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ABSTRACT 
 
Background: DNA methylation (DNAm)–based marker of aging, referred to as ‘epigenetic age’ or ‘DNAm age’ is 
a highly accurate multi-tissue biomarker for aging, associated with age-related disease risk, including cancer. 
Breast cancer (BC), an age-associated disease, is associated with older DNAm age and epigenetic age 
acceleration (age accel) at tissue levels. But this raises a question on the predictability of DNAm age/age accel 
in BC development, emphasizing the importance of studying DNAm age in pre-diagnostic peripheral blood (PB) 
in BC etiology and prevention. 
Methods: We included postmenopausal women from the largest study cohort and prospectively investigated 
BC development with their pre-diagnostic DNAm in PB leukocytes (PBLs). We estimated Horvath’s pan-tissue 
DNAm age and investigated whether DNAm age/age accel highly correlates with risk for developing subtype-
specific BC and to what degree the risk is modified by hormones and lifestyle factors. 
Results: DNAm age in PBLs was tightly correlated with age in this age range, and older DNAm age and 
epigenetic age accel were significantly associated with risk for developing overall BC and luminal subtypes. Of 
note, in women with bilateral oophorectomy before natural menopause experiencing shorter lifetime estrogen 
exposure than those with natural menopause, epigenetic age accel substantially influenced BC development, 
independent of obesity status and exogeneous estrogen use. 
Conclusions: Our findings contribute to better understanding of biologic aging processes that mediate BC 
carcinogenesis, detecting a non-invasive epigenetic aging marker that better reflects BC development, and 
ultimately identifying the elderly with high risk who can benefit from epigenetically targeted preventive 
interventions. 
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INTRODUCTION 
 

Chronologic age is a well-established risk factor for 

chronic diseases, cancers, and death [1, 2]. However, 

individuals of the same chronologic age may accumulate 

biologic changes at different rates, so age may not truly 

reflect individuals’ time-related biologic alterations  

[3]. Increasing age correlates with various molecular 

alterations, including genetic changes associated with 

the deregulation of cellular processes and genomic 

instability, but differences in the biologic aging process 

at the individual level may be only partially explained by 

genetic mutations [4]. The DNA methylation (DNAm)–

based marker of aging, referred to as ‘epigenetic age’ or 

‘DNAm age’ has been known to capture well both the 

influences of genetic and environmental factors and 

their interplay across time in cellular functions; thus,  

it is a highly accurate multi-tissue biomarker of aging, 

strongly correlated with chronologic age in different 

tissues [5–8]. DNAm age in various tissues/organs has 

in turn been found to be associated with all-cause 

mortality [9–13], frailty [14], obesity [15], and diseases 

[16–23], including cancers [24–27]. 

 

Breast cancer (BC) is an age-associated disease with a 

sharp increase in incidence after menopause [28, 29]. 

DNAm age estimated in both normal breast tissues and 

paired peripheral blood has a strong linear relationship 

with chronologic age [30], and the two measures 

correlate well with each other [12, 30]. Further, 

increasing DNAm age and epigenetic age acceleration 

(age accel, defined as DNAm age that exceeds 

chronologic age) have been observed in BC tissues 

compared with normal and adjacent normal breast 

tissues [31]. A gradual accumulation of DNAm changes 

may occur through stochastic events, resulting in clonal 

expansion of stem or progenitor cells, contributing to 

the age-associated increase in the risk of developing  

BC [32–34]. However, the DNAm patterns in tumor 

tissues differ from those in normal tissues, exhibiting 

stem cells with the lowest DNAm age [6]. Thus, the 

tumor tissue–based DNAm age may indicate only the 

state of aging in tumor cells [35], which is modified by 

cancer cells’ capability of differentiation in malignant 

clones, raising the question of whether DNAm age/ 

age accel in BC tissues can explain the cause and 

consequence of BC development. 

 

A study of DNAm age in peripheral blood (PB) to 

prospectively investigate BC development is important 

in BC etiology and cancer prevention. A few studies 

[26, 36, 37] have tested for the association of DNAm 

age in PB with prospective development of BC,  

but with limited effect sizes for BC risk. Indeed,  

BC is highly heterogeneous at both the histologic and 

molecular levels, characterized by different molecular 

subtypes [29]. One premise for the inconclusive results 

from the prior studies is partly because they did not 

consider BC subtypes [26, 37] or analyzed them  

with insufficient statistic power [36]. BC is also a 

hormone-derived cancer. Of particular note, the effect 

of female hormones on biologic aging differs according 

to menopausal status. Before menopause, the hormones 

play a major role in accelerating breast tissue aging 

[38–40], and this epigenetic age accel is an important 

etiologic element for BC in pre-menopausal women 

[36]. However, the relationship between biologic  

aging and hormones is not straightforward in post-

menopausal women. Some studies have reported higher 

epigenetic age accel associated with earlier age at 

menarche [8, 40], indicating that longer lifetime 

exposure to estrogen drives breast tissue–specific aging. 

In contrast, earlier menopause and a longer time since 

menopause were associated with epigenetic age accel in 

blood and tissues [22], reflecting that faster reproductive 

aging contributes to higher epigenetic age. Moreover,  

in addition to this endogenous hormonal factor as a 

putative marker for DNAm age, other conventional BC 

risk factors, such as obesity, alcohol, smoking, and 

exogenous hormone therapy [39, 41–46], can also affect 

epigenetic aging in postmenopausal women, modifying 

the risk for BC development. Studying both putative 

and established BC risk factors in relation to DNAm 

age and epigenetic age accel may provide deeper  

insight into BC carcinogenesis involving these factors 

and how they mediate the risk through the epigenetic 

aging process. 

 

Our study focused on post-menopausal women, a 

population vulnerable to a high incidence of BC with 

complex hormonal effects on the biologic aging process. 

We prospectively investigated their BC development 

and examined their hormonal and lifestyle factors in 

association with DNAm age in PB leukocytes (PBLs), 

an easily accessible biofluid. We further investigated 

whether the blood-based DNAm age highly correlates 

with prospective development of BC in a BC subtype–

specific manner and to what degree the risk prediction 

is modified by hormonal and lifestyle factors. Our  

study seeks to detect a non-invasive epigenetic aging 

marker that may better predict risk for BC development, 

contributing to identifying a risk group who can benefit 

from epigenetically informed preventive interventions. 

 

MATERIALS AND METHODS 
 

Study population 

 

We used data from the Women’s Health Initiative 

Database for Genotypes and Phenotypes (WHI-dbGaP) 

genetic repository, which is derived from the largest 

prospective cohort study of postmenopausal women 
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who had been enrolled at 50–79 years between 1993 

and 1998 at more than 40 U.S. clinical centers [47, 

48]. From the WHI-dbGaP, we obtained the genome-

wide DNAm data in PBLs available in the BAA23, the 

largest ancillary study (AS), by repurposing the data 

for our study [49]. Because DNAm age has different 

patterns in different races [50], our study focused  

on only non–Hispanic white women, a majority of  

the AS population. Of 2,107 total, 998 whites were 

intially included. After removing women who had 

been diagnosed with any cancers at enrollment and/or 

were followed for less than 1 year, we finally included 

956 women, 66 of whom developed primary invasive 

BC during a 17-year mean follow-up. 

 

For validation analysis, we used independent data  

with global-level DNAm in PBLs from the National 

Center for Biotechnology Information Gene Expression 

Omnibus (GEO) database. This data (accession 

numbers of GSE51032) was generated by the 

European Prospective Investigation into Cancer and 

Nutrition (EPIC-Italy) from the Human Genetics 

Foundation in Turin, Italy [37, 51], containing 233 

women who prospectively developed primary BC  

and 340 women who remained cancer-free. The 

institutional review boards of each WHI clinical  

center and the University of California, Los Angeles, 

approved this study. 

 

Data collection and BC outcomes 

 

Women enrolled in the WHI completed self-

administered questionnaires at screening and provided 

demographic information (e.g., age and race/ethnicity), 

comorbid conditions (e.g., ever having been treated  

for diabetes [DM]), lifestyle factors (e.g., daily diet, 

including dietary alcohol intake; Healthy Eating  

Index [HEI]-2015; and pack-years of smoking), and 

reproductive histories (e.g., a history of oophorectomy; 

durations of two types of exogenous estrogen [E] use, 

including unopposed E-only and opposed E plus 

progestin [P] from pills or patches). Trained staff 

acquired anthropometric measurements, including 

height, weight, and waist and hip circumferences at 

baseline. Primary invasive BC development among  

the WHI participants was determined by a committee 

of physicians through a review of the patients’  

medical records and pathology reports, and then  

coded according to the National Cancer Institute’s 

Surveillance, Epidemiology, and End-Results guidelines 

[52]. The time from enrollment to BC development, 

censoring, or study end-point (by March 6, 2021) was 

calculated as numbers of years. Global-DNAm data  
in PBLs obtained from the GEO database included 

participants’ sex, age, and primary BC development by 

follow-up to 2010. 

Genome-wide DNAm array and epigenetic clock of 

aging 

 

DNAm array at the global level for the WHI 

participants was performed using their PBL DNA 

samples extracted at baseline, via Illumina 450 

BeadChip. Basic quality control (QC) was performed  

by excluding cross-reactive probes and probes with a 

detection p > 0.01 (poor performance) in more than 

10% of samples to avoid spurious associations. DNAm 

data were beta-mixture quantile (BMIQ)-normalized 

[53] and batched-adjusted with random intercept for 

plate and chip and a fixed effect for row [54], resulting 

in 482,421 CpG dinucleotides (CpGs). For DNAm 

stability measured from stored samples [55], we 

followed Horvath’s suggestion [6], estimating leukocyte 

heterogeneities to be controlled for in generating 

DNAm age by using Houseman’s method [56] (for 

CD4+ T cells, natural killer cells, monocytes, and 

granulocytes) and Horvath’s method [6] (for plasma 

blasts, CD8+CD28–CD45RA– T cells, and naïve CD8 T 

cells). 

 

Genome-wide DNAm in PBLs of GSE51032 was 

generated via Illumina 450 BeadChip, and after similar 

basic QC, the data were normalized via background 

correction based on normal-exponential out-of-band 

(Noob) [57] using minfi, resulting in 485,512 CpGs. 

Leukocyte heterogeneities were also estimated for 

generating DNAm age independent of different cell 

counts. 

 

The epigenetic clock of aging is a prediction of 

chronologic age based on the individual’s DNAm 

levels. We used Horvath’s method [6, 58], a pan-tissue 

predictor on the basis of 353 selected CpGs, which is 

the most popular well-established epigenetic age 

estimator. DNAm age is a composite scale by a linear 

combination of the weighted CpGs. This was generated 

via an available online tool [6, 58] and the methylclock 

annotation Bioconductor package. The departure of 

epigenetic age from chronologic age was investigated by 

two estimates: 1) ‘AgeAccelDiff’ defined by departure 

of DNAm age from chronologic age measured by 

subtracting chronologic age from DNAm age; and 2) 

‘intrinsic epigenetic age acceleration (IEAA)’, defined as 

the residual from regressing DNAm age on chronologic 

age, which accounts for blood cell proportions. The 

IEAA reflects cell-intrinsic aging effects, independent 

of variations of DNAm levels owing to heterogeneity in 

cell components between individuals [59]. 

 

Statistical analysis 

 

For the correlation of DNAm age and two epigenetic 

age-departure estimates (AgeAccelDiff and IEAA) with 
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chronologic age, we performed linear regression and 

Spearman’s correlation overall and by BC status  

and selective reproductive histories. Differences in 

levels of DNAm age and the two age-departure 

measures by conventional BC risk factors were tested 

using unpaired two-sample t- or one-way ANOVA tests 

when applicable. If continuous variables were skewed 

or had outliers, Mann-Whitney/Wilcoxon’s rank-sum 

and Kruskal-Wallis tests were used as appropriate. 

DNAm age and the two age-departure measures were 

further regressed on individual risk factors, referring to 

a one-unit increase in the risk factor associated with 

increase in DNAm age in units of years. 

 

The distributions of DNAm age and the two age-

departure estimates in overall BC and by BC  

subtype were examined via unpaired two-sample  

t- or Mann-Whitney test as appropriate. In particular, 

we dichotomously categorized the two age-departure 

measures into age accel and age deceleration (age 

decel) and performed the Kaplan-Meier curve and a log 

rank test. We conducted a multiple Cox proportional 

hazards regression for association between DNAm 

age/age departure and BC development, with an 

assumption test met via a Schoenfeld residual plot and 

rho, adjusting for conventional BC risk factors [39, 41–

46], including body mass index (BMI), waist-to-hip 

ratio (WHR), DM, HEI-2015, alcohol intake, smoking, 

a history of oophorectomy, and exogenous hormone 

use. Hazard ratio (HR) from the analysis reflects a  

one-year older DNAm age and age accel increase risk 

for BC development. DNAm age and age accel were 

further analyzed as a 10-year interval with different 

segments of the follow-up period. Given that the testing 

was performed on the basis of our hypothesis-driven 

questions (i.e., DNAm age associated with BC), a two-

tailed p < 0.05 was considered significant. 

 

We further conducted subset analyses by stratifying  

the study population between natural and artificial 

menopause (after bilateral oophorectomy) and tested 

for a multiplicative interaction to formally detect 

whether the effect of DNAm age and age accel on BC 

development is modified by the gynecologic surgery. 

 

RESULTS 
 

Correlation of DNAm age and epigenetic age-

departure estimates (AgeAccelDiff and IEAA) with 

chronologic age (hereafter, age) and with conventional 

BC risk factors 
 

In both prospectively developed BC (hereafter, BC) and 

non-BC subgroups, DNAm age highly corrected with 

age, with slightly stronger correlation in the BC group 

(Figure 1). An epigenetic age accel (positive departure 

of DNAm from age) measured in AgeAccelDiff and 

IEAA was constant from 50 through 60 years in  

both groups, and in the BC group, the age accel did  

not much differ in older ages. Similar patterns were 

observed in women with intact ovaries and in those with 

no use of exogeneous E (Supplementary Figure 1). 

However, in women with bilateral oophorectomy who 

further developed BC, the age accel measured in IEAA 

increased with older age, despite insufficient statistical 

power. Consequently, in all women combined, those 

with bilateral oophorectomy had older DNAm age and 

increased age accel than those with both intact ovaries, 

although the results were not statistically significant 

(Supplementary Figure 2). 

 

 

 

Figure 1. Correlation between DNAmAge/AgeAccelDiff/IEAA and chronologic age by BC status . (AgeAccelDiff, epigenetic age 

acceleration measured as departure of DNAmAge from chronologic age; IEAA, intrinsic epigenetic age acceleration measured as residuals 
by regressing DNAmAge on chronologic age, adjusted for cell composition; BC, breast cancer; DNAmAge, DNA methylation–based marker 
of aging). (A) DNAmAge (B) AgeAccelDiff (C) IEAA. 
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Exogeneous E users showed complex patterns that 

differed by the type of E used, length of the use, and BC 

status. Among unopposed E-only long-term (≥ 5 years) 

users, a slight degree of age decel (DNAm that falls 

behind age) in AgeAccelDiff and increased age accel in 

IEAA with older ages were observed in the BC group, 

whereas greater age decel in both measures with older 

ages were observed in non-BC group (Supplementary 

Figure 1G–1O). In all women combined, older DNAm 

age and increased age accel in AgeAccelDiff and IEAA 

were observed in E users than nonusers, with a non-

linear relationship among users of different durations, 

i.e., older DNAm and higher age accel in short-term  

(< 5 years) than in longer-term (≥ 5 years) users 

(Supplementary Figure 2M–2O). These short-term  

users had about a 2-year-older DNAm age than non-

users among combined and within non-BC women,  

but that was not observed in BC women (Table 1 and 

Supplementary Table 1). 

 

However, users of opposed E plus P showed  

different patterns (Supplementary Figures 1P–1X,  

2P–2R). In shorter-term (< 5 years) users, whereas a 

stronger correlation of DNAm age with age and 

increased age accel in both AgeAccelDiff and IEAA 

with older ages were present in the BC group, a less-

strong correlation of DNAm age with age and more 

profound age decel with older ages were observed in 

the non-BC group. In overall and non-BC groups, 

these short-term users were associated with about a 3-

year-younger DNAm age than nonusers (Table 1 and 

Supplementary Table 1). 

 

BMI, waist, and WHR had a dose-response relationship 

with DNAm age and age accel (Figure 2 and 

Supplementary Figure 2). In particular, compared with 

women with normal BMI, extremely obese women 

(BMI > 40) had a 4-year increased age accel in 

AgeAccelDiff and IEAA in the women overall. Of  

note, the extremely obese women who developed BC 

had a 20-year increase in age accel by both measures 

and a 16-year-older DNAm age compared with those 

with normal BMI. Additionally, in both overall and 

non-BC groups, a 1-unit increase in WHR yielded a  

4-year increase in age accel and about a 7-year-older 

DNAm age (Tables 1, 2 and Supplementary Tables 1–3). 

 

Analyses of alcohol intake and smoking showed the 

opposite patterns (Tables 1, 2 and Supplementary Table 

1 and Figure 2). Compared with never smokers and 

moderate alcohol users (≤ 14 g/day in women), regular 

smokers for ≥ 5 years and > 14-g alcohol users had  

a 1.5-year-younger DNAm age and about a 1-year  
age decel in AgeAccelDiff, respectively. In addition, 

women with a higher score on the HEI-2015 scale, 

indicating better eating behaviors, had an older DNAm 

age than their counterparts, but they showed an age 

decel pattern in AgeAccelDiff. However, none of these 

risk factors substantially influenced epigenetic aging in 

the BC group. 

 

DNAm age and epigenetic age-departure with 

prospective development of BC 

 

Older DNAm age and greater age accel were observed 

in the BC group than in the non-BC group (Figure 3 

and Supplementary Figures 3, 4). On analysis by BC 

subtypes, estrogen/progesterone receptor (ER/PR)–

positive and human epidermal growth factor receptor-2 

(HER2/neu)–negative subgroups showed older DNAm 

age and increased age accel than their counterparts. 

Similarly, when both the AgeAccelDiff and IEAA 

were categorized into accelerated age (ACC, positive 

deviation of DNAm age from age) and decelerated age 

(DCC, negative deviation of DNAm age from age), the 

women with ACC had shorter cancer-free intervals 

than those with DCC in the overall BC and the 

ER/PR–positive and HER2/neu–negative groups. In 

the subset within a 5-year follow-up, a 1-year increase 

in DNAm age was associated with 25% and 40% 

greater risk for developing BC overall and the ER/PR–

positive subtype, respectively (Supplementary Table 

4). Similar patterns were observed for age accel in 

AgeAccelDiff and IEAA in association with BC 

(Table 3A). However, these trends were less apparent 

when the entire follow-up period was analyzed 

(Supplementary Tables 4, 3B). 
 

Subset analyses between natural and artificial 

menopause 
 

Women with natural menopause experienced menarche 

at a similar age as that in women with bilateral 

oophorectomy, but the former group experienced 

menopause at an older age (mean, 50 vs. 43 years, p < 

2.2e-16), indicating their longer lifetime E exposure. 

Compared with women having both ovaries intact, 

women with both ovaries taken out had a greater 

difference in DNAm age and age accel between the  

BC and non-BC groups (Figure 4 and Supplementary 

Figure 5). This corresponds with the results in Table 4: 

women with artificial menopause had an 80% increase 

in BC risk by a 1-year increase in DNAm age. Of 

particular interest, they had a 5-times-higher risk for 

developing BC for every 10-year increase in age accel 

in AgeAccelDiff. However, the multiplicative interaction 

test between oophorectomy and this age accel measure 

on BC risk was not statistically significant. 
 

Interestingly, the elevated risk for BC by accelerated 

epigenetic age in women with bilateral oophorectomy 

remained even after adjustment for BMI and both types 
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Table 1. Association of DNAmAge with selected BC-risk factors*. 

BC risk factor Effect size 95% CI P 

Age at enrollment 0.73 (0.68, 0.78) 1.51E-12 

Waist-to-hip ratio 7.48 (1.93, 13.03) 0.008 

Waist-to-hip ratio** (≤ 0.85 vs. > 0.85) 0.99 (0.10, 1.88) 0.029 

Healthy eating index-2015 0.07 (0.03, 0.11) 0.001 

Healthy eating index-2015¥ (≤ 65.29 vs. > 65.29) 1.52 (0.66, 2.38) 0.001 

Pack-years of smoking (never vs. < 5 years) -0.21 (-1.66, 1.23) 0.771 

  5 to < 20 years -1.46 (-2.90, -0.02) 0.046 

  20 + years -1.42 (-2.50, -0.34) 0.010 

Exogenous estrogen only (never use vs. < 5 years) 1.95 (0.79, 3.11) 0.001 

  5 to < 10 years -1.08 (-3.12, 0.97) 0.302 

  10 + years 1.92 (0.18, 3.66) 0.030 

Exogenous estrogen plus progestin (never use vs. < 5 years) -3.16 (-5.00, -1.33) 0.001 

  5 to < 10 years -1.78 (-5.36, 1.81) 0.331 

  10 + years -2.90 (-6.94, 1.14) 0.159 

BC, breast cancer; CI, confidence interval; DNAmAge, DNA methylation–based marker of aging. Numbers in bold face are 
statistically significant. 
* Only factors having statistically significant association with DNAmAge are displayed. 
** Waist-to-hip ratio was categorized using 0.85, where cutoff levels or higher fall within visceral obese range [60]. 
¥ Healthy eating index-2015 variable is dichotomized by a median (= 65.29). 

 

of E use. In sensitivity analyses with those with bilateral 

oophorectomy within BC subtypes (only ER/PR–

positive and HER2/neu–negative are available), we 

confirmed that each subtype group had similar risk 

magnitude as that of the overall BC group in relation  

to epigenetic age. Validation tests in general showed 

coherent directions as those in the discovery tests but 

with a lack of sample power (Supplementary Table 5 

and Supplementary Figure 6). 

 

DISCUSSION 
 

We investigated the epigenetic age in blood among 

healthy postmenopausal women by comparing those 

who prospectively developed BC with those who 

remained cancer-free. This is of particular interest in  

the etiology of BC, an age-related disease, and in  

terms of its primary prevention, considering the deep 

involvement of DNAm in the aging process, which 

reflects various molecular alterations at different rates 

in individuals over time [5–8, 61]. We found that the 

DNAm age in PBLs tightly correlated with age in  

the age range studied and that older DNAm age and 

accelerated epigenetic age were significantly associated 

with risk for prospective development of BC overall and 

BC subtypes; these are consistent with those of previous 

studies [26, 30–36]. 
 

BC is a heterogeneous disease characterized by distinct 

clinical and pathologic features according to different 

molecular subtypes that undergo unique molecular 

carcinogenetic mechanisms; thus, examining the 

performance of epigenetic aging in the BC subtypes is 

of particular interest. Our findings of older DNAm age 

and/or increased age accel in both ER/PR–positive and 

HER2/neu–negative subgroups than in the relevant 

counterparts and in those without BC development  

are in line with those of previous tissue-based studies 

[6, 8, 31, 50, 62]. In particular, estrogen-signaling 

pathways are key oncogenic drivers of luminal BC,  

and their activation may have a synergistic effect on 

breast-tissue aging that promotes cellular proliferation 

leading to carcinogenesis [8, 39]. Koka et al. [8] 

supported this hypothesis for the acceleration of tissue 

aging in the accompanied estrogen signaling process by 

reporting that DNAm age and age accel were positively 

correlated with ESR1 and PGR gene expression levels 

in breast tumor tissue. In contrast, ER/PR–negatives  

and HER2/neu–positives, typically tumors of more 

aggressive nature, demonstrated younger DNAm age 

and decelerated epigenetic aging than their respective 

counterparts and those without BC; this finding is  

also consistent with those of prior reports [6, 8, 50]. 

These non-luminal subtypes may undergo different 

carcinogenetic processes. The tumorigenic process 

reflects multiple cellular evolutions, including step-

wise, somatic cell mutations, following sub-clonal 
selection, ultimately forming cancer stem cells with  

the unique nature of self-renewal and high potential  

of differentiation and proliferation [63, 64]. Similar to 
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Figure 2. Distribution of DNAmAge/AgeAccelDiff/IEAA by selected BC-risk factors. By BMI, (A–C); HEI-2015, (D–F); SMK, (G–I); ALC, 

(J–L). (ALC, dietary alcohol categorized by moderate drink (14 g); AgeAccelDiff, epigenetic age acceleration as departure of DNAmAge from 
chronologic age; IEAA, intrinsic epigenetic age acceleration as residuals adjusted for cell composition; BC, breast cancer; BMI, body mass 
index; Cat, Categories; DNAmAge, DNA methylation–based marker of aging; HEI, healthy eating index; SMK, pack-years of smoking.) (A) BMI, 
DNAmAge (B) BMI, AgeAccelDiff (C) BMI, IEAA (D) HEI-2015, DNAmAge (E) HEI-2015, AgeAccelDiff (F) HEI-2015, IEAA (G) SMK, DNAmAge (H) 
SMK, AgeAccelDiff (I) SMK, IEAA (J) ALC, DNAmAge (K) ALC, AgeAccelDiff (L) ALC, IEAA. 
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Table 2. Association of epigenetic age acceleration with selected BC-risk factors*. 

A. AgeAccelDiff 

BC risk factor Effect size 95% CI P 

Age at enrollment -0.27 (-0.32, -0.22) 9.27E-24 

Body mass index, kg/m2  0.14 (0.08, 0.20) 4.59E-06 

Body mass index, kg/m2 (≥ 18.5 to < 25, normal, vs. < 18.5, underweight) -0.63 (-3.96, 2.70) 0.712 

≥ 25 to < 30, overweight 0.56 (-0.30, 1.41) 0.205 

≥ 30 to < 40, obesity 1.70 (0.84, 2.56) 0.0001 

≥ 40, extreme obesity 4.41 (2.44, 6.37) 1.19E-05 

Waist circumference, cm 0.06 (0.03, 0.08) 2.85E-06 

Waist circumference, cm** (≤ 88 vs. > 88) 1.07 (0.39, 1.75) 0.002 

Healthy eating index-2015 -0.03 (-0.07, -0.002) 0.040 

Dietary alcohol per day, g -0.03 (-0.07, -0.001) 0.042 

Dietary alcohol per day, g¥ (≤ 14 vs. > 14) -1.04 (-2.07, -0.02) 0.045 

 
B. IEAA 

BC risk factor Effect size 95% CI P 

Age at enrollment -0.07 (-0.11, -0.02) 0.009 

Body mass index, kg/m2  0.10 (0.04, 0.15) 0.000 

Body mass index, kg/m2 (≥ 18.5 to < 25, normal, vs. < 18.5, underweight) 0.15 (-2.86, 3.16) 0.924 

≥ 25 to < 30, overweight 0.48 (-0.30, 1.26) 0.224 

≥ 30 to < 40, obesity 1.12 (0.34, 1.89) 0.005 

≥ 40, extreme obesity 3.47 (1.69, 5.24) 0.000 

Waist circumference, cm 0.04 (0.02, 0.06) 0.000 

Waist circumference, cm** (≤ 88 vs. > 88) 0.76 (0.15, 1.37) 0.014 

Waist-to-hip ratio 4.06 (0.15, 7.97) 0.042 

AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge from chronologic age; BC, breast cancer; CI, 
confidence interval; DNAmAge, DNA methylation–based marker of aging; IEAA, intrinsic epigenetic age acceleration as 
residuals by regressing DNAmAge on chronologic age, adjusted for cell composition. Numbers in bold face are statistically 
significant. 
* Only factors having statistically significant association with DNAmAge are displayed. 
** Waist circumference was categorized using 88 cm, where cutoff levels or higher fall within visceral obese range [60]. 
¥ Dietary alcohol per day is dichotomized by a moderate drink amount (= 14 g). 

embryonic stem cells, cancer stem cells have a DNAm 

age close to zero and might play an important role  

in more aggressive tumors [6]; this explains the 

decelerated aging observed in our study. These findings 

support a theory that DNAm age is related to the 

biologic process of cell differentiation and the 

maintenance of cellular identity; thus, epigenetic age 

accel in some way captures intracellular modification 

in losing cellular identity and changes in cell 

compositions [65]. Of note, our findings for the 

ER/PR–positive subtype showed a strong association 

with DNAm age/age accel when the analysis was 
restricted to within 5 years, but over the entire period, 

these correlations became weaker. Thus, we cannot  

rule out the reverse causality for tumorigenesis of BC 

to drive the systemic DNAm age in this short follow-up 

period, calling for further validation studies. 

 

Endogenous steroid hormone pathways and exogenous 

administration of hormones are both influencing factors 

for BC development. The mechanism by which these 

hormones stimulate cellular aging in breast tissues is 

poorly understood, but it is well hypothesized that 

estrogen is involved in the development of the 

mammary gland and epithelial stem cell regulation  

by regulating cell-cycle progression via the cyclin-

dependent kinase pathways and cell proliferation, thus 
accelerating biologic aging in breast tissues [66, 67]. 

This aging process begins at puberty and gradually 

diminishes with advancing age until the last menstrual 
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period [38, 39], so the degree of the effect of hormones 

on breast tissue aging is reduced after menopause. As 

evidenced, an earlier age at menarche, a factor for 

cumulative exposure to estrogen, associated with breast-

tissue age accel was observed only in girls [68] and 

premenopausal women [40]. Of note, the opposite 

direction (older age at menarche with age accel) is 

observed in women older than 40 years [69]. Also, a 

study [22] examining three cohorts of postmenopausal 

women reported that women with early onset of 

menopause was epigenetically older, suggesting a 

causal pathway that faster reproductive aging leads to 

higher biologic aging [70, 71]. 

 

In line with that, bilateral oophorectomy was associated 

with the increased age accel observed in our and other 

studies [40]. This supports findings from population  

and in vivo studies [72, 73] that the premature loss of 

ovarian function before natural menopause increases 

risk for premature death and age-related diseases.  

Our study participants with bilateral oophorectomy 

experienced menopause at younger age than those with 

both intact ovaries, suggesting shorter lifetime estrogen 

exposure, and their DNAm age and epigenetic age accel 

had a substantial impact on the development of BC, 

whereas those experiencing natural menopause did not 

show a significant effect of epigenetic aging on BC risk. 

Bilateral oophorectomy may be accompanied by other 

synergistic factors for biologic aging that contribute to 

BC development, such as compromised detoxification, 

DNA repair systems, and immune surveillance [28]. 

 

Obesity, measured via BMI, is one major source of 

estrogen and an independent BC risk factor in 

postmenopausal women. Consistent with our study 

finding, BMI was associated with pan-tissue biologic 

aging in PB [69] and tissues including breast tissues  

[8, 40]. Of note, BMI in our study was the only obesity-

measured variable that showed greater influence on 

epigenetic aging in BC than in non-BC groups (a 

confounder). However, BMI itself did not influence  

the association of DNAm age with BC development as 

 

 
 

Figure 3. Distribution of DNAmAge (A–C) and cancer-free probability curve of IEAA (D–F) by BC status and BC subtype. (IEAA, intrinsic 
epigenetic age acceleration as residuals adjusted for cell composition; ACC, acceleration, i.e., positive residuals; BC, breast cancer; DCC, 
deceleration, i.e., negative residuals; DNAmAge, DNA methylation–based marker of aging; ER/PR, estrogen and progesterone receptor; 
HER2/neu, human epidermal growth factor receptor 2). (A) DNAmAge, BC (B) DNAmAge, ER/PR Status (C) DNAmAge, HER2/neu Status (D) 
IEAA, BC (E) IEAA, ER/PR positive (F) IEAA, HER2/neu negative. 
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Table 3. Multiple Cox regression for the AgeAccelDiff/IEAA for BC development within 5 years and during the 
overall period. 

A. Within 5 years 

< AgeAccelDiff > 

BC subtype HR† 95% CI P 

Overall 1.18 (0.97, 1.45) 0.103 

ER/PR positive 1.30 (1.12, 1.50) 0.0004 

< IEAA > 

BC subtype HR† 95% CI P 

Overall 1.12 (0.91, 1.39) 0.287 

ER/PR positive 1.18 (1.03, 1.36) 0.020 

 

B. Overall period 

< AgeAccelDiff > 

BC subtype HR† 95% CI P 

Overall 1.05 (1.00, 1.09) 0.048 

ER/PR positive 1.06 (1.01, 1.12) 0.013 

ER/PR negative 0.97 (0.84, 1.13) 0.702 

Her2/neu positive 1.06 (0.90, 1.25) 0.474 

Her2/neu negative 1.05 (1.00, 1.11) 0.052 

< IEAA > 

BC subtype HR† 95% CI P 

Overall 1.06 (1.01, 1.11) 0.024 

ER/PR positive 1.07 (1.02, 1.13) 0.008 

ER/PR negative 0.96 (0.82, 1.13) 0.647 

Her2/neu positive 1.06 (0.88, 1.27) 0.549 

Her2/neu negative 1.06 (1.01, 1.13) 0.032 

AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge from chronologic age; BC, breast cancer; CI, 
confidence interval; DNAmAge, DNA methylation–based marker of aging; ER/PR, estrogen and progesterone receptor; HER2/neu, 
human epidermal growth factor receptor 2; HR, hazard ratio; IEAA, intrinsic epigenetic age acceleration as residuals by regressing 
DNAmAge on chronologic age, adjusted for cell composition. Numbers in bold face are statistically significant. 
† HR adjusted by body mass index, waist-to-hip ratio, diabetes at enrollment, healthy eating index-2015, alcohol intake 
(none, past, < 1 drink/month, < 1 drink/week, 1 to < 7 drinks/week, and 7+ drinks/week), pack-years of smoking (never, < 5 
years, 5–20 years, and ≥ 20 years), oophorectomy (none, one and/or part taken out, and both taken out), total duration of 
unopposed estrogen only use (never, < 5 years, 5–10 years, and 10+ years), and total duration of opposed estrogen plus 
progestin use (never, < 5 years, 5–10 years, and 10+ years). 

 

 
 

Figure 4. Women with a history of bilateral oophorectomy: distribution of DNAmAge/AgeAccelDiff/IEAA by BC status. 
(AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge from chronologic age; IEAA, intrinsic epigenetic age acceleration 
as residuals adjusted for cell composition; BC, breast cancer; DNAmAge, DNA methylation–based marker of aging). (A) DNAmAge, (B) 
AgeAccelDiff, (C) IEAA. 
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Table 4. Multiple Cox regression for the DNAmAge/AgeAccelDiff/IEAA 
for BC development by a history of oophorectomy. 

DNAmAge 

Oophorectomy HR† 95% CI P 

None 1.00 (0.96, 1.05) 0.823 

Bilateral 1.80 (1.56, 2.07) < 0.001 

AgeAccelDiff*§ 

Oophorectomy HR† 95% CI P 

None 1.38 (0.88, 2.18) 0.164 

Bilateral 5.08 (1.47, 17.51) 0.010 

IEAA 

Oophorectomy HR† 95% CI P 

None 1.04 (0.99, 1.10) 0.129 

Bilateral 1.37 (1.11, 1.69) 0.003 

AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge 
from chronologic age; BC, breast cancer; CI, confidence interval; DNAmAge, DNA 
methylation–based marker of aging; HR, hazard ratio; IEAA, intrinsic epigenetic 
age acceleration as residuals by regressing DNAmAge on chronologic age, 
adjusted for cell composition. Numbers in bold face are statistically significant. 
†HR adjusted by body mass index, waist-to-hip ratio, diabetes at enrollment, 
healthy eating index-2015, alcohol intake (none, past, < 1 drink/month, < 1 
drink/week, 1 to < 7 drinks/week, and 7+ drinks/week), pack-years of smoking 
(never, < 5 years, 5–20 years, and ≥ 20 years), total duration of unopposed 
estrogen only use (never, < 5 years, 5 to 10 years, and 10+ years), and total 
duration of opposed estrogen plus progestin use (never, < 5 years, 5–10 years, 
and 10+ years). 
*AgeAccelerationDiff as a predictor for BC was analyzed by a 10-year interval. 
§A multiplicative interaction scale is reported: Odds Ratio, 1.30 (95% CI: 0.64, 2.66). 

 

an effect modifier. Also, while unopposed E users  

were correlated with older epigenetic aging, opposed  

E plus P users showed the opposite direction; but 

neither substantially influenced BC risk through aging 

acceleration. 

 

Our study focused on whites, and the results should  

not be extrapolated to other populations. Also, given 

that data was repurposed from the AS dbGaP 

repository, samples examined in our study may not 

fully reflect the source population, with limited 

confounding information (e.g., variability of hormone 

therapy) and can result in limited statistical power, 

particularly for investigating BC subtypes. Our analysis 

of GEO data did not contain BC subtypes and other 

reproductive histories, leading to a lack of confirmatory 

findings; this deserves a future independent, large 

replication study. Our analysis within a short follow- 

up period should be interpreted with caution owing  

to the potential reverse causation. However, our study 

has potential as the basis for promoting clinical studies 

to create epigenetically guided decision-making by 

establishing a comprehensive prediction model for BC 

risk that better addresses biologic aging processes in 

BC carcinogenesis. A future study with breast tissues 

and paired blood from healthy women who are followed 

with cancer development and prognosis after diagnosis 

across the menopausal transition with longitudinal 

epigenetic measures could contribute to understanding 

epigenetic aging trajectories in the etiology of BC  

and BC treatment effect by integrating the cumulative 

hormone effect. 

 

In summary, we found that epigenetically older age and 

age acceleration led to a greater risk for developing BC 

overall and ER/PR–positive and HER2/neu–negative 

subtypes, and these risks were noticeably higher in 

women with bilateral oophorectomy, independently of 

their obesity status and exogeneous E use. Our study 

contributes to the development of a DNAm biomarker 

that integrates conventional BC risk factors to better 

reflect the risk for BC subtypes, promoting epigenetically 

targeted preventive interventions tailored to aged 

individuals with high risk. 
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Supplementary Figure 1. Correlation between DNAmAge/AgeAccelDiff/IEAA and chronologic age by BC status. By 

oophorectomy, (A–C) no ovaries removed, (D–F) bilateral. By unopposed estrogen use status, (G–I) none, (J–L) < 5 years, (M–O) 5 + years. By 
opposed estrogen (estrogen plus progesterone) use status, (P–R) none, (S–U) < 5 years, (V–X) 5 +years. (AgeAccelDiff, epigenetic age 
acceleration measured as departure of DNAmAge from chronologic age; IEAA, intrinsic epigenetic age acceleration measured as residuals by 
regressing DNAmAge on chronologic age, adjusted for cell composition; BC, breast cancer; DNAmAge, DNA methylation–based marker of 
aging). 
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Supplementary Figure 2. Distribution of DNAmAge/AgeAccelDiff/IEAA by BC-risk factors (except body mass index, diet, 
smoking, and alcohol). By waist circumference, (A–C); WHR, (D–F); DM, (G–I); OOPH, (J–L); TOTE, (M–O); TOTP, (P–R). (AgeAccelDiff, 
epigenetic age acceleration as departure of DNAmAge from chronologic age; IEAA, intrinsic epigenetic age acceleration as residuals adjusted 
for cell composition; BC, breast cancer; Cat, Categories; DM, diabetes; DNAmAge, DNA methylation–based marker of aging; OOPH, 
oophorectomy; TOTE, total duration of unopposed estrogen use; TOTP, total duration of opposed estrogen plus progestin use; WHR, waist-
to-hip ratio). 
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Supplementary Figure 3. Distribution (A–C) and cancer-free probability curve (D–G) of AgeAccelDiff by BC status and BC subtype. 

(AgeAccelDiff, epigenetic age acceleration as departure of DNAmAge from chronologic age; ACC, acceleration, i.e., positive difference of 
DNAm age from chronologic age; BC, breast cancer; DCC, deceleration, i.e., negative difference of DNAm age from chronologic age; 
DNAmAge, DNA methylation–based marker of aging; ER/PR, estrogen and progesterone receptor; HER2/neu, human epidermal growth factor 
receptor 2). 
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Supplementary Figure 4. Distribution of IEAA by BC status (A) and BC subtype (B, C). (IEAA, intrinsic epigenetic age acceleration as 
residuals adjusted for cell composition; BC, breast cancer; ER/PR, estrogen and progesterone receptor; HER2/neu, human epidermal growth 
factor receptor 2). 
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Supplementary Figure 5. Women without a history of oophorectomy. Distribution of DNAmAge (A–C)/AgeAccelDiff (D–F)/IEAA (G–I) 
by BC status and BC subtype. (AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge from chronologic age; IEAA, 
intrinsic epigenetic age acceleration as residuals adjusted for cell composition; BC, breast cancer; DNAmAge, DNA methylation–based marker 
of aging; ER/PR, estrogen and progesterone receptor; HER2/neu, human epidermal growth factor receptor 2). 
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Supplementary Figure 6. GSE51032: validation tests. Correlation between DNAmAge (A)/AgeAccelDiff (B)/IEAA (C) and chronologic 

age by BC status. Distribution of DNAmAge (D)/AgeAccelDiff (E)/IEAA (F) by BC status. (AgeAccelDiff, epigenetic age acceleration measured as 
departure of DNAmAge from chronologic age; IEAA, intrinsic epigenetic age acceleration measured as residuals by regressing DNAmAge on 
chronologic age, adjusted for cell composition; BC, breast cancer; DNAmAge, DNA methylation–based marker of aging). 
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Supplementary Tables 
 

Supplementary Table 1. Association of DNAmAge with selected BC-risk factors by 
BC status*.  

A. Among participants with BC development  

BC risk factor  Effect size  95% CI  P  

Age at enrollment  0.81  (0.61, 1.01)  2.17E-11  

Body mass index, kg/m2§ (≥ 18.5 to < 25, 

normal, vs. ≥ 25 to < 30, overweight)  

-1.84  (-6.63, 2.95)  0.445  

  ≥ 30 to < 40, obesity  1.07  (-3.24, 5.38)  0.621  

  ≥ 40, extreme obesity  16.41  (1.65, 31.18)  0.030  

 

B. Among participants without BC development  

BC risk factor  Effect size  95% CI  P  

Age at enrollment  0.73  (0.67, 0.78)  5.24E-12  

Waist-to-hip ratio  7.77  (2.05, 13.49)  0.008  

Waist-to-hip ratio** (≤ 0.85 vs. > 0.85)  1.11  (0.19, 2.02)  0.018  

Healthy eating index-2015  0.07  (0.03, 0.11)  0.002  

Healthy eating index-2015¥ (≤ 65.29 vs. 

> 65.29)  

1.52  (0.63, 2.41)  0.001  

Pack-years of smoking (never vs. < 5 

years)  

-0.40  (-1.89, 1.08)  0.594  

  5 to < 20 years  -1.61  (-3.06, -0.16)  0.030  

  20 + years  -1.59  (-2.71, -0.47)  0.006  

Exogenous estrogen only (never use vs.< 

5 years)  

1.89  (0.70, 3.07)  0.002  

  5 to < 10 years  -1.00  (-3.06, 1.06)  0.342  

  10 + years  1.73  (-0.02, 3.48)  0.053  

Exogenous estrogen plus progestin 

(never use vs. < 5 years)  

-2.94  (-4.82, -1.06)  0.002  

  5 to < 10 years  -2.32  (-6.02, 1.38)  0.219  

  10 + years  -3.34  (-7.78, 1.09)  0.140  

BC, breast cancer; CI, confidence interval; DNAmAge, DNA methylation–based marker of 
aging. Numbers in bold face are statistically significant.  
*Only factors having statistically significant association with DNAmAge are displayed.  
§ Among BC patients, no one had body mass index < 18.5.  
**Waist-to-hip ratio was categorized using 0.85, where cutoff levels or higher fall within 
visceral obese range [73].  
¥ Healthy eating index-2015 variable is dichotomized by a median (= 65.29). 
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Supplementary Table 2. Association of AgeAccelDiff with selected BC-risk factors 
by BC status*.  

A. Among participants with BC development.  

BC risk factor  Effect size 95% CI P 

Body mass index, kg/m2§ (≥ 18.5 to < 25,  

normal, vs. ≥ 25 to < 30, overweight)  

0.15  (-3.05, 3.36)  0.923  

  ≥ 30 to < 40, obesity  0.79  (-2.09, 3.67)  0.585  

  ≥ 40, extreme obesity  21.03  (11.17, 30.90)  7.04E-05  

 

B. Among participants without BC development.  

BC risk factor  Effect size  95% CI  P  

Age at enrollment  -0.27  (-0.33, -0.22)  1.28E-22  

Body mass index, kg/m2  0.14  (0.08, 0.20)  1.28E-05  

Body mass index, kg/m2 (≥ 18.5 to < 25, 

normal, vs. < 18.5, underweight)  

-0.51  (-3.84, 2.83)  0.766  

  ≥ 25 to < 30, overweight  0.60  (-0.28, 1.49)  0.181  

  ≥ 30 to < 40, obesity  1.75  (0.86, 2.64)  0.0001  

  ≥ 40, extreme obesity  3.92  (1.92, 5.92)  0.0001  

Waist circumference, cm  0.06  (0.03, 0.08)  6.38E-06  

Waist circumference, cm** (≤ 88 vs. > 88)  1.09  (0.39, 1.79)  0.002  

Waist-to-hip ratio  4.91  (0.41, 9.42)  0.032  

AgeAccelDiff, epigenetic age acceleration measured as departure of DNAmAge from 
chronologic age; BC, breast cancer; CI, confidence interval; DNAmAge, DNA methylation–
based marker of aging. Numbers in bold face are statistically significant.  
*Only factors having statistically significant association with DNAmAge are displayed.  
§ Among BC patients, no one had body mass index < 18.5.  
**Waist-to-hip ratio was categorized using 0.85, where cutoff levels or higher fall within 
visceral obese range [73]. 
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Supplementary Table 3. Association of IEAA with selected BC-risk factors by BC 
status*.  

A. Among participants with BC development.  

BC risk factor  Effect size  95% CI  P  

Body mass index, kg/m2§ (≥ 

18.5 to < 25, normal, vs. ≥ 25 

to < 30, overweight)  

0.35  (-2.50, 3.20)  0.808  

  ≥ 30 to < 40, obesity  0.54  (-2.02, 3.10)  0.675  

  ≥ 40, extreme obesity  20.17  (11.39, 28.95)  2.19E-05  

 

B. Among participants without BC development.  

BC risk factor  Effect size  95% CI  P  

Age at enrollment  -0.07  (-0.12, -0.02)  0.011  

Body mass index, kg/m2  0.09  (0.04, 0.15)  0.001  

Body mass index, kg/m2 (≥ 

18.5 to < 25, normal, vs. < 

18.5, underweight)  

0.25  (-2.76, 3.26)  0.871  

  ≥ 25 to < 30, overweight  0.51  (-0.29, 1.31)  0.211  

  ≥ 30 to < 40, obesity  1.14  (0.34, 1.95)  0.006  

  ≥ 40, extreme obesity  2.97  (1.16, 4.77)  0.001  

Waist circumference, cm  0.04  (0.02, 0.06)  0.0003  

Waist circumference, cm** (≤ 

88 vs. > 88)  

0.78  (0.15, 1.41)  0.015  

Waist-to-hip ratio  4.52  (0.48, 8.56)  0.028  

BC, breast cancer; CI, confidence interval; DNAmAge, DNA methylation–based marker of 
aging; IEAA, intrinsic epigenetic age acceleration as residuals by regressing DNAmAge on 
chronologic age, adjusted for cell composition. Numbers in bold face are statistically 
significant.  
*Only factors having statistically significant association with DNAmAge are displayed.  
§ Among BC patients, no one had body mass index < 18.5.  
**Waist circumference was categorized using 88 cm, where cutoff levels or higher fall 
within visceral obese range [73]. 
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Supplementary Table 4. Multiple Cox regression for the DNAmAge for 
BC development in different time segments*.  

Within 5 years  

BC subtype  HR†  95% CI  P  

Overall  1.25  (1.05, 1.47)  0.010  

ER/PR positive  1.42  (1.29, 1.57)  < 0.001  

Within 5 to 15 years 

BC subtype  HR†  95% CI  P  

Overall  0.94  (0.89, 1.00)  0.040  

ER/PR positive  0.95  (0.89, 1.01)  0.094  

ER/PR negative  0.83  (0.69, 1.00)  0.044  

Her2/neu negative  0.94  (0.88, 1.00)  0.041  

Within 15 years 

BC subtype  HR†  95% CI  P  

Overall  0.96  (0.92, 1.00)  0.076  

ER/PR positive  0.97  (0.92, 1.01)  0.164  

ER/PR negative  0.84  (0.75, 0.95)  0.005  

Her2/neu negative  0.95  (0.90, 1.00)  0.036  

BC, breast cancer; CI, confidence interval; DNAmAge, DNA methylation–based 
marker of aging; ER/PR, estrogen and progesterone receptor; HER2/neu, 
human epidermal growth factor receptor 2; HR, hazard ratio. Numbers in bold 
face are statistically significant.  
*Results from the analyses for the total period are not present owing to no 
statistical significance.  
†HR adjusted by body mass index, waist-to-hip ratio, diabetes at enrollment, 
healthy eating index-2015, alcohol intake (none, past, < 1 drink/month, < 1 
drink/week, 1 to < 7 drinks/week, and 7+ drinks/week), pack-years of smoking 
(never, < 5 years, 5–20 years, and ≥ 20 years), oophorectomy (none, one 
and/or part taken out, and both taken out), total duration of unopposed 
estrogen only use (never, < 5 years, 5–10 years, and 10+ years), and total 
duration of opposed estrogen plus progestin use (never, < 5 years, 5–10 years, 
and 10+ years). 
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Supplementary Table 5. GSE51032: validation tests.  

DNAmAge  

BC OR†  95% CI  P  

Overall  0.99  (0.97, 1.01)  0.330  

AgeAccelDiff 

BC OR†  95% CI  P  

Overall  0.98  (0.95, 1.01)  0.247  

IEAA 

BC OR†  95% CI  P  

Overall  1.00  (0.96, 1.04)  0.850  

AgeAccelDiff, epigenetic age acceleration measured as 
departure of DNAmAge from chronologic age; BC, breast 
cancer; CI, confidence interval; DNAmAge, DNA methylation–
based marker of aging; IEAA, intrinsic epigenetic age 
acceleration as residuals by regressing DNAmAge on 
chronologic age, adjusted for cell composition; OR, odds ratio.  
†ORs obtained from univariate analyses. 
Logistic regression for the DNAmAge/AgeAccelDiff/IEAA for BC. 
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