
www.aging-us.com 1 AGING 

 

Ageing is a multifaceted biological process that manifests 

as gradual decline of cellular functions, and ultimately 

leads to deterioration of organismal physiology. This 

complex phenomenon is influenced by a variety of 

factors, including genetic, environmental, and metabolic 

effects [1, 2]. A prominent hallmark of ageing is the 

accumulation of dysfunctional cellular components, 

which disrupts tissue homeostasis, contributing to age-

related pathologies [3, 4]. This feature includes the 

abnormal deposition of lipids in non-adipose tissues, 

known as ectopic fat, which is highly associated with 

metabolic syndrome and various age-related conditions, 

including cardiovascular disease, type 2 diabetes, and 
neurodegenerative disorders, among others, [5, 6]. 

 

Lipid droplets (LDs) are primarily recognized as 

cytoplasmic organelles and have a pivotal role in energy 

storage, lipid metabolism, and cellular homeostasis. 

Traditionally, LDs presence has been confined to the 

cytoplasm, where they serve as reservoirs of neutral 

lipids, supporting energy balance and membrane 

biosynthesis [7, 8]. For a long time, the association 

between LDs and the nucleus was under-investigated. 

However, recent studies have unveiled an unexpected 

aspect of lipid biology demonstrating that LDs can also 

exist within the nucleus, forming nuclear lipid droplets 

(nLDs) [9–15]. Although LDs are typically generated 

from ER membranes and remain closely associated with 

the outer nuclear membrane, recent studies provide 

compelling evidence of LDs residing within nucleus 
[7, 8, 16, 17]. This nuclear localization is surprising and 

points to previously unappreciated roles for lipid 

storage and metabolism within the nucleus, introducing 

an additional layer of complexity to our understanding 
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ABSTRACT 
 

Aging is a fundamental driver of numerous life-threatening diseases, significantly compromising cellular 
structures and functions, including the integrity of the nucleus. A consistent feature of aging across diverse 
species is the progressive accumulation of lipid droplets (nLDs) within the nuclear compartment, which disrupts 
nuclear architecture and functionality. Notably, aging is accompanied by a marked increase in nLD 
accumulation at the nuclear envelope. Interventions known to extend lifespan, such as caloric restriction and 
reduced insulin signaling, significantly reduce both the rate of accumulation and the size of nLDs. The 
triglyceride lipase ATGL-1, which localizes to the nuclear envelope, plays a critical role in limiting nLD buildup 
and maintaining nuclear lipid balance, especially in long-lived mutant worms. These findings establish excessive 
nuclear lipid deposition as a key hallmark of aging, with profound implications for nuclear processes such as 
chromatin organization, DNA repair, and gene regulation. In addition, ATGL-1 emerges as a promising 
therapeutic target for preserving nuclear health, extending organismal healthspan, and combating age-related 
disorders driven by lipid dysregulation. 
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of cellular processes, particularly in the context of 

ageing. 

 

Over the last decade, several methods have been 

developed to monitor LDs number, morphology, and 

distribution within cells and across tissues. However, 

many of these methods face limitations that prevent the 

real-time, in vivo tracking of LDs throughout the 

lifespan of an organism [18–21]. In previous studies, we 

have established the use of non-linear imaging 

modalities to assess LDs formation and deposition 

during ageing in vivo [21–23]. Using this label free and 

non-invasive methodology, we revealed that LDs 

progressively accumulate in the nuclear envelope as 

C. elegans ages [24]. Recent findings suggest that the 

nuclear envelope is a metabolically active site where 

lipids are synthesized and stored, adding a new 

dimension to our understanding of lipid metabolism and 

its relationship with nuclear integrity [12, 15]. Notably, 

the build-up of nuclear lipid droplets (nLDs) is closely 

associated with age-related alterations in the nuclear 

lamina protein LMN-1, the C. elegans homolog of 

mammalian lamin A/C. These findings underscore an 

intricate relationship between nuclear envelope 

components and LDs functionality. These interactions 

could be crucial for the maintenance of nuclear 

integrity, as changes in nuclear morphology are well-

established hallmarks of ageing across species [25, 26]. 

Further supporting this notion, studies in human cells 

have shown that mutations in the LMNA gene not only 

lead to abnormal nuclear morphology but also result in 

altered expression of metabolism-related genes, features 

similarly observed in cells derived from metabolic 

syndrome patients, which also exhibit impaired nuclear 

distribution of lamin A/C [27, 28]. The accumulation of 

nLDs, therefore, is not simply a passive consequence of 

ageing but might actively contribute to nuclear 

morphology disruption and impaired cellular function. 

Notably, disruptions in nuclear lipid homeostasis have 

been linked to metabolic disorders such as fatty liver 

disease and obesity, suggesting that similar mechanisms 

could be conserved across species and relevant not only 

to ageing but also to disease pathology [5, 8, 25]. 

However, further investigation is needed to assess nLDs 

distribution within nuclear compartments particularly in 

cells derived from progeria and metabolic syndrome 

patients, where such mechanisms might have a critical 

role. 

 

While the physical association of LDs with the nuclear 

compartments is highly recognized, our understanding 

of their functional roles in nuclear homeostasis remains 

elusive. Genetic studies conducted in mammalian cells, 
flies and nematodes have been shown that LDs 

contribute to nuclear integrity by storing histones, 

binding transcription factors, directly interacting with 

other proteins that regulate the transport between the 

cytoplasm and nucleoplasm [7, 8, 16]. Hence, the 

uncontrolled accumulation of LDs in the nuclear 

envelope might be detrimental for several nuclear 

processes, including nuclear transport, DNA repair, 

chromatin remodelling and ultimately, gene expression. 

A recent study in C. elegans revealed that nLDs are 

coated by LMN-1 and/or heterochromatin, indicating 

that the accumulation of nLDs could play a role in the 

disposal of peripheral heterochromatin [14]. These 

results indicate that nLDs might influence chromatin 

organization, given their formation at the nuclear 

envelope and their ability to penetrate the nuclear 

lamina, entering the nucleoplasm. This is particularly 

relevant since the loss of heterochromatin and the 

derepression of silenced genes are considered major 

contributors to premature ageing. Chromatin loosening 

is a common feature of ageing, leading to deregulated 

gene expression and compromised genome integrity 

[29, 30]. Lamin-Associated Domains (LADs), which 

are closely linked to heterochromatin, could be 

destabilized by the age-dependent accrual of nLDs at 

the nuclear lamina (Figure 1). In turn, these events 

could contribute to heterochromatin loss during ageing, 

suggesting that nLD accumulation may play a 

significant role in age-related chromatin remodelling. 

Moreover, the excessive nLD accumulation could 

interfere with chromosome territories, leading to 

nuclear damage and cellular dysfunction. These 

concepts are further supported by the well-documented 

loss of intestinal nuclei during C. elegans ageing, which 

might, in fact, be driven by increased nLD accumulation 

[14, 31, 32]. However, further studies are needed to 

validate these concepts and uncover the precise 

mechanisms involved. 

 

One of the most compelling aspects of our study is the 

effect of longevity-promoting interventions on nLD 

accumulation. Dietary restriction and reduced insulin 

signalling were found to significantly reduce both the 

size and number of nLDs in aged nematodes. These 

findings underscore the role of metabolic regulation in 

extending lifespan, hinting at the importance of nLDs 

homeostasis in maintaining cellular integrity during 

ageing. Both longevity-promoting interventions 

correlated with lower levels of nLD accumulation, 

preservation of nuclear morphology, and sustained 

expression of the nuclear structural protein LMN-1 

[24, 33, 34]. Furthermore, our study uncovered the 

transcription factor HLH-30, the nematode homolog of 

the mammalian transcription factor EB (TFEB), to play 

an essential role in preserving nuclear lipid balance. 

Intriguingly, HLH-30 operates independently of 
autophagy, establishing a distinct pathway for nLDs 

regulation. Both HLH-30 and its mammalian 

counterpart TFEB are activated and translocate to the 
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nucleus in response to low insulin signalling and caloric 

restriction [35, 36]. HLH-30 subsequently regulates the 

expression of genes involved in autophagy, lysosomal 

function, and lipid metabolism, including the gene for 

the lipase ATGL-1 [24, 35, 36]. Our findings also 

indicate that ATGL-1 is essential for regulating nLD 

size and abundance in long-lived nematodes, as its 

overexpression alone is sufficient to maintain nLDs. 

Notably, ATGL-1 is localized in both the cytoplasm and 

nuclear envelope, suggesting it plays a dual role in 

moderating lipid accumulation across cellular 

compartments [24]. The mammalian homolog of 

ATGL-1, PNPLA2, exhibits similar dual localization, 

being found in both cytosolic LDs and the 

nucleoplasm in a range of human cell lines, including 

A-549, U-251MG, HEK293, U2OS, and SiHA cells 

(as documented in the Human Protein Atlas, 

http://www.proteinatlas.org/). The regulatory relation-

ship between HLH-30 and ATGL-1 provides a 

mechanistic link between longevity-promoting 

pathways and nLDs metabolism, offering insights into 

how these interventions maintain nuclear integrity 

through lipid homeostasis. Taken together, these 

findings suggest that metabolic pathways supporting 

longevity may promote cellular health by directly 

influencing nLD dynamics. This influence, in turn, 

likely plays a critical role in sustaining nuclear integrity, 

positioning nLD regulation as a promising target for 

interventions aimed at promoting healthy ageing. 

 

The identification of age-dependent nLDs accumulation 

as a hallmark of ageing marks a significant 

advancement in our understanding of the interplay 

between lipid metabolism and nuclear function. 

Accumulation of nLDs disrupts nuclear integrity, 

potentially impairing essential nuclear processes such as 

chromatin organization, DNA repair, and gene 

expression. Beyond advancing our knowledge of the 

ageing process, this discovery suggests promising 

targets for interventions aimed at extending healthspan 

and preventing age-related diseases. As research into 

nLDs regulation progresses, it is conceivable that novel 

therapeutic strategies will emerge, leveraging lipid 

metabolism to combat the effects of ageing and enhance 

human health. Given the established links between lipid 

deregulation, metabolic disorders, and ageing, these 

findings hold considerable promise for developing 

therapies aimed at safeguarding nuclear function and 

mitigating the adverse effects of ageing on cellular and 

organismal physiology. 

 

 
 

Figure 1. Age-dependent nLDs accumulation affects nuclear homeostasis. Over time, lipid droplets (LDs) accumulate progressively 

in the cytoplasm and within the nuclear lamina, closely associated with age-related changes in the nuclear lamina protein LMN-1 (the 
nematode homolog of lamin A/C), which supports nuclear morphology. This nLD accumulation may disrupt Lamin-Associated Domains 
(LADs), chromatin regions anchored to the nuclear periphery, leading to chromatin remodelling, heterochromatin destabilization, and 
compromised nuclear integrity, which are well-established hallmarks of ageing. Longevity-promoting interventions activate the lipase 
ATGL-1, regulated by HLH-30/TFEB, linking lipid metabolism to pathways that promote cellular longevity. These changes in nLDs could 
impact key nuclear processes, including gene expression and DNA repair, thereby contributing to cellular ageing. Created in BioRender 
(Palikaras, K., 2024, https://BioRender.com/t49f941). 
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