conducted to detect osteoporosis. 

Mice were injected weekly with the virus vector 

carrying the SHP2 silencing fragment (5 × 1011 

vg/mouse) via the tail vein. After four weeks of 

continuous injection of SHP2 lentivirus, an X-ray 

examination was performed to detect osteoporosis. 

Then, the mice were euthanized with isoflurane, and 

femur tissue samples were collected. 

Primary isolation of BMM cells 

 

Sterile techniques were required during and after the 

isolation of bone marrow cells. All instruments were 

carefully cleaned with ethanol. Bone marrow was 

collected under a laminar flow hood after euthanizing 

mice with isoflurane. The abdomen and hind limbs 

were disinfected with 70% ethanol. An incision  

was made along the abdominal midline to expose  

the hind legs. All muscle tissues were removed from 

the bones with scissors. The ends of the bones were 

cut to release them. In a mortar, the bones were 

crushed with 5 mL of lymphocyte culture medium 

supplemented with 20 mM HEPES. Alternatively, 

femurs and tibias were separated by cutting at  

the knee joint. Bone marrow was flushed with 

lymphocyte culture medium using a 5 mL syringe and 

a 25-gauge needle. Bone marrow cells were pipetted 

up and down to form a single-cell suspension. Cells 

were filtered through a cell strainer, and the strainer 

was rinsed with an additional 5 mL of lymphocyte 

culture medium. Bone marrow cell counts were 

determined using a hemocytometer. The concentration 

was adjusted to 2 × 106 cells/mL in a BMM culture 

medium. 

 

Cells were cultured in 15 cm culture dishes with  

25 mL of medium, differentiated in a humidified 

incubator at 37°C with 5% CO2. Cells were washed 

with PBS every 2–3 days, and a fresh BMM culture 

medium was added. Cells from 15 cm diameter BMM 

culture dishes were resuspended directly using a 

pipette and then transferred to tubes. 

 
BMM cell transfection 

 

A lymphocyte culture medium containing 20% FBS 

was prepared. An appropriate amount of medium  

was added to each well of a 12-well plate, 1.5 mL  

per well, and the plate was pre-incubated in a 

humidified incubator at 37°C, 5% CO2. The harvested 

BMMs were counted and centrifuged at 200 g for  

10 minutes. The cell suspension was resuspended to  

a concentration of 1 × 106 cells/100 µL (minimum 100 

µL) of reagent, and an appropriate amount of lentivirus 

was added for cell transduction. 1–2 µg of shRNA 

SHP2 lentivirus was added to 1.5 mL tubes. The 

diluted cell suspension was transferred back to the 

prepared 12-well plate. 

 

BMMs were co-induced with M-CSF (100 ng/ml)  

and RANKL to differentiate into osteoclasts. BMMs 

were treated with SYK inhibitor R406 and GR 

inhibitor Nenocorilant. BMMs were divided into 

control, SYK inhibitor, GR inhibitor, and SHP2-KD 

groups. 
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Immunohistochemistry staining 

 

Tissues were fixed in 10% neutral buffered formalin, 

embedded in paraffin, and sectioned into 4 µm slices 

using a microtome. Tissue sections were deparaffinized 

with xylene and ethanol, and antigen retrieval was 

performed using a citrate antigen retrieval solution. 

Endogenous peroxidase blocker was dropped on the 

tissue surface, followed by blocking with 5% goat 

serum. Sections were incubated overnight with P-SHP2 

Rabbit mAb at 4°C, then incubated with enzyme-linked 

goat anti-rabbit IgG polymer at room temperature for 20 

minutes. A prepared DAB chromogen solution was 

added to the tissue, covering the entire section. Staining 

was stopped when the reaction turned brownish-yellow. 

Sections were differentiated with hydrochloric acid 

alcohol, counterstained with hematoxylin, dehydrated 

through a graded series of alcohols, cleared with  

xylene, and mounted with neutral balsam. Images of 

tissue sections were captured using a Leica microscope 

imaging system. Staining was assessed using grayscale 

density analysis. Immunohistochemistry images were 

identified and analyzed using ImageJ Fiji (National 

Institutes of Health, NIH, USA) software to obtain 

AOD values. Statistical analysis was performed using 

GraphPad Prism9.0 statistical software. 

 

Hematoxylin and eosin (H&E) staining 

 

After extracting the tissue, the tissue specimens were 

gradually immersed in ethanol solutions to dehydrate 

the specimen; cryosections were fixed for 30 seconds. 

After washing with water, the sections were stained 

with hematoxylin solution at 60°C for 60 seconds. The 

hematoxylin was then washed off with running water 

and 1% hydrochloric acid in ethanol for 3 seconds, 

followed by a brief rinse with water for 2 seconds. The 

sections were blued in ammonia water for 10 seconds 

and then rinsed with running water for 30 seconds. 

Eosin staining was performed for 60 seconds using a 

0.5% eosin solution, followed by a brief rinse with 

distilled water. The sections were dehydrated in an 

ascending series of ethanol concentrations: 80% ethanol 

for 2 seconds, 95% ethanol for 2 seconds, and absolute 

ethanol for 2 seconds. The sections were cleared in 

xylene for 3 seconds, repeated twice, and then mounted 

with neutral balsam. 

 

Cell counting kit-8 (CCK-8) assay 

 

100 µL of cell suspension was added to each well of a 

96-well plate and pre-incubated in an incubator for 24 

hours at 37°C and 5% CO2. Then, 10 µL of various 
concentrations of the test substance was added to each 

well. The plate was incubated for 12, 24, or 48 hours  

in the incubator. After incubation, 10 µL of CCK-8 

solution was added to each well, being careful to avoid 

bubble formation as this can affect the optical density 

(OD) readings. The plate was further incubated for 4 

hours in the incubator. The absorbance was measured at 

450 nm using a microplate reader. 

 

Monoclonal formation experiment 

 

Bone marrow macrophages (BMMs) were collected, 

digested with trypsin, counted, and cultured in an 

incubator at 37°C for about 2 weeks until visible cell 

colonies formed. The medium was then discarded,  

and the cells were washed three times with PBS, fixed 

with methanol for 15 minutes, air-dried, and stained 

with crystal violet for 30 minutes. After air-drying, the 

cells were scanned and photographed, and visible cell 

colonies were counted. 

 

Immunofluorescence staining 

 

For immunofluorescence staining analysis, after 

washing, the sections were permeabilized with Triton- 

X and then blocked with goat serum for 30 minutes  

to prevent non-specific binding. The sections were 

incubated overnight with the primary antibody against 

TRAP. After washing with PBST, the sections were 

incubated at room temperature with Alexa Fluor-

conjugated secondary antibody (1:400) for three hours. 

Finally, the sections were stained with DAPI and  

sealed with glycerol. Confocal microscopy was used to 

visualize and capture images of the stained sections. 

 

Western blotting 

 

Samples were homogenized in RIPA lysis buffer. Cell 

proteins were collected using the same method. The 

total protein concentration was determined using a  

BCA Protein Assay Kit according to the manufacturer’s 

instructions. Proteins were separated by SDS-PAGE 

and transferred to a PVDF membrane. The membrane 

was blocked in 5% skim milk in TBS containing 0.1% 

Tween-20 at 37°C for 1 hour, then incubated overnight 

at 4°C with primary antibodies against p-NF-κB,  

p-SHP2, t-SHP2, p-SYK, p-JAK2, p-TAK1, NFATC1, 

c-fos, Cathepsin K, and GAPDH. The next day,  

the membrane was washed and incubated at 37°C  

for 1 hour with horseradish peroxidase-conjugated 

secondary antibodies, and visualized using Enhanced 

Chemiluminescence (ECL, BioRad, USA). ImageJ 

software (NIH, USA) was used to analyze the grayscale 

values of the target bands. 

 

Statistical analysis 

 

Statistical analysis was performed using Graph Pad 

Prism software. Quantitative data were expressed as 
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mean ± standard deviation. One-way ANOVA was used 

for comparisons among multiple groups, and the Tukey 

test was used for comparisons between two groups. A 

P-value < 0.05 was considered statistically significant. 

 

RESULTS 
 

Macrophage-specific knockout of SHP2 ameliorates 

osteoporosis in ovariectomized mice 

 

X-ray imaging demonstrated that, compared to the Non-

SOP group, mice in the SOP group with ovariectomy 

exhibited significantly lower bone density, thinner  

bone quality, potentially more blurred edges, sparse 

bone trabeculae with trabeculae appearing sparse or 

disappeared, and occurrences of fractures or collapses in 

the tibia, along with abnormalities on the surface of the 

tibia. However, in the SOP+Lv-sh-SHP2 group of mice, 

where SHP2 was specifically knocked down in 

macrophages, there was a significant increase in bone 

density, thicker bone quality, clearer edges, and the 

trabeculae did not disappear, with no fractures or 

collapses observed on the tibia surface (Figure 1A). 

 

Hematoxylin and eosin (H&E) staining results revealed 

a decrease in vertebral cell numbers, enlarged gaps,  

and thinner bone trabeculae with multiple fractures  

in SOP group mice compared to the non-SOP group.  

In contrast, mice in the SOP+Lv-sh-SHP2 group 

showed a notable increase in vertebral cell numbers and 

continuousness of the trabeculae compared to SOP 

group mice with ovariectomy. (Figure 1B). 

 

Immunohistochemistry staining results indicated a 

significant increase in p-SHP2 expression in SOP group 

mice compared to the Non-SOP group. Meanwhile,  

p-SHP2 expression in the SOP+Lv-sh-SHP2 group  

was close to weak, suggesting a successful knockdown 

(Figure 1C). 

 

Macrophage-specific knockout of SHP2 in 

ovariectomized mice inhibits kinase activity and 

transcription factor levels 

 

To investigate how macrophage-specific knockout  

of SHP2 affects the mechanisms of osteoporosis, we 

examined the protein expression levels of tyrosine 

kinase SYK (Spleen Tyrosine Kinase) and transcription 

factor NF-κB. Tissue from the cartilaginous sections 

was ground in liquid nitrogen, and total protein  

was extracted. Western blotting results showed that, 

compared to the Non-SOP group, the SOP group had 

significantly increased relative protein expression levels 

of p-NF-κB, p-SYK, p-SHP2, and t-SHP2. In comparison 

to the SOP group, the SOP+Lv-sh-SHP2 group exhibited 

significantly reduced levels of p-NF-κB, p-SHP2, and  

t-SHP2, while p-SYK levels remained unchanged, 

suggesting that SYK’s influence on osteoporosis might 

be upstream of the SHP2 pathway (Figure 2). 

 

Glucocorticoid receptor in conjunction with RANKL 

activates the SYK/SHP2/NF-κB signaling pathway to 

promote phosphorylation of JAK2 and TAK1 

 

Primary cultured BMM cells underwent total protein 

extraction followed by Western blot analysis. Compared 

to the Control group, the GR inhibitor group exhibited  

a significant reduction in relative protein expression 

levels of p-NF-κB, p-SHP2, t-SHP2, p-JAK2, and p-

TAK1, with no significant change in p-SYK expression. 

The SYK inhibitor group showed a significant decrease 

in p-NF-κB, p-SYK, p-SHP2, t-SHP2, p-JAK2, and p-

TAK1 levels compared to the Control group. Compared 

to the GR inhibitor group, the SHP2-KD group had 

similar levels of p-NF-κB but reduced expression  

of p-SYK, p-SHP2, t-SHP2, p-JAK2, and p-TAK1. 

Compared to the SYK inhibitor group, the SHP2-KD 

group had similar p-NF-κB levels, increased p-SYK 

expression, and decreased p-SHP2, t-SHP2, p-JAK2, 

and p-TAK1 levels (Figure 3). 

 

The glucocorticoid receptor in conjunction with 

RANKL activates the SYK signaling pathway to 

increase levels of NFATC1, c-fos, and cathepsin K, 

thus promoting proliferation and differentiation of 

BMMs into mature osteoclasts 

 

Western blotting results revealed that, compared to  

the Control group, the GR inhibitor group showed  

a significant decrease in relative protein expression 

levels of NFATC1, c-fos, and Cathepsin K. Compared 

to the GR inhibitor group, the SYK inhibitor group 

experienced a further reduction in NFATC1, c-fos, and 

Cathepsin K levels. Compared to the SYK inhibitor 

group, the SHP2-KD group exhibited the lowest levels 

of NFATC1, c-fos, and Cathepsin K (Figure 4A). 

 
CCK8 assay results indicated that at 72 hours, the OD 

values of both the GR inhibitor and SYK inhibitor 

groups were significantly lower than the Control group, 

with no statistical difference between the GR and  

SYK inhibitor groups. Compared to the SYK and  

GR inhibitor groups, the SHP2-KD group showed a 

significant reduction in OD values (Figure 4B). 

 
Monoclonal formation experiment results showed that, 

compared to the Control group, the number of colonies 

formed in both the GR and SYK inhibitor groups was 

significantly reduced, with no noticeable difference 

between them. Compared to the SYK and GR inhibitor 

groups, the SHP2-KD group exhibited a significant 

reduction in colony formation (Figure 4C). 
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Figure 1. Effects of macrophage-specific knockout of SHP2 on ovariectomy-induced osteoporosis. (A) X-ray imaging was 

performed to assess bone density, bone quality, trabecular structure, and surface abnormalities in tibiae of mice from different 
experimental groups. SOP (ovariectomized) mice exhibited lower bone density, thinner bone quality, sparse trabeculae, and surface 
abnormalities compared to non-SOP mice. Conversely, SOP mice with macrophage-specific SHP2 knockdown (SOP+Lv-sh-SHP2) showed 
improved bone density, thicker bone quality, and preserved trabecular structure. (B) Hematoxylin and eosin (H&E) staining of vertebral 
sections revealed decreased cell numbers, enlarged gaps, and thinner trabeculae with fractures in SOP mice compared to non-SOP mice. 
However, SOP+Lv-sh-SHP2 mice displayed increased cell numbers and more continuous trabeculae. (C) Immunohistochemistry staining 
showed increased expression of phosphorylated SHP2 (p-SHP2) in SOP mice compared to non-SOP mice. Knockdown of SHP2 in 
macrophages resulted in decreased p-SHP2 expression, confirming successful knockdown. **P < 0.01. 
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Immunofluorescence staining assessed the formation  

of bone-resorbing cells. TRAP (tartrate-resistant acid 

phosphatase) is a key marker for bone-resorbing cells, 

primarily found in osteoclasts and precursors of the 

monocyte/macrophage lineage. TRAP expression and 

activity significantly increase during the formation and 

activation of bone-resorbing cells. Results showed a 

significant reduction in relative TRAP fluorescence 

intensity in the SHP2-KD, SYK inhibitor, and GR 

inhibitor groups compared to the NC group. Compared 

to the SYK and GR inhibitor groups, the SHP2- 

KD group showed a significant reduction in TRAP 

fluorescence intensity, indicating a diminished presence 

of bone-resorbing cells (Figure 4D). 

 

The mechanism of SHP2 in osteoporosis 

 

In the molecular signaling diagram, we observe a 

complex interaction of pathways that converge on  

the protein SHP2. This diagram illustrates how  

external stimuli such as glucocorticosteroids and 

RANKL (Receptor Activator of Nuclear Factor κB 

Ligand) initiate a cascade of phosphorylation events 

leading to an increase in certain proteins. Excess gluco-

corticosteroids stimulate the phosphorylation of P65, a 

subunit of the NF-κB (nuclear factor kappa-light-chain-

enhancer of activated B cells) transcription factor. The 

phosphorylation of P65 is directly correlated with the 

upregulation of SHP2 (Src Homology 2-containing 

protein tyrosine Phosphatase 2) expression. Parallel to 

the action of glucocorticosteroids, RANKL is capable of 

promoting the phosphorylation of SYK (Spleen 

Tyrosine Kinase), which also contributes to the increase 

in SHP2 levels. The increase in total SHP2 leads to 

enhanced levels of phosphorylated SHP2 (p-SHP2), 

which in turn elevates the phosphorylation of JAK2 

(Janus kinase 2) and TAK1 (TGF-beta activated kinase 

1). The increase in phosphorylated JAK2 and TAK1 

suggests an amplification of downstream signaling 

pathways that may lead to various cellular responses, 

which are not specified in the provided information  

but can be hypothesized based on known functions of 

JAK/STAT and MAPK pathways commonly associated 

with these kinases. The signaling pathway presented 

indicates a dual mechanism of SHP2 upregulation  

via glucocorticosteroids and RANKL pathways, which 

results in increased activity of JAK2 and TAK1, likely 

affecting cellular functions such as proliferation, 

differentiation, and survival (Figure 5). 
 

DISCUSSION 
 

Osteoporosis is recognized as a pervasive and chronic 

malady that frequently intersects with the purview  

of orthopedic medicine. Due to the intensifying pheno-

menon of global demographic senescence, it has 

 

 
 

Figure 2. Impact of macrophage-specific SHP2 knockout on kinase activity and transcription factors in ovariectomized mice. 
(A, B) Western blot analysis was performed on tissue samples to evaluate the protein expression levels of phosphorylated NF-κB (p-NF-κB), 
spleen tyrosine kinase (p-SYK), and total and phosphorylated SHP2 (t-SHP2 and p-SHP2, respectively). SOP mice showed elevated levels of 
these proteins compared to non-SOP mice. In contrast, SOP mice with macrophage-specific SHP2 knockdown exhibited reduced levels of  
p-NF-κB, p-SHP2, and t-SHP2, with unchanged p-SYK levels. **P < 0.01; nsP > 0.05. 
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soared to preeminence as a predominant concern for 

public health across the world. Manifestations of this 

bone-weakening disease, ranging from fractures to 

chronic discomfort and skeletal anomalies, severely 

hamper an individual’s corporeal fortitude and overall 

life quality. These afflictions incite a surge in 

healthcare outlays. Within the orthopedic sphere, the 

exigency to probe the undercurrents of osteoporosis’ 

pathogenesis and to pinpoint prospective therapeutic 

interventions has crystallized into an imperative 

scientific quest [31]. 

 

Glucocorticoids wield their effect by curtailing 

osteoblast development and augmenting osteoclastic 

bone absorption, thus exacerbating osteoporosis risk 

with prolonged application. Such compounds actuate 

the NF-κB signaling axis, escalate SHP2 expression, 

and catalyze the phosphorylation of JAK2 and TAK1, 

culminating in osteoclast activation. In synergy with 

RANKL, glucocorticoids potentiate osteoclastogenesis 

via the SYK/SHP2/NF-κB cascade, hence hastening 

osteoporosis’ advancement. The induction of RANKL 

transcription by these steroids fosters osteoclast 

diversification, which culminates in amplified bone 

reabsorption. Additionally, glucocorticoids impede 

genes pivotal to osteogenesis, thereby stymieing bone 

genesis. Osteoclasts are now identified as the primary 

malefactors in devastating osseous disorders, including 

osteoporosis. The RANKL receptor activator’s role 

within the NF-κB signaling milieu is irrefutably central 

to the regulation of osteoblast genesis. RANKL’s 

hyperactive signaling promotes osteoblastic formation 

and bone resorption, intimating that curtailing the 

RANKL signaling trajectory may present an efficacious 

approach to osteoporosis remedy. Furthermore, potent 

doses of glucocorticoids, exemplified by dexamethasone, 

can precipitate the acceleration of osteoporosis and 

agitate osteoblast genesis. SHP2 has found links to 

skeletal diseases like Noonan syndrome, metachon-

dromatosis, and osteoarthritis. 

 

 
 

Figure 3. Role of the SYK/SHP2/NF-κB signaling pathway in osteoporosis. (A, B) Western blot analysis of primary cultured BMM 

cells treated with inhibitors targeting glucocorticoid receptor (GR), SYK, or SHP2 kinase domains (SHP2-KD) was performed. Inhibition of GR, 
SYK, or SHP2 resulted in decreased phosphorylation levels of NF-κB, SYK, SHP2, JAK2, and TAK1. Notably, SHP2-KD led to reduced p-SHP2,  
t-SHP2, p-JAK2, and p-TAK1 levels compared to SYK inhibition, suggesting SHP2’s downstream role in the pathway. **P < 0.01; nsP > 0.05. 
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Figure 4. Modulation of osteoclastogenesis by the SYK/SHP2/NF-κB pathway. (A) Western blot analysis revealed decreased 

expression levels of NFATC1, c-fos, and Cathepsin K in GR inhibitor-treated BMM cells, with further reductions observed upon SYK inhibition 
and SHP2-KD. (B) Cell viability assay (CCK8) showed decreased optical density (OD) values in GR and SYK inhibitor-treated groups compared 
to controls, with a significant reduction in SHP2-KD cells. (C) Monoclonal formation assay demonstrated decreased colony formation in 
GR and SYK inhibitor-treated groups, with a further reduction in SHP2-KD cells. (D) Immunofluorescence staining for tartrate-resistant  
acid phosphatase (TRAP) indicated decreased fluorescence intensity in SHP2-KD, SYK inhibitor, and GR inhibitor-treated groups compared 
to controls, suggesting reduced presence of bone-resorbing cells. Abbreviations: SOP: Ovariectomized mice with osteoporosis; Non-SOP: 
Non-ovariectomized control mice; Lv-sh-SHP2: Lentivirus-mediated SHP2 knockdown; GR: Glucocorticoid receptor; BMM: Bone marrow-
derived macrophages; OD: Optical density; NC: Negative control. **P < 0.01; nsP > 0.05. 
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Elucidating SHP2’s role in bone remodeling and 

equilibrium maintenance is a convoluted task. 

Aberrant SHP2 levels can sway the differentiation and 

maturity of osteoblasts, osteoclasts, and chondrocytes. 

Concurrent mutations in SHP2 display repercussions 

on the immune, vascular, and neurological systems, 

which interplay with bone growth and remodeling 

[32]. Chlorogenic acid exhibits a preventative  

capacity against osteoporosis in ovariectomized rats  

via the SHP2/PI3K/Akt pathway, bolstering bone  

mineral density (BMD) and rectifying trabecular 

microarchitecture. Estrogen engages estrogen receptor 

α (ERα) to form a conglomerate with SHP2 and c-Src, 

mitigating c-Src’s activation and thus hampering 

osteoclastic bone resorptive actions [33]. Experimental 

observations in Noonan Syndrome (NS) murine 

models delineate SHP2’s advantageous impacts on 

osteoblast differentiation and osteoclastogenesis 

suppression. Moreover, bone mineral density (BMD) 

demonstrates a correlation with diminished muscle 

mass and a downward trend in IGF-1 levels [34–36]. 

In this line of investigation, SHP2’s regulatory effects 

inversely impede osteoblastic differentiation through 

the MEK2 and AKT2 signaling conduits, decelerating 

newfound osseous tissue formation. The involvement 

of SHP2 in the amalgamation of osteoblastic 

precursors aids in osteoblast composition. The 

augmented presence of SHP2 associates with the  

NF-κB pathway, which occupies a pivotal role in  

bone cell propagation, diversification, and structural 

reconfiguration. In rodent archetypes, an elevated NF-

κB pathway represses osteoblast formation, engendering 

heightened osteoporosis susceptibility. SHP2 stimulates 

the amalgamation of osteoclastic progenitors, thereby 

orchestrating osteoclast production. In contrast, SHP2 

reversely modulates osteoblastic differentiation through 

the MEK2 and AKT2 conveyances, thus obstructing 

bone construction. SHP2’s capacity to dephosphorylate 

and galvanize JAK2 fosters JAK2-mediated signaling 

transduction. By triggering the NF-κB signaling 

avenue, regulating NFATC1 and c-fos expression,  

and influencing JAK2’s phosphorylation status,  

SHP2 supervises TAK1’s activities. Harmonizing  

with glucocorticoid receptors and RANKL, SHP2 

ignites the SYK/SHP2/NF-κB cascade, thus endor- 

sing osteoclastogenesis and propelling osteoporosis

 

 
 

Figure 5. Excessive glucocorticoids and RANKL interaction advance osteoclast differentiation from BMM by activating the 
SYK/SHP2/NF-κB signaling pathway, expediting osteoporosis progression. 
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progression. SYK’s entanglement in bone resorption 

suggests its potential regulatory oversight over 

macrophages and other osseous cells, which might upset 

the homeostasis of bone remodeling, influencing bone 

density, and contributing to osteoporosis’s evolution. 

NF-κB’s mediation in inflammation, the proliferation 

and differentiation of bone cells, along bone remodeling, 

influence osteoporosis’s trajectory. An upsurge in the 

NF-κB signaling axis inhibits osteoblast development 

while proliferating osteoclast diversification. X-ray 

analyses showcasing a marked diminution in bone 

density in ovariectomized murines substantiate the 

osteoporosis model’s successful establishment. In 

ovariectomized mice, the targeted annulment of SHP2 

expression within macrophages markedly bolsters bone 

density and ameliorates the osteoporotic state. The 

diminishment of SHP2 expression in these subjects 

noticeably curbs NF-κB and SHP2 levels, albeit not 

influencing SYK’s expression, underscoring SYK’s 

upstream positioning in the SHP2 pathway. In the 

BMMs from ovariectomized specimens, SHP2 gene 

silencing substantially curtails NFATC1, c-fos, and 

Cathepsin K expression, hence thwarting BMM 

transition to osteoclasts. The collaborative activation by 

glucocorticoid receptors and RANKL within the BMMs 

from ovariectomized mice, through the SYK/SHP2/NF-

κB cascade, abets osteoclast formation and promotes 

swift osteoporosis onset [37–42]. 

 

Deploying ovariectomized mice as a foundational 

platform aid in the dissection of osteoporosis’s 

pathogenic mechanisms. Explicit SHP2 gene de-

activation in macrophages, from these models, clarifies 

the therapeutic implications against osteoporotic 

manifestations, yielding empirical evidence for 

SHP2’s influence in osteoporosis. The revelation of 

glucocorticoid receptors and RANKL’s collaboration 

in instigating the SYK/SHP2/NF-κB signaling nexus 

thus potentiating osteoclast genesis, unveils fresh 

vantages on the mechanisms whereby glucocorticoids 

promote osteoporosis. Unveiling SHP2’s hand in 

modifying osteoblast differentiation, stimulating 

pathways for osteoclast inauguration, and participating 

in osteoporosis escalation renders novel enlightenment 

on SHP2’s operative schema in osteoporotic processes. 

To encapsulate, the potent symbiosis between gluco-

corticoids and RANKL energizes the SYK/SHP2/ 

NF-κB pathway, endorsing bone marrow monocyte 

differentiation into osteoclasts and precipitating the 

advance of osteoporosis. 
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