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INTRODUCTION 
 

Aging is the most influential risk factor for many 

disease states [1]. Developing interventions in the  

aging process will require building a systematic 

understanding of the underlying causal factors and 

associated biomarkers and epigenetic markers that  

lead to biological and cellular deterioration. The nine 

hallmarks of aging are key frameworks for describing 

such phenomena [2]. Epigenetic alterations, one of  

the nine hallmarks, can be accurately measured using 

DNA methylation (DNAm) levels [3, 39]. DNAm is the 

process in which a methyl group is added to the 5’ 

position on cytosines in cystine guanine dinucleotides, 
or CpGs [4]. Epigenetic clocks predict one’s cellular age 

by measuring this process of epigenetic deterioration 

using methylation data [5] and have been shown to 

predict chronological age with a correlation of 0.96  

or higher [6]. Since then, many other comparable 

epigenetic clocks have been proposed using varying 

CpG sites, cohorts, and algorithmic approaches. 

 

Phenotypic clocks are an alternative approach to 

measuring age-related deterioration and mortality. 

Phenotypic clocks use easily measurable biological and 

physiological clinical biomarkers to quantify aging and 

disease-related mortality (i.e., “aging scores”) and have 

been shown to predict mortality more accurately than 

chronological age [7–14]. Phenotypic clocks are easier 

to model when compared to epigenetic clocks because 

they use readily available measurements collected in a 
standard clinical setting. Additionally, they may provide 

insights into intracellular phenomena, while epigenetic 

clocks only measure at the cellular level. Further, 
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changes in lifestyle, such as diet or exercise, are more 

readily manifested in alterations in these clinical 

biomarkers, providing valuable feedback that may be 

actionable. 

 

This study aims to comprehensively survey existing 

research on epigenetic and phenotypic clocks. This 

survey extends previous systematic reviews and meta-

analyses on epigenetic clocks [15, 16] by including 

recent epigenetic clocks using artificial neural networks, 

as well as providing greater focus on phenotypic clocks. 

To achieve these goals, this study conducted an extensive 

systematic review of all epigenetic and phenotypic age 

measurement literature, the first study of its kind. This 

study fills a critical gap in the literature by synthesizing 

studies on epigenetic clocks and phenotypic clocks, with 

a focus on the clinical utility of each. 

 

METHODS 
 

This systematic review was designed in accordance with 

the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines for protocol, 

search strategy, and risk of bias assessment [17]. 

Search strategy 

 

A comprehensive literature search was performed on 

June 8, 2023, and was conducted using the PubMed 

online database. Additionally, a grey literature (i.e., 

citation tracing) and Google Scholar search were 

conducted to ensure optimal coverage of other journals 

and preprint publications. PubMed search terms included 

‘epigenetic clock’ OR ‘biomarker clock’ AND aging, 

cellular (MeSH Terms) OR dna methylation (MeSH 

Terms) OR methylation, dna (MeSH Terms) OR 

longevity (MeSH Terms) AND biomarkers (MeSH 

Terms) OR ‘phenotypic’. After the search was complete, 

resources were screened according to the inclusion 

criteria outlined in the following section. A visual 

representation of the search strategy is shown in Figure 1. 

 

Inclusion and exclusion criteria 

 

The included articles were limited to primary studies 

(i.e., non-reviews) available in the English language  

that concerned human subjects. We included clocks  

that used human blood or saliva samples to predict 

chronological age, phenotypic age, or mortality risk.

 

 
 

Figure 1. Prisma diagram illustrating the search process and exclusion criteria. 



www.aging-us.com 11216 AGING 

We did not include mitotic clocks used to predict cancer 

risk and progression since this is outside the scope of 

this review. Furthermore, we excluded papers that were 

not primary studies (i.e., papers that reproduced and 

compared already published clocks). 

 

Data extraction 

 

Studies that fit the inclusion criteria were analyzed 

according to various descriptive statistics provided in the 

original literature. These included the publication year, 

type of clock, number of CpGs or blood biomarkers  

used, number of subjects, and accuracy of prediction (r). 

Additionally, we extracted model coefficients for the most 

influential plasma biomarkers used in phenotypic clocks. 

 

RESULTS 
 

Study selection 

 

The initial search resulted in 134 articles. After abstract 

screening, 87 articles were excluded. After full-text 

screening, 14 articles were removed. This yielded 33 

included studies. Included studies featured a variety of 

biological clocks, including methylation-based clocks, 

mortality clocks, and phenotypic clocks. Table 1 presents 

the characteristics and performance of all the included 

clocks in our study. 

 

Epigenetic clocks 

 

Epigenetic clocks generally follow the standard  

protocol for regression problems. After data acquisition, 

one may conduct feature (i.e., CpG) selection and/or 

dimensionality reduction approaches in hopes of 

optimizing the prediction of the output (in this case, 

chronological age). The Pearson correlation coefficient 

of the predicted age and the “true” chronological age  

is the most common metric used in the literature to 

measure such performance. Below, we outline the 

performance of all included epigenetic clocks along  

with their respective modeling statistics, including the 

number of CpGs and the number of subjects. In some 

cases, the authors of the original literature chose a 

different validation metric. In these cases, we denoted 

their performance as “not reported” (NR). In the results 

below, we separate our epigenetic clock findings into 

three categories: first-generation, second-generation, and 

third-generation. We do so because each of these types 

of approaches are fundamentally different from the 

others and a direct comparison would not be appropriate. 

 

First-generation clocks 

 

Epigenetic clocks may be divided into several distinct 

generations. First-generation clocks rely on cross-

sectional data alone to investigate the association of 

biomarkers with chronological age. In these approaches, 

deviations between the true chronological age and the 

predicted age are treated as indications of accelerated  

or decelerated aging. Horvath’s first epigenetic clock 

(Horvath, 2013) inspired a wealth of research into this 

type of approach and many studies have substantiated 

this hypothesis by confirming that accelerated epigenetic 

aging is associated with various deleterious phenotypes, 

including post-traumatic stress (Boks et al., 2015), 

obesity (Horvath et al., 2014), and more. Additionally, 

increased epigenetic age has been shown to predict 

mortality later in life (Marioni et al., 2015), albeit 

moderately. We present a collection of characteristics and 

prediction performances of first-generation clocks below. 

 

Second-generation clocks 

 

While first-generation clocks made great progress in 

understanding the mechanistic properties of cellular aging, 

various drawbacks are inherent to the chronological  

age approach. First, Horvath, and Raj (2018) concluded 

that first-generation clocks are only able to provide  

weak associations with physiological measures of 

dysregulation. Secondly, and perhaps most critical, is the 

paradox of chronological age. Zhang et al. (2018) found 

that DNAm levels can, theoretically, provide perfect 

chronological age predictions if enough data is available, 

but useful mortality and phenotypic associations attenuate 

as predictions near perfection. Consequently, second-

generation clocks were proposed to address these 

concerns. Rather than using candidate biomarkers to 

predict chronological age, second-generation clocks 

investigate the association of biomarkers with time-to-

event data, specifically time-to-mortality. The most 

influential second-generation clocks include PhenoAge 

(Levine, 2018), GrimAge (Lu et al., 2018), and 

MetaboHealth (Deelin et al., 2019). Each of these 

approaches used very different strategies to predict 

mortality risk. PhenoAge used calendar age and 9 clinical 

measurements to predict phenotypic age, which was then 

used to regress on DNAm levels to identify 513 CpG 

sites that influence disease and mortality among those  

of the same calendar age. GrimAge used 12 plasma 

proteins and smoking pack-years regressed on all-cause 

mortality, identifying 1030 influential CpG sites. Lastly, 

MetaboHealth used metabolic predictors to identify 14 

biomarkers independently associated with all-cause 

mortality. Each of these approaches exhibited greater 

strengths of association with all-cause mortality than 

first-generation clocks. 

 

Third-generation clocks 

 

Third-generation clocks are characterized by the use of 

longitudinal data to predict aging rates. The most 
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Table 1. Descriptive statistics of all included first-generation epigenetic clocks. 

References # of CpGs  n subjects Performance (r) 

Horvath et al. (2020) [18] 36,000 850 0.990 

Q. Zhang et al. (2019) [19] 514 13,566 0.990 

de Lima Camillo et al. (2022) [20] 20,318 8,050 0.980 

Galkin et al. (2021) [21] 24,538 1,293 0.980 

Vidaki et al. (2017) [22] 16 1156 0.980 

Correia Dias et al. (2020) [23] 4 53 0.977 

Bekaert et al. (2015) [24] 4 206 0.973 

Lee et al. 2020) [25] 1791 2,227 0.970 

Thong et al. (2021) [26] 3 196 0.969 

Levy et al. (2020) [27] 300,000 503 0.960 

X. Li et al. (2018) [28] 6 539 0.960 

Horvath et al. (2018) [29] 391 3931 0.960 

Horvath, (2013) [30] 353 3,931 0.960 

Han et al. (2020) [31] 9 973 0.943 

Weidner et al. (2014) [32] 99 656 0.933 

Garagnani et al. (2012) [33] 1 64 0.920 

Hannum et al. (2013) [34] 71 482 0.905 

Freire-Aradas et al. (2018) [35] 6 180 0.893 

Florath et al. (2014) [36] 17 249 0.880 

Koch and Wagner (2011) [37] 5 130 0.825 

Vidal-Bralo et al. (2016) [38] 8 390 0.775 

Naue et al. (2017) [43] 13 208 NR 

Accuracy (r) represents the Pearson’s correlation coefficient of the predicted ages with the true ages in the validation set. NR 
stands for ‘not reported.’ Clocks are sorted by performance in descending order. 

 

noteworthy third-generation clock is DunedinPoAm [36], 

which measured longitudinal changes of 18 clinical 

biomarkers to predict rates of aging. Like second-

generation clocks, DundeinPoAm exhibited superior 

mortality risk prediction than first-generation clocks. A 

few other longitudinal studies have been conducted using 

methylation data [93–95]. As longitudinal data becomes 

more readily available, third-generation clocks will 

become more prevalent due to their predictive power. 

 

First-generation clock modelling decisions and 

performance 

 

Unsurprisingly, there is a wide range in predictive 

performance of the various clocks due to heterogeneous 

data sources. The clocks that featured the highest 

correlation with chronological age were [18, 19],  

with Pearson correlations of 0.990 with the output. 

Interestingly, Horvath’s clock used 36,000 CpG sites in 

the model, significantly more than the number of training 

samples. The authors did so by employing feature 
selection methods based on model coefficients extracted 

from linear models. The Horvath clock [18] used 

penalized regression models, while the Zhang clock [19] 

used elastic net regression. [20–22] attained the next best 

correlated predictions (R = 0.98) and were all based on 

artificial neural networks (ANNs). [22] built multiple 

ANNs, including multi-layer perceptrons (MLPs), radial 

bias functions (RBFs), probabilistic neural networks 

(PNNs), and generalized regression neural networks 

(GRNNs). Both [20] and [22] built deep learning models, 

but [20] paired their model with SHAP (Shapley Additive 

Explanations) [92] values to provide interpretability. 

 

Phenotypic clocks 

 

While biological clocks have focused more on 

methylation data in recent years, phenotypic clocks  

also provide valuable longevity estimations using  

readily available clinical measurements. To that end, 

phenotypic clocks have been proven to predict mortality 

more accurately than chronological age in a variety of 

scenarios [8–14, 35]. 

 

Klemera and Doubal [40] were the first to prove that 
biological age estimates using purely clinical values 

provided more robust measurements of mortality than 

chronological age. Since then, phenotypic models have 
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Table 2. Descriptive statistics of phenotypic clocks that use chronological age as input. 

References Output variable # biomarkers n subjects Performance (r) 

Chen et al. (2023) [45] Chronological 12 12,377 0.980 

Liu et al. (2018) [41] Chronological 13 11,432 0.960 

Levine (2013) [9] Chronological 13 9,389 NR 

Accuracy (r) represents the Pearson’s correlation coefficient of the predicted ages with the true ages in the validation set. 
NR stands for ‘not reported.’ Clocks are sorted by performance in descending order. 

 

Table 3. Descriptive statistics of phenotypic clocks that do not use chronological age as input. 

Reference Output variable # biomarkers n subjects Performance (r) 

Putin et al. (2016) [47] Chronological 41 62,419 0.910 

Husted et al. (2022) [48] Chronological 9 100 0.86 

Park et al. (2009) [46] Chronological  11 1588 0.762 

Nakamura and Miyao, (2007) [49] Chronological 5 86 0.720 

Sebastiani et al. (2017) [14] N/A (unsupervised clustering) 19 4704 NR 

Accuracy (r) represents the Pearson’s correlation coefficient of the predicted ages with the true ages in the validation set.  
NR stands for ‘not reported.’ Clocks are sorted by performance in descending order. 

 

largely focused on using proportional hazard and survival 

models such as the Gompertz mortality model [10, 41]. 

These models often use chronological age along with 

other biomarkers of aging to predict mortality. [40] 

were the first to use chronological age as a biomarker 

and anticipated this would be viewed as controversial 

due to the heterogeneity of aging processes among 

different people. 

 

Before Klemera and Doubal’s method, most pheno-

typic models fell under three categories: multiple 

linear regression (MLR), principal component analysis 

(PCA), or Hochschild’s method [42]. MLR models 

choose biomarkers according to their correlation  

with chronological age and were established by 

Hollingsworth [43] and others. MLR models are 

simple to implement but distort the biological age at 

the regression edge (i.e., at the youngest and oldest 

ages). PCA-based biological clocks avoid distortion at 

the regression edge but cannot avoid the paradox of 

chronological age [44]. Hochschild’s method solves 

the paradox of chronological age but is nonstandard 

and somewhat complex to implement. Klemera and 

Doubal’s method improves on each of these methods 

by solving the paradox of aging by minimizing the 

distance between regression lines for each biomarker 

point, providing a better estimation of mortality than 

chronological age. [50] evaluated multiple variations 

of both the Klemera and Doubal phenotypic clock and 

frailty indices [78–79] and evaluated their performance 

both with and without chronological age as an input 
variable. The authors found that the models without 

chronological age input captured the most variability 

of mortality indicators, though more research is needed 

on this subject. 

Unlike epigenetic clocks, phenotypic clocks may be 

modeled using a variety of approaches. Klemera  

and Doubal’s popular approach uses chronological  

age as one of the input biomarkers, along with other 

standard biomarkers such as blood glucose. However, 

using chronological age to calculate biological age is a 

somewhat controversial modeling decision. This can, as 

expected, lead to a very high correlation, as shown in 

Table 2. 

 

There are, however, phenotypic clocks that do not use 

chronological age as input to the model. A variety of 

modeling structures have been employed to calculate 

phenotypic age in this way. Putin et al. (2016) used  

an ensemble of deep neural networks, while Husted  

et al. (2022) and Park et al. (2009) used principal 

component analysis (PCA) approaches. [14] used a very 

different approach, employing agglomerative clustering 

to determine influential biomarkers in aging and 

mortality processes. The performance and descriptive 

statistics of each of these models are shown in Table 3. 

 

Despite widespread use in epigenetic clocks, artificial 

neural networks have, to our knowledge, only been 

employed in one phenotypic clock. [47] used an 

ensemble of 21 deep neural networks (DNNs) of varying 

structure and depth to predict chronological age using 

physiological biomarkers alone. Furthermore, the authors 

paired their model with a feature importance wrapper-

based strategy called Permutation Feature Importance 

(PFI), which allowed the authors to ascertain which 
variables are most influential in the model. The authors 

attained impressive prediction performance (r = 0.91), 

but the dataset used in the experiments is not open-source 

and, thus, is not reproducible. 
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Table 4. Clinical plasma biomarkers and their respective regression coefficients. 

Biomarker 
Nakamura and 

Miyao, (2007) [49] 
Levine, (2013) 

[10] 
Mitnitski et al., 

(2017) [50] 
Liu et al., 

(2018) [41] 

Systolic blood pressure 0.580 0.501 −0.008 NR 

Diastolic blood pressure 0.405 0.047 −0.130 NR 

Forced expiratory volume −0.626 −0.535 NR NR 

White blood cell count −0.115 −0.020 0.021 NR 

Red blood cell count −0.367 −0.096 NR NR 

Hemoglobin −0.299 0.261 −0.246 NR 

Hematocrit −0.435 −0.036 NR NR 

C-reactive protein (log) NR 0.122 NR 0.0954 

Albumin −0.310 −0.220 −0.236 −0.0336 

Lymphocyte (%) NR −0.033 NR 0.0120 

Alkaline phosphatase −0.333 0.218 0.081 0.00188 

Creatinine 0.181 0.148 0.142 0.0095 

Blood glucose 0.129 NR 0.036 0.0195 

NR was given for biomarkers that were “not reported” in the primary literature. 

 

Biomarker importance in phenotypic clocks 

 

Many phenotypic clocks are modeled using linear 

models due to their ease of interpretability. Unlike 

artificial neural networks, information from linear 

models can be directly extracted from coefficients in 

the model. These coefficients measure the relative 

importance of each feature in the model and can be 

used to better understand the model’s predictions. 

Many phenotypic clocks identified the same plasma 

biomarkers as most influential in the aging process.  

A brief analysis of model coefficients (i.e., feature 

contribution) used in phenotypic clocks was conducted 

to identify which plasma biomarkers were consistently 

found to be influential in primary literature. The varying 

magnitude of the coefficients can be attributed to the 

other features included in each of the models. The 

results of this analysis are reported in Table 4. 

 

DISCUSSION 
 

Phenotypic age, health-status, and mortality 

 

Biological aging measurements using clinically 

observable data (i.e., phenotypes) have produced 

robust estimations and predictions of aging-related 

outcomes and mortality [41]. Much of recent 

biological clock research has focused on methylation 

data, but phenotypic features also offer powerful 

mortality and aging predictive power [35]. Phenotypic 

variables offer benefits at multiple levels in that they 

provide crucial insights into the physiological state  
of the subject in addition to providing an aggregate 

measure, albeit indirect, of the changes in various 

hallmarks of aging. Perhaps most importantly, changes 

in these phenotypic biomarkers are mechanistically 

linked to organ and cellular functions and, by 

extension, health outcomes and health span. Most of 

these phenotypic biomarkers are also highly actionable 

with lifestyle and dietary changes within a reasonably 

short period of time. Finally, they are much easier  

to collect than molecular measures due to lower cost 

and technology barriers. This suggests that phenotypic 

clocks could be easier to scale than epigenetic clocks 

since these measures are routinely collected in clinical 

settings at relatively affordable cost and the health 

benefits of tracking one’s phenotypic age are easily 

understood both by the individual and the healthcare 

system. 

 

Epigenetic clock associations with health and 

mortality 

 

Epigenetic clocks have been shown to be significantly 

associated with various deleterious phenotypes. 

Multiple epigenetic clocks have found that body mass 

index (BMI) is correlated with increased epigenetic 

age, but further research is needed to better understand 

this relationship [51, 52]. To our knowledge, only one 

longitudinal study has found obesity to be the cause, 

rather than a consequence, of increased epigenetic age 

[53]. Multiple clocks found that high levels of alcohol 

intake were associated with increased epigenetic age. 

However, moderate levels of alcohol intake were not 

associated with increased epigenetic age, suggesting a 

non-linear relationship. Other disease states associated 

with elevated biological age include HIV [54–57], 
chronic obstructive pulmonary disease (COPD) [41, 

58, 59], schizophrenia [60], post-traumatic stress 

disorder (PTSD) [61], smoking [62–67], particulate 
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matter [68–70], diabetes [71–75], frailty [76] and 

socioeconomic status [77]. Recently, Noroozi et al. 

(2023) [96] identified several lifestyle and socio-

economic variables impacting epigenetic aging rates, 

including sleep quality, education level, yoga practice, 

and more. 

 

Epigenetic clocks in vitro vs. in vivo 

 

A key advantage of epigenetic clocks is their ability  

to provide robust aging estimations across tissues, 

physiological systems, and life stages. Unlike phenotypic 

clocks, epigenetic clocks are able to measure cellular 

changes both in vitro and in vivo. Additionally, they  

are able to generalize across tissues [20], making  

them particularly useful in both clinical and research 

settings. Furthermore, epigenetic clocks have been 

shown to provide insights into systemic physiological 

changes using only blood samples [97]. A recent  

clock, SystemsAge [97], proved that single blood  

DNA methylation tests have the ability to capture 

heterogeneous aging patterns across physiological 

systems. Their findings showed that providing scores 

for each physiological system can more accurately 

capture disease risk, better facilitating personalized care 

plans compared to a single global aging metric. 

 

Dimensionality reduction 

 

Many biological clocks have utilized dimensionality 

reduction for a variety of reasons. First, methylation 

data is highly dimensional, with the common 450k 

arrays producing over 450,000 features. Additionally, 

high levels of entropy can often be present in 

methylation data due to various causes, including 

sample preparation, beads per CpG, batch effects, and 

probe chemistry and hybridization issues [80–84]. 

Dimensionality reduction can reduce noise caused by 

such deviations because entropy will likely not covary 

across features. Lastly, dimensionality reduction can 

provide significant improvements in computational 

tractability. The most common dimensionality reduction 

method used in extant biological clock literature is 

Principal Component Analysis (PCA) [85, 86, 49]. PCA 

is a computationally tractable linear dimensionality 

reduction approach and has proven to increase  

the accuracy of predictions in a variety of cohorts.  

In recent years, various non-linear dimensionality 

reduction methods have been proposed, including 

Isometric Mapping (Isomap), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), and Unified Manifold 

Approximation and Projection (UMAP) [87]. To  

date, only one biological clock (DeepMAge) has 
utilized these more complex, non-linear approaches 

[21]. The authors attained state-of-the-art performance, 

but additional research is needed to address whether 

predictive improvements are significant enough to 

warrant the increased computational expense of non-

linear dimensionality reduction techniques. 

 

Limitations 

 

The main limitation of this review is the inability to 

objectively measure performance across heterogeneous 

cohorts and environments. Recent research has provided 

such objective comparisons [88–91]. This review set out 

to instead provide a comprehensive layout of extant 

research into two disparate but related fields: epigenetic 

clocks and phenotypic clocks. Additionally, this review 

is limited by its exclusion criteria, namely mitotic 

clocks and clocks that were built using non-human 

subjects. Consequently, this review did not seek to 

provide objective statistics to measure the performance 

of various methods. Lastly, this review was limited by 

its exclusion of non-English publications. 
 

CONCLUSIONS 
 

Despite a recent surge in biological clock research,  

best practices are still empirical. Epigenetic clocks 

have illustrated superior chronological age estimation 

capabilities, but their ability to provide insights into 

mortality and disease has been shown to be moderate. 

In recent years, epigenetic clocks built using neural 

networks have attained state-of-the-art performance but 

must be paired with interpretability approaches such  

as SHAP [92] to understand the “black box” nature of 

the models. Phenotypic clocks have shown to be better 

predictors of mortality than chronological age and do 

so using easily measurable clinical variables. Since 

methylation array technology is still relatively cost-

prohibitive in clinical or hospital settings, phenotypic 

clocks may provide the most utility in the short term. 
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