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ABSTRACT 
 

Epigenetic clocks can serve as pivotal biomarkers linking environmental exposures with biological aging. 
However, research on the influence of environmental exposures on epigenetic aging has largely been limited to 
a small number of chemicals and specific populations. We harnessed data from the National Health and 
Nutrition Examination Survey 1999-2000 and 2001-2002 cycles to examine exposome-wide associations 
between environmental exposures and epigenetic aging. A total of 8 epigenetic aging biomarkers were 
obtained from whole blood in 2,346 participants ranging from 50-84 years of age. A total of 64 environmental 
exposures including phthalates, metals, pesticides, dioxins, and polychlorinated biphenyls (PCBs) were 
measured in blood and urine. Associations between log2-transformed/standardized exposure measures and 
epigenetic age acceleration (EAA) were assessed using survey-weighted generalized linear regression. A 1 
standard deviation (SD) increase in log2 serum cadmium levels was associated with higher GrimAge acceleration 
(beta = 1.23 years, p = 3.63e-06), higher GrimAge2 acceleration (beta = 1.27 years, p = 1.62e-05), and higher 
DunedinPoAm (beta = 0.02, p = 2.34e-05). A 1 SD increase in log2 serum cotinine levels was associated with 
higher GrimAge2 acceleration (beta = 1.40 years, p = 6.53e-04) and higher DunedinPoAm (beta = 0.03, p = 
6.31e-04). Associations between cadmium and EAA across several clocks persisted in sensitivity models 
adjusted for serum cotinine levels, and other associations involving lead, dioxins, and PCBs were identified. 
Several environmental exposures are associated with epigenetic aging in a nationally representative US adult 
population, with particularly strong associations related to cadmium and cotinine across several epigenetic 
clocks. 
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INTRODUCTION 
 

Epigenetics is the study of modifications that influence 

gene expression without changes to the underlying 

DNA sequence. Epigenetic biomarkers, including 

DNA methylation (DNAm), can provide insights to 

pathways linking environmental exposures to health 

outcomes [1]. In addition to imparting information 

about the regulation of gene expression, DNAm 

changes consistently with age and DNAm data can 

impart meaningful information on the role of various 

factors in shaping the biological aging process through 

the use of epigenetic aging biomarkers, also referred  

to as epigenetic clocks. Epigenetic clocks include 

several predictors of chronological age, health-related 

biomarkers, and mortality based on observed DNA 

methylation levels of specific CpG sites throughout the 

genome [2]. First generation epigenetic clocks were 

trained to predict chronological age and include the 

Horvath panTissue, Skin&Blood, and Hannum clocks 

[3–5]. In contrast, second and third epigenetic clocks 

were designed to predict different aspects of the 

biological aging process, such as mortality, frailty, 

telomere length, and the pace of aging, and include 

GrimAge (version 1 and version 2), PhenoAge, 

DNAmTL, and DunedinPoAm [6–10]. Deviations 

between an individual’s chronological age and the 

predictions from a given epigenetic clock, commonly 

referred to as epigenetic age acceleration (EAA),  

have been associated with numerous health factors 

including longevity, cardiovascular disease, and cancer 

[11]. Epigenetic clocks may reflect the impact of 

environmental exposures on age-related pathways, and 

research has revealed associations between several 

environmental exposures, including air pollution  

and per- and polyfluoroalkyl substances, and altered 

epigenetic aging [12].  

 

Most research on the environmental determinants of 

epigenetic aging has focused on hypothesis-driven 

research on well-studied chemicals. Although this 

approach has provided key insights into the role 

environmental chemicals have in shaping biological 

aging processes, this approach may impede the discovery 

of novel associations. An exposome-wide association 

study (ExWAS) design provides a framework for the 

systematic examination of associations between a 

collection of environmental exposures and a phenotype 

of interest, enabling the discovery of novel associations 

[13]. However, ExWAS designs have been sparingly 

applied in epigenetic aging research. One previous 

ExWAS performed in a sample of 1,173 seven-year-old 

children from the HELIX project cohort demonstrated 

the utility of this approach, where in addition to finding 

expected associations, such as between maternal smoking 

and EAA, also uncovered several novel associations 

related to particulate matter, pesticides, and 

polychlorinated biphenyls (PCBs) [14]. Relatedly,  

this ExWAS approach has been used to identify  

several associations between environmental exposures 

including cadmium and PCBs with telomere length, 

another biomarker of biological aging, within the 

National Health and Nutrition Examination Survey 

(NHANES) [15].  

 

Leveraging the success of previous studies, we sought 

to perform an ExWAS to measure cross-sectional 

associations between environmental chemical exposures 

and EAA among adult NHANES participants during  

the 1999-2000 and 2001-2002 survey cycles. NHANES 

is a program designed to assess the health status of a 

nationally representative sample of adults and children 

in the United States (US) [16]. NHANES provides a 

valuable resource with cross-sectional demographic, 

questionnaire, and high-quality laboratory measures in a 

large number of US participants, including a vast array 

of environmental exposures making this an optimal 

cohort to validate previously identified associations and 

discover novel associations with epigenetic clocks.  

 

RESULTS 
 

Study sample characteristics 

 

The overall distribution of relevant demographic 

variables in the NHANES study sample, prior to the 

application of sample weights, are presented in Table  

1. NHANES participants ranged from 50 to 84 years  

of age, with a mean age of 65.1 years. There was  

a relatively even distribution of males (51.2%) and 

females (48.8%) in the study sample. The unweighted 

sample was predominantly Non-Hispanic White (39.3%), 

with the remaining population makeup being 29.0% 

Mexican American, 21.8% Non-Hispanic Black, 6.4% 

Other Hispanic, and 3.5% other/multi-racial. White-

collar (high skill) was the most common occupation 

category (41.7%), followed by blue-collar (semi-

routine) (23.5%), white collar (semi-routine) (17.9%), 

blue collar (high skill) (14.1%), and never worked 

(2.7%).  

 

Each of the epigenetic clocks, except for DunedinPoAm 

and DNAmTL, exhibited a strong positive correlation 

with chronological age, ranging from r = 0.76 for 

PhenoAge to r = 0.87 for Skin&Blood. (Figure 1) 

Median absolute error between epigenetic age and 

chronological age ranged from 2.71 years with 

Skin&Blood to 10.34 years with PhenoAge. Modestly 

lower correlation and higher MAE with chronological 

age in the NHANES sample may be explained by 

missing probes for some clocks on the EPICv1 array  

or the diversity of the NHANES population. The 
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Table 1. Sample demographics of adults from NHANES 1999-2000 
and 2001-2002 with available DNA methylation data. 

Demographic Variable Overall 

N 2,346 

Age (Years) 65.10 (9.29) 

BMI (kg/m2) 28.80 (5.83) 

Sex  
Male 1,202 (51.2%) 

Female 1,144 (48.8%) 

Race/Ethnicity Category  
Mexican American 681 (29.0%) 

Other Hispanic 151 ( 6.4%) 

Non-Hispanic White 922 (39.3%) 

Non-Hispanic Black 511 (21.8%) 

Other Race - Including Multi-Racial 81 ( 3.5%) 

Poverty to Income Ratio 2.61 (1.60) 

Education  
High School Diploma (including GED) 487 (20.8%) 

Less Than High School 1,063 (45.3%) 

More Than High School 794 (33.9%) 

Occupation  
Blue-collar (high skill) 312 (14.1%) 

Blue-collar (semi-routine) 520 (23.5%) 

White-collar (high skill) 921 (41.7%) 

White-collar (semi-routine) 396 (17.9%) 

Never worked 60 ( 2.7%) 

Smoking Category  
Current 374 (16.0%) 

Former 903 (38.6%) 

Never 1,063 (45.4%) 

Mean (SD) presented for continuous variables and counts (%) given for 
categorical variables. Unweighted sample sizes and distributions are 
presented. 

 

DNAm-based predictor of telomere length DNAmTL 

exhibited a negative correlation of r = -0.58  

with chronological age, indicating the shortening of 

telomere length with increasing age as expected, and 

DunedinPoAm was uncorrelated with chronological  

age (r = 0.04). Most EAA measures were moderately 

correlated with each other, with the highest observed 

correlation between GrimAge acceleration and 

GrimAge2 acceleration (r = 0.97), and the lowest 

magnitude correlation between DunedinPoAm and 

Skin&Blood acceleration (r = 0.09) (Supplementary 

Figure 1). As expected, DNAmTL acceleration was 

negatively correlated with each of the EAA measures.  
 

Our systematic analysis included lead, cadmium, & 

cotinine measured in blood, 24 dioxins, furans, & 

coplanar PCBs measured in serum, 9 metals  

measured in urine, 6 pesticides measured in urine, 11 

phthalates, phytoestrogens, & polyaromatic hydrocarbons 

(PAHs) measured in urine, and 11 volatile organic 

compounds (VOCs) measured in blood. A visualization 

of the Pearson correlation coefficients between all 

environmental exposures is presented in Supplementary 

Figure 2. Positive correlations were observed between 

several of the measured PCBs; however, we note  

that incomplete overlap in participants selected for  

each environmental exposure limits the ability to 

systematically evaluate correlation among all of the 

surveyed exposures. Sample sizes for complete case 
analysis for each exposure ranged from 1,893 with 

blood lead and cadmium exposure to 96 with methyl  

t-butyl ether exposure, with the median sample size 
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being 577.5. Sample sizes for all exposures, detection 

frequencies, and survey-weighted exposure distributions 

are summarized in Supplementary Table 1. We note that 

sample sizes of VOCs were too low to allow for the 

fitting of most models examined here, except for the 

covariate-imputed non-cell adjusted models, but we 

include VOCs in the number of exposures for the 

multiple testing p-value adjustment for each model 

series to maintain stringent control for the number of 

models selected a priori. 

Primary analysis 

 

In the primary models without cell-type adjustment, 

strong associations of serum cadmium and serum 

cotinine levels with EAA measures were observed for 

several epigenetic clocks (Table 2). A 1-SD increase in 

log2 cadmium exposure was associated with higher 

GrimAge acceleration (beta = 1.23 years, p = 3.63e-06), 

higher GrimAge2 acceleration (beta = 1.27 years, p = 

1.62e-05), and higher DunedinPoAm (beta = 0.02, 

 

 
 

Figure 1. Fit between each epigenetic clock predictions and chronological age. Pearson correlation (Corr.) and median absolute 

error (MAE) presented for each clock which has years for units. 1-to-1 line shown in black for main clocks. 
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Table 2. Primary model summary table. 

Exposure Clock Estimate 95% CI 
P-Value 

(Raw) 

Adj. P-Value 

(Bonferroni) 

No cell-adjustment     

Cadmium  GrimAge 1.23 ( 0.91, 1.55) 3.63E-06 2.32E-04 

Cadmium  GrimAge2 1.27 ( 0.88, 1.65) 1.62E-05 1.04E-03 

Cadmium  DunedinPoAm 0.02 ( 0.01, 0.03) 2.34E-05 1.50E-03 

Cotinine  DunedinPoAm 0.03 ( 0.01, 0.04) 6.31E-04 0.04 

Cotinine  GrimAge2 1.40 ( 0.74, 2.05) 6.53E-04 0.04 
      

Cell-Adjusted      

Cadmium  GrimAge 1.13 ( 0.80, 1.46) 3.12E-04 0.02 

Cadmium  GrimAge2 1.12 ( 0.75, 1.50) 6.13E-04 0.04 

Effect estimates, 95% Confidence Intervals (CI), raw p-values, and Bonferroni-adjusted p-values for each exposure found to 
be significant after multiple testing adjustment from the no cell-adjustment and cell-adjusted models. 

 

p = 2.34e-05). A 1-SD increase in log2 cotinine 

exposure was associated with higher GrimAge2 

acceleration (beta = 1.40 years, p = 6.53e-04) and 

higher DunedinPoAm (beta = 0.03, p = 6.31e-04). 

These associations were attenuated after adjusting for 

estimated cell proportions, with only the association 

between cadmium exposure and GrimAge (beta = 

1.13 years, p = 3.12e-04) and between cadmium  

and GrimAge2 (beta = 1.12 years, p = 6.13e-04) 

remaining significant after multiple testing adjustment. 

Volcano plots visualizing the effect estimates and 

unadjusted p-values for all exposures from the 

GrimAge models are shown in Figure 2, with the 

volcano plots for the remaining clocks displayed in 

Supplementary Figure 3.  

 

Given that tobacco is a major source of cadmium 

exposure, we further explored the role of smoking status 

by examining associations between blood cadmium 

exposure and epigenetic clocks stratified by smoking 

status for all observations found to be significant in the 

no cell-adjustment models. Cadmium exposure was 

strongly associated with higher GrimAge acceleration 

among former smokers (beta = 2.00 years, p = 2.77e-06) 

and current smokers (beta = 1.28 years, p = 1.55e-03), 

while the association among never smokers (beta =  

0.07 years, p = 0.75) was positive but nonsignificant. 

Similarly, the association between cadmium exposure 

and GrimAge2 acceleration was only significant among 

former smokers (beta = 1.95 years, p = 3.11e-05)  

and current smokers (beta = 1.32 years, p = 3.27e-03). 

The association between cadmium exposure and 
DunedinPoAm was only significant among former 

smokers (beta = 0.03, p = 6.49e-05), while the 

associations among current smokers (beta = 0.01 years, 

p = 0.13) and never smokers (beta = 0.01, p = 0.20) 

were positive but nonsignificant.  

 

Sensitivity analyses  

 

To better determine the extent to which associations 

might be driven by current smoking activity, we 

performed a sensitivity analysis rerunning the primary 

models while adjusting for serum cotinine levels in 

place of self-reported smoking behavior. Cadmium 

exposure retained its associations with higher GrimAge 

acceleration (beta = 1.94 years, p = 1.69e-07), higher 

GrimAge2 acceleration (beta = 1.97 years, p = 6.80e-

07), higher DunedinPoAm (beta = 0.03, p = 8.13e-07), 

and exhibited an association with shorter DNAmTL 

(beta = -0.04, p = 4.35e-04) in the non-cell-adjusted 

models (Table 3).  

 

Additionally, several other associations emerged when 

adjusting for cotinine levels as a proxy for current 

smoking activity. A 1-SD increase in log2 lead exposure 

was associated with higher GrimAge acceleration (beta 

= 0.73 years, p = 8.80e-05) and higher GrimAge2 

acceleration (beta = 0.67 years, p = 3.90e-04). A  

1-SD increase in log2 urinary cadmium exposure  

was associated with higher GrimAge acceleration  

(beta = 2.14 years, p = 8.34e-06), higher GrimAge2 

acceleration (beta = 2.32 years, p = 2.64e-05), and 

higher DunedinPoAm (beta = 0.03, p = 2.35e-04). 1-SD 

increase in log2 1,2,3,4,6,7,8-Heptachlororodibenzo-p-

dioxin (HpCDD) exposure was associated with lower 

GrimAge acceleration (beta = -1.21 years, p = 2.01e-04) 
and lower GrimAge2 acceleration (beta = -1.18 years,  

p = 6.07e-04). 1-SD increase in log2 PCB118 exposure 

was associated with lower GrimAge acceleration  
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(beta = -1.06 years, p = 5.22e-04) and lower GrimAge2 

acceleration (beta = -1.14 years, p = 7.50e-04).  

Only the associations between serum cadmium and 

GrimAge, GrimAge2, and DunedinPoAm, as well as the 

associations between urinary cadmium and GrimAge 

and GrimAge2, remained significant after cell-type 

adjustment. Volcano plots visualizing the effect estimates 

and raw p-values for all exposures from the GrimAge 

models are shown in Figure 3, with volcano plots  

for the remaining clocks displayed in Supplementary 

Figure 4.  

 

Furthermore, we performed a sensitivity analysis by 

rerunning the primary analysis after imputation of 

missing covariates. The observed associations closely 

resembled results from the primary analysis, with 

consistent positive associations between blood cadmium 

exposure and GrimAge, GrimAge2, and DunedinPoAm, 

as well as positive associations of urinary cadmium  

with GrimAge and GrimAge2 in the non-cell-adjusted 

models (Supplementary Table 4). No associations 

remained significant after multiple testing adjustment  

in the covariate-imputed cell-adjusted models. Volcano 

plots visualizing the effect estimates and raw p-values for 

all exposures are displayed in Supplementary Figure 5. 
 

DISCUSSION 
 

We performed a systematic exposome-wide association 

study to examine associations between 64 environmental 

chemical exposures and epigenetic age acceleration in  

a representative sample of US adults from NHANES. 

Environmental chemical exposures represent a key 

modifiable risk factor impacting human health and 

longevity, and our findings provide evidence for 

associations between several environmental exposures 

and epigenetic aging in a large sample representative  

of the US adult population. Our findings suggest  

that cadmium is among the strongest environmental 

chemicals influencing EAA in the general US population, 

with additional identified associations involving cotinine, 

lead, PCBs, and dioxins.  

 

 
 

Figure 2. Volcano plots displaying the expected change in GrimAge acceleration for a 1 SD increase in log2-transformed 
exposure on the X-axis, and -log10 p-values on the Y-axis from the primary models. Color corresponds to the broad category of 

exposure. Volcano plots for remaining epigenetic clocks are presented in Supplementary Figure 3.  
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Table 3. Sensitivity model summary table. 

Exposure Clock Estimate 95% CI 
P-Value  

(Raw) 

Adj. P-Value  

(Bonferroni) 

No Cell-Adjustment      

Cadmium  GrimAge 1.94 ( 1.54, 2.33) 1.69E-07 1.07E-05 

Cadmium  GrimAge2 1.97 ( 1.52, 2.43) 6.80E-07 4.28E-05 

Cadmium  DunedinPoAm 0.03 ( 0.02, 0.04) 8.13E-07 5.12E-05 

Cadmium, urine  GrimAge 2.14 ( 1.54, 2.75) 8.34E-06 5.26E-04 

Cadmium, urine  GrimAge2 2.32 ( 1.58, 3.07) 2.64E-05 1.66E-03 

Lead  GrimAge 0.73 ( 0.46, 1.01) 8.80E-05 5.54E-03 

HpCDD  GrimAge -1.21 (-1.70, -0.71) 2.01E-04 0.01 

Cadmium, urine  DunedinPoAm 0.03 ( 0.02, 0.04) 2.35E-04 0.01 

Lead  GrimAge2 0.67 ( 0.37, 0.98) 3.90E-04 0.02 

Cadmium  DNAmTL -0.04 (-0.05, -0.02) 4.35E-04 0.03 

PCB118  GrimAge -1.06 (-1.55, -0.57) 5.22E-04 0.03 

HpCDD  GrimAge2 -1.18 (-1.74, -0.62) 6.07E-04 0.04 

PCB118  GrimAge2 -1.14 (-1.69, -0.58) 7.50E-04 0.05 
      

Cell-Adjusted      

Cadmium  GrimAge 1.86 ( 1.45, 2.27) 3.25E-05 2.05E-03 

Cadmium  GrimAge2 1.88 ( 1.41, 2.34) 6.38E-05 4.02E-03 

Cadmium  DunedinPoAm 0.03 ( 0.02, 0.03) 9.07E-05 5.71E-03 

Cadmium, urine  GrimAge 2.22 ( 1.52, 2.92) 4.43E-04 0.03 

Cadmium, urine  GrimAge2 2.38 ( 1.53, 3.22) 7.90E-04 0.05 

Effect estimates, 95% Confidence Intervals (CI), and unadjusted p-values for each exposure found to be significant after 
multiple testing adjustment from the no cell-adjustment and cell-adjusted sensitivity models considering serum cotinine 
levels. Abbreviations: HpCDD: 1,2,3,4,6,7,8-Heptachlororodibenzo-p-dioxin. 
 

We found evidence for EAA in response to exposure  

to several metals in the NHANES population,  

including lead and cadmium. Lead exposure has been  

previously found to be associated with higher GrimAge 

acceleration in a sample of 290 adults from the Detroit 

Neighborhood Health Study [17]. We additionally  

saw consistent strong associations between blood 

cadmium levels and EAA across several epigenetic 

clocks. Urinary cadmium levels also exhibited similar 

magnitude associations, albeit with wider confidence 

intervals likely related to the smaller available sample 

sizes for urinary metal measurements. Cadmium has 

been previously found to be associated with higher 

EAA across several clocks including GrimAge and 

DunedinPACE in 2,301 participants from the Strong 

Heart Study [18]. Tobacco smoke is a major source  

of cadmium exposure in the general population, [19] 

and smoking has been found to be strongly associated 

with both altered DNA methylation [20] and epigenetic 

aging [21]. This is further supported by our findings of 

associations between cotinine measurements, a primary 
metabolite of nicotine and biomarker of tobacco smoke 

exposure, and increased EAA across several clocks.  

It is important to note that predicted smoking activity  

is a direct component of the GrimAge and GrimAge2 

predictions, however cotinine was additionally found  

to be associated with higher DunedinPoAm as well. 

Our findings of EAA in response to cadmium exposure 

in primary models adjusted for self-reported smoking 

activity, in sensitivity models adjusted for cotinine 

levels, and in smoking status-stratified models suggest 

that cigarette smoke exposure is not entirely driving 

associations between cadmium exposure and EAA. 

Beyond tobacco smoke, diet is a major source of 

cadmium exposure in the US, providing a pivotal 

intervention point [22]. Taken together, these findings 

suggest that cadmium exposure and cotinine levels may 

be some of the strongest modifiable environmental 

influences on EAA in the general US population.  

 

We observed negative associations of PCB118 and 

1,2,3,4,6,7,8-Heptachlororodibenzo-p-dioxin (HpCDD) 

exposure with GrimAge/GrimAge2 acceleration in  

the cotinine-adjusted sensitivity models. PCB118 is a 

polychlorinated biphenyl and persistent organic pollutant 
that has been found to be associated with inflammation 

and hypertension [23, 24]. Interestingly, a suggestive 

negative association between a related PCB, PCB138, 
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and EAA in children has been previously reported, 

although this association was found to be attenuated after 

adjusting for BMI [14]. HpCDD is a Polychlorinated 

Dibenzo-p-Dioxin, a subclass of dioxins, suggested  

to act through Aryl Hydrocarbon Receptor (AhR) 

induction [25]. Little research has examined potential 

associations between dioxins and epigenetic aging, 

however, a previous study found positive associations 

between serum dioxin exposure and sperm epigenetic 

age among veterans exposed to Agent Orange [26]. 

Although negative EAA is often considered beneficial or 

protective, previous research has uncovered seemingly 

paradoxical relationships of negative EAA among 

individuals at high risk for colorectal cancer [27]. 

Interestingly, exposure to persistent organic pollutants, 

including PCB118 and HpCDD, has been found to be 

associated with longer telomere length among adult 

participants in the 2001-2002 NHANES sample, with 

AhR-mediated telomerase activation suggested as a 

possible mechanistic explanation [28]. Further research 

is needed to elucidate the epigenetic mechanisms 

underlying these observed associations.  

 

We used a stringent multiple testing adjustment to judge 

statistical significance in our analysis; however, we 

additionally observed several associations with unadjusted 

p-value < 0.05 that we highlight in supplemental tables  

to help inform future research on environmental 

exposures and epigenetic aging. Among these suggestive 

associations, Mono-benzyl phthalate (MBzP) was 

associated with higher Hannum and Skin&Blood age 

acceleration. Phthalate exposure has been found to be 

associated with altered EAA in wide range of contexts 

including in a healthy elderly population, [29] within 

sperm tissue, [30] and in newborns and children [31,  

32]. Other suggestive associations included associations 

between equol, an isoflavandiol phytoestrogen, and lower 

GrimAge/GrimAge2 acceleration. Equol is a metabolite 

of the soy isoflavone daidzein that is produced by gut 

bacteria in portions of the population [33]. Interestingly, 

 

 
 

Figure 3. Volcano plots displaying the expected change in GrimAge acceleration for a 1 SD increase in log2-transformed 
exposure on the X-axis, and -log10 p-values on the Y-axis from the sensitivity models adjusting for cotinine exposure. Color 
corresponds to the broad category of exposure. Volcano plots for remaining epigenetic clocks are presented in Supplementary 
Figure 4.  
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o-Desmethylangolensin (O-DMA), another metabolite 

of daidzein, was suggestively associated with lower 

DunedinPoAm and lower GrimAge2 acceleration in  

the study population as well. Previous research has 

highlighted associations between individual dietary 

patterns and epigenetic aging [34]. Future research 

could seek to clarify whether the decreased EAA in 

relation to equol and O-DMA exposure observed here  

is directly related to these compounds, or whether these 

exposures are indicative of dietary patterns that are 

driving the associations with EAA.  

 

Our findings are subject to some limitations. Firstly, 

our analysis was limited to 64 environmental 

exposures, a small fraction of the true exposome. 

However, this work substantially expands on previous 

research with the characterization of associations 

between several environmental exposures that have not 

yet been examined in epigenetic aging research. 

Second, we were only able to examine cross-sectional 

associations between environmental exposures and 

EAA in a population of US adults aged 50 years and 

older. Future research can work to expand on our 

findings by examining younger populations and early 

life exposures to identify key periods of susceptibility, 

using longitudinal samples to examine long term 

impacts of environmental exposures on EAA, and 

extending this work to other regions around the world 

to determine the consistency of the environmental 

determinants of epigenetic aging globally. Relatedly, 

our study utilized participants from the 1999-2000  

and 2001-2002 NHANES survey cycles, which might 

not necessarily reflect current exposure patterns or 

population demographics. Therefore, further research 

on how the environmental determinants of epigenetic 

aging may have changed over time is warranted. Third, 

although we controlled for key confounders including 

several socioeconomic and health-related variables, 

there is still potential for residual confounding by 

factors including dietary patterns and geographical 

location within the US. Future research can make use 

of the extensive collection of survey- and laboratory-

derived measures available for the NHANES population 

to investigate the contribution of various other factors 

in shaping epigenetic aging. Fourth, our analysis only 

considered EAA measured in blood, inhibiting our 

ability identify potential tissue-specific associations. 

Finally, the available sample size varied widely 

between different exposures. While most analyses were 

adequately powered, this small sample limitation was 

especially apparent in the analyses of volatile organic 

compound exposure for which complete case sample 

sizes ranged from 96 to 120. The strongest associations 
were also observed with serum cadmium and cotinine, 

which also featured the largest sample sizes ranging 

from 1,856 to 1,893 in the current study sample.  

Our work also features some key strengths. By 

harnessing NHANES data, we were able to conduct  

an extensive examination of associations between 

environmental exposures and EAA in a sample that  

is representative of the US adults ≥50 years. 

Furthermore, we focused our analysis on exposures 

measured in biological mediums, providing direct and 

personal measures of exposure for each chemical. 

Finally, NHANES features an extensive array of 

publicly available questionnaire and laboratory data 

within the same study population, allowing researchers 

to systematically examine the determinants and 

consequences of epigenetic aging in a large US 

population.  

 

Environmental chemical exposures are a key 

modifiable risk factor and target for interventions 

seeking to improve human health and longevity. Our 

study systematically examined associations between  

64 common environmental chemical exposures and 

epigenetic age acceleration among a representative 

sample of U.S. adults from NHANES, providing a 

significant advancement in our understanding of the 

contributions of environmental chemical exposures 

towards biological aging in the general population. Our 

findings both reinforce previous findings related to 

cadmium and cotinine exposure, while also revealing 

novel associations related to exposures including 

dioxins and PCBs. 

 

MATERIALS AND METHODS 
 

Study population 
 

Our analysis harnessed data from the 1999-2000 and 

2001-2002 cycles of NHANES. NHANES is a biannual 

program organized by the National Center for Health 

Statistics (NCHS) to collect data from a sample which 

is representative of the non-institutionalized US 

population [16]. NHANES datasets consist of a wide 

range of measures including demographics, physical 

examination data, and laboratory measurements. This 

specific subsample included 2,532 adult participants 

aged ≥ 50 years surveyed in 1999-2000 or 2001-2002 

that had blood samples available for DNA methylation 

analysis. For protection of participant privacy, all 

NHANES participants aged 85 and above in these 

cycles were top-coded as 85 years of age. Due to 

inability to determine true age in participants labelled  

as 85 years of age and the potential for subsequent 

systematic bias in the calculation of EAA, all 

participants ≥ 85 years of age (N = 130) were removed. 

Additionally, N = 56 participants whose DNAm-derived 
predicted sex did not match their reported sex were 

removed, leaving N = 2,346 participants available for 

analysis. All NHANES participants provided written 
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informed consent and study protocols were approved by 

the NCHS Research Ethics Review Board.  

 

Environmental exposures 

 

Laboratory measurement datasets from both waves were 

acquired from the NHANES website, including 1) 

Phthalates, Phytoestrogens & Polycyclic aromatic 

hydrocarbons (PAHs) - Urine, 2) Pesticides - Current 

Use - Urine, 3) Metals - Urine, 4) Dioxins, Furans, & 

Coplanar PCBs, 5) Cadmium, Lead, Mercury, Cotinine 

& Nutritional Biochemistries, and 6) Volatile Organic 

Compounds (VOCs) - Blood & Water. We did not 

consider environmental exposures measured in only  

one of the two waves, measured in pooled samples,  

or measured in non-biological mediums (e.g. dust  

and water). For Dioxins, Furans, and Coplanar PCBs, 

we focused analysis only on lipid-adjusted measures. 

We excluded nutrition-related compounds from the 

Cadmium, Lead, Mercury, Cotinine & Nutritional 

Biochemistries dataset, as well as mercury measures 

which were only characterized in small subsets of  

the population. We further excluded all measures with 

detection frequencies below 50% in the study population, 

calculated using the accompanying compound detection 

codes or compiled data accessed from Kaggle [35].  

This left a total of 64 exposures, of the possible 111 

exposures after inclusion criteria were met, available for 

analysis. All exposure measures were log2 transformed 

to normalize exposure distributions, then centered and 

scaled to aid in interpretation of model coefficients. 

Sample sizes for complete case analysis, detection 

frequencies, and the survey-weighted 0th, 25th, 50th, 75th, 

and 100th percentiles of each exposure measure are 

presented in Supplementary Table 1. Pearson correlation 

coefficients between all log2-transformed exposure 

measures are presented in Supplementary Figure 2, 

however, we note that not all exposures were measured 

in overlapping subsets of the overall population.  

 

DNA methylation 

 

Epigenetic age estimates and DNAm-derived cell 

proportion estimates were downloaded from the 

NHANES website, and detailed methodology for DNA 

methylation analysis and processing is provided on the 

NHANES website [36]. Briefly, DNA was extracted 

from whole blood from a selection of NHANES adult 

participants aged ≥ 50 years surveyed in 1999-2000 or 

2001-2002. DNA methylation was measured with the 

Illumina EPIC BeadChip array. We focused analysis 

on the Horvath panTissue, Hannum, Skin&Blood, 

PhenoAge, GrimAge, GrimAge2, DunedinPoAm, and 
DNAmTL clocks [3–10]. Corresponding EAA measures 

were calculated for each of the epigenetic clocks, 

except for DunedinPoAm, by extracting the residuals 

from a regression of chronological age in years on 

epigenetic age. DunedinPoAm was left untransformed 

for analyses. Pearson correlation coefficients and 

median absolute error (MAE) were used to assess the 

fit between each epigenetic clock whose units are 

expressed in years and chronological age. Pearson 

correlation coefficients were also used to assess the 

correlation between each EAA measure, as well as  

the DunedinPoAm measure (Supplementary Figure  

1). 

 

Statistical analysis 

 

Potential confounders and precision variables were 

identified a priori and included chronological age in 

years (continuous), chronological age squared, sex 

(male vs. female), self-identified race/ethnicity (Non-

Hispanic White, Mexican American, Other Hispanic, 

Non-Hispanic Black, Other Race - Including Multi-

Racial), body mass index (BMI) (continuous), poverty 

to income ratio (PIR), smoking status (Never, Former, 

Current), education (less than high school, high school 

diploma or GED, greater than high school education), 

and occupation category. Never smoking status was 

defined as not having smoked at least 100 cigarettes in 

life, former smoking was defined as having smoked at 

least 100 cigarettes in life but reporting not currently 

smoking cigarettes, and current smoking was defined  

as having smoked at least 100 cigarettes in life  

and reporting currently smoking every day or some 

days. Occupation was categorized into five groups 

corresponding to white-collar and professional work, 

white-collar and semi-routine work, blue-collar and 

high-skill work, blue-collar and semi-routine work,  

or no work as previously described [37]. Urinary 

creatinine was additionally included as a covariate for 

all exposures measured in urine. To investigate the 

potential role of cell proportions, we additionally ran 

models adjusted for the same covariate set plus DNAm-

derived cell proportion estimates (CD8, CD4, Nkcells, 

Bcell, Monocytes, and Neutrophils) [38–40]. Survey-

design weighted generalized linear regression models 

were conducted using the R Survey package to account 

for participant sample weights and the NHANES survey 

design, using the weights provided with the epigenetic 

clock dataset [41]. Associations between each log2-

transformed, centered, and scaled exposure measure and 

each EAA measure were assessed using the svyglm  

R function with the covariate sets defined above. 

Default analyses were all conducted using complete 

case analysis. Specifically, 84 participants were missing 

BMI, 267 were missing poverty to income ratio, 2  

were missing education category, 137 were missing 
occupation category, and 6 were missing smoking 

activity, leaving an effective max sample size of N = 

1,895 for analysis.  
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Serum cotinine, the primary metabolite of nicotine,  

was included as an environmental exposure in the 

primary analysis. To better determine the extent  

to which associations might be driven by current 

smoking activity, we performed a sensitivity analysis  

by rerunning the primary models while adjusting  

for serum cotinine levels in place of self-reported 

smoking activity. We then performed an additional 

sensitivity analysis imputing missing covariates using 

multiple imputation by chained equations with the 

MICE function with a setting of 5 iterations, repeating 

the primary analyses described above, and pooling 

estimates from each imputed dataset using the pool 

function in R [42]. Associations were considered 

significant if they exhibited a Bonferroni-adjusted  

p-value<0.05, with the number of independent tests set 

to the number of exposures (64 for the main analyses or 

63 for the cotinine sensitivity analyses). All analyses 

were performed in R version 4.2.3. All data used for 

this analysis is publicly available from the NHANES 

website (https://www.cdc.gov/nchs/nhanes/index.htm). 

All code necessary to reproduce this analysis is 

available on GitHub (https://github.com/D-Khodasevich/ 

NHANES_ExWAS). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Pearson correlation coefficients between epigenetic age acceleration measures from each 
epigenetic clock for the study sample (N = 2,346).  
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Supplementary Figure 2. Pearson correlation coefficients between each log2-transformed environmental exposure. Black 

points represent exposure comparisons with 0 overlapping study subjects.  
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Supplementary Figure 3. Volcano plots displaying the expected change in epigenetic acceleration for a 1 SD increase in log2-
transformed exposure on the X-axis, and -log10 p-values on the Y-axis from the primary models. Color corresponds to the broad 

category of exposure. Volcano plots for GrimAge are presented in the main text.  
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Supplementary Figure 4. Volcano plots displaying the expected change in epigenetic acceleration for a 1 SD increase in log2-
transformed exposure on the X-axis, and -log10 p-values on the Y-axis from the sensitivity models adjusting for cotinine 
exposure. Color corresponds to the broad category of exposure. Volcano plots for GrimAge are presented in the main text.  

427



www.aging-us.com 21 AGING 428



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 5. Volcano plots displaying the expected change in epigenetic acceleration for a 1 SD increase in log2-
transformed exposure on the X-axis, and -log10 p-values on the Y-axis from the sensitivity models considering imputation of 
missing covariates. Color corresponds to the broad category of exposure. 

   

429



www.aging-us.com 23 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 4. 

 

Supplemental Table 1. Summary of environmental exposures. Sample size from the complete case analysis, 
percent above limit of detection, and survey-weighted percentiles of exposure.  

 

Supplemental Table 2. Extended Primary Model Summary Table. Effect estimates, 95% Confidence Intervals 
(CI), raw p-values, and Bonferroni-adjusted p-values for each exposure exhibiting a raw p-value < 0.05 from the 
no cell-adjustment and cell-adjusted models. 

 

Supplemental Table 3. Extended Cotinine Sensitivity Model Summary Table. Effect estimates, 95% Confidence 
Intervals (CI), raw p-values, and Bonferroni-adjusted p-values for each exposure exhibiting a raw p-value < 0.05 
from the no cell-adjustment and cell-adjusted models. 

 

Supplemental Table 4. Extended Covariate Imputation Sensitivity Model Summary Table. Effect estimates, 95% 
Confidence Intervals (CI), raw p-values, and Bonferroni-adjusted p-values for each exposure exhibiting a raw p-
value < 0.05 from the no cell-adjustment and cell-adjusted models. 
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