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ABSTRACT 
 

Cardiac aging involves progressive structural, functional, cellular, and molecular changes that impair heart 
function. This review explores key mechanisms, including oxidative stress, mitochondrial dysfunction, impaired 
autophagy, and chronic low-grade inflammation. Excess reactive oxygen species (ROS) damage heart muscle 
cells, contributing to fibrosis and cellular aging. Mitochondrial dysfunction reduces energy production and 
increases oxidative stress, accelerating cardiac decline. Impaired autophagy limits the removal of damaged 
proteins and organelles, while inflammation activates signaling molecules that drive tissue remodeling. Gender 
differences reveal estrogen’s protective role in premenopausal women, with men showing greater 
susceptibility to heart muscle dysfunction and injury. After menopause, women lose this hormonal protection, 
increasing their risk of cardiovascular conditions. Ethnic disparities, particularly among underserved minority 
populations, emphasize how social factors such as access to care, environment, and chronic stress contribute to 
worsening cardiovascular outcomes. The coronavirus disease pandemic has introduced further challenges by 
increasing the incidence of heart damage through inflammation, blood clots, and long-term heart failure, 
especially in older adults with existing metabolic conditions like diabetes and high blood pressure. The virus’s 
interaction with receptors on heart and blood vessel cells, along with a weakened immune response in older 
adults, intensifies cardiac aging. Emerging therapies include delivery of therapeutic extracellular vesicles, 
immune cell modulation, and treatments targeting mitochondria. In addition, lifestyle strategies such as regular 
physical activity, nutritional improvements, and stress reduction remain vital to maintaining cardiac health. 
Understanding how these biological and social factors intersect is critical to developing targeted strategies that 
promote healthy aging of the heart. 
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INTRODUCTION 
 

Cardiac aging is a complex physiological pheno-

menon that has garnered significant attention due to 

its implications for cardiovascular health, overall 

health, and longevity. The heart, central to  

the circulatory system, undergoes intricate structural 

and functional changes over time, influenced by a 

myriad of genetic, environmental, and physiological 

factors [1]. 

 

The structure and function of the heart are inextricably 

linked. In youth, the heart is characterized by its 

efficiency, adaptability, and resilience. However,  

as age progresses, there is a notable transition  

toward myocardial hypertrophy, fibrosis, and valvular 

degeneration, leading to reduced cardiac output and 

diastolic dysfunction [2]. This evolution of structure 

and function through a variety of biochemical and 

cellular processes underscores the heart’s vulnerability 

to age-related diseases and conditions. Gender plays  

a pivotal role in cardiac aging. Women, shielded by 

the benefits of estrogen, often experience a delayed 

onset of cardiac aging. However, in post-menopause, 

this protective effect diminishes, emphasizing the 

hormonal influence on cardiac health [3]. Furthermore, 

ethnic orientation influences cardiac aging. Certain 

ethnicities, due to genetic predispositions and cultural 

lifestyle factors, may be more susceptible to specific 

cardiac pathologies, necessitating tailored cardiac care 

approaches [4]. Regarding metabolic dysfunction, 

diabetes has become increasingly associated with 

major cardiovascular diseases [5]. 

 

The recent COVID-19 pandemic has added another 

layer of complexity. Preliminary studies suggest that the 

virus might accelerate cardiac aging due to myocardial 

inflammation and stress [6]. Acute respiratory 

infections pose a heightened risk of cardiovascular 

death, particularly in the weeks following infection, 

especially among elderly individuals and those with 

preexisting cardiovascular conditions. The severity of 

pneumonia in such patients is directly correlated with an 

elevated risk of mortality [7]. Elderly individuals with 

preexisting CVD often face heightened complications 

post-COVID-19 infection, including increased risk of 

cardiovascular events and mortality, underscoring the 

need for specialized care and monitoring in this 

vulnerable population, refer to Figure 1. Moreover, the 

pandemic has highlighted the importance of considering 

gender diversity, ethnic disparities, and socio-economic 

circumstances as crucial determinants of health, 

especially in the context of cardiovascular diseases [8]. 

Despite localized reductions in CVD prevalence, CVD 

remains a leading cause of global morbidity and mortality. 

The full impact of the COVID-19 pandemic on global 

health is still unfolding, but its effect on cardiovascular 

health is undeniable [9]. In the United States, the 

 

 
 

Figure 1. Cardiovascular anatomy. This figure shows a visual representation of some of the relevant cardiovascular anatomy. Labeled 

structures include the heart chambers, valves, capillary system, and a cardiac muscle cell. 
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incidence of CVD, especially stroke and heart failure, is 

expected to rise dramatically from 2025 to 2060, 

alongside increasing risk factors like diabetes, obesity, 

hypertension, and dyslipidemia [10]. This surge will 

disproportionately affect racial and ethnic minority 

populations who face greater healthcare access 

challenges and social determinants of health barriers, 

highlighting social injustices. In South America, CVD-

related deaths accounted for approximately 60% of all-

cause mortality between 2000 and 2020 [11]. In Europe, 

over 113 million people live with CVD, the leading 

cause of death, costing over €210 billion annually  

[12]. Sub-Saharan Africa has seen a >50% increase  

in CVD-related deaths over the past three decades,  

with hypertension rates the highest globally [13]. In  

the Middle East, rising non-communicable diseases, 

including CVD, are linked to lifestyle changes due to 

economic development. Asia, despite economic growth, 

continues to face significant healthcare disparities [14]. 

In Australia, CVD causes 26% of deaths annually,  

with substantial economic costs [15]. The COVID-19 

pandemic has further strained global health systems, 

disrupting economies and healthcare priorities [9]. 

 

The COVID-19 pandemic has significantly contributed 

to the global burden of CVD. Studies reveal that 

individuals with pre-existing CVD are at heightened  

risk for severe outcomes from COVID-19, including 

hospitalization, intensive care unit admission, and death. 

CVD was one of the leading causes of death globally, 

accounting for over 18 million deaths in 2019 [16]. The 

pandemic exacerbated this burden, with COVID-19 

infections precipitated severe cardiovascular events, 

leading to increased mortality rates among individuals 

with heart disease [17]. Excess deaths in CVD patients 

during the pandemic were particularly pronounced due 

to disruptions in medical care, delayed treatments,  

and complications arising from COVID-19 infection 

itself [18]. Additionally, a significant rise in CVD-

related deaths across Europe as a direct consequence  

of the pandemic, underscoring the widespread impact  

on public health systems was observed [19]. This  

global surge in cardiovascular mortality emphasizes  

the need for targeted healthcare strategies to address  

the compounded risks posed by COVID-19 on CVD 

patients [20]. 

 

COVID-19 has been shown to exacerbate oxidative 

stress and mitochondrial dysfunction, both of which are 

critical factors in the progression of cardiac aging. The 

viral infection directly impairs mitochondrial function, 

leading to increased production of reactive oxygen 

species (ROS), which causes oxidative damage to 
cellular components [21]. Mitochondrial dysfunction  

in COVID-19 patients may contribute to heart failure  

by impairing energy production, thereby weakening 

myocardial performance. Furthermore, the interaction 

between COVID-19-induced mitochondrial damage  

and the immune response plays a significant role  

in accelerating aging processes, particularly in the 

cardiovascular system [22]. Mitochondrial-based 

immunity, which typically declines with age, is further 

compromised in the context of COVID-19, leading to 

an increased risk of inflammation and subsequent 

cardiovascular degeneration [23]. Chronic oxidative 

stress and mitochondrial dysfunction are also central to 

the development of long-term cardiac complications, 

suggesting that long COVID-19 may involve persistent 

mitochondrial damage that impairs heart tissue 

regeneration [24]. Additionally, individuals with 

underlying mitochondrial disorders, particularly those  

in vulnerable populations, are more susceptible to 

severe cardiovascular consequences of COVID-19, 

further accelerating cardiac aging. These findings 

underscore the interconnectedness of mitochondrial 

health, oxidative stress, and cardiac aging, exacerbated 

by the effects of COVID-19 [25]. 

 

Addressing cardiac aging requires a multifaceted 

approach. Therapeutic strategies, ranging from 

pharmacological interventions to cell therapies, offer 

promise in mitigating age-related cardiac decline  

[26]. Concurrently, lifestyle changes, encompassing a 

balanced diet, regular exercise, and stress management, 

are pivotal in enhancing cardiac health span  

[27]. Understanding the myriad factors influencing 

cardiac aging is paramount for developing targeted 

interventions. The purpose of this article is to examine 

the impact of COVID-19 on heart health, particularly  

its effects on the aging heart. Additionally, we aim to 

investigate the long-term implications of COVID-19 

infection on the cardiac health of the aging population. 

Through a comprehensive exploration of cardiac aging, 

encompassing structural, functional, and external 

influences, we seek to promote cardiac health in  

aging individuals. Furthermore, we delve into the role 

of inflammation, oxidative stress, and mitochondrial 

function/dysfunction in the aging heart. Additionally, 

our article addresses the influence of gender on cardiac 

aging and proposes distinct therapeutic approaches 

tailored for male and female-aged individuals, while 

considering age-related diseases. 

 

Structure and function 
 

The cardiovascular system, often referred to as the 

body’s “lifeline,” plays a crucial role in ensuring the 

optimal functioning of all bodily tissues. Its primary 

responsibility is the efficient transportation of blood 
throughout the body [28]. This transportation is vital as 

it ensures that cells receive the essential nutrients they 

require for metabolic processes and simultaneously 
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facilitates the removal of cellular waste products [28]. 

Central to this system is the heart, a robust muscular 

organ that acts as a pump. Through its rhythmic 

contractions, the heart generates the necessary pressure 

to propel blood through an intricate network of  

blood vessels (Figure 1). The myocardium, the heart’s 

muscular layer, is specially designed for endurance  

and is made up of interconnected cardiomyocytes to 

allow for coordinated contractions [29]. This unique 

arrangement is coupled with the heart’s intrinsic 

electrical conduction system to ensure a rhythmic and 

efficient heartbeat. Blood is supplied to the heart via the 

coronary arteries and veins which play a pivotal role in 

ensuring the heart receives the oxygen and nutrients it 

needs to function optimally [29]. 

 

The arteries, which are robust and elastic vessels, are 

responsible for carrying oxygen-rich blood from the heart 

to various tissues [28]. Due to their role in withstanding 

the high pressure generated by the heart’s contractions, 

they house only a small fraction of the body’s total blood 

volume [28] (Figure 1). Veins, characterized by their 

larger diameter and thinner walls, transport oxygen-

depleted blood from the tissues back to the heart. 

Operating under lower pressure, they accommodate the 

majority of the body’s blood volume [28]. Bridging the 

arteries and veins are the capillaries, delicate and thin-

walled vessels that permeate tissues. It is within these 

capillaries that the critical exchange of nutrients, waste 

products, and fluids takes place, ensuring that cells 

receive what they need and are rid of what they do not 

[28]. Beyond its primary function of blood transportation, 

the cardiovascular system is intricately linked to various 

homeostatic processes that maintain the body’s internal 

equilibrium. It also exhibits remarkable adaptability, 

responding to various physiological challenges such as 

blood loss (hemorrhage), physical activity (exercise), and 

even shifts in body position, ensuring that the body’s 

needs are consistently met. 

 

Evolution of structure and function 
 

The heart, a marvel of biological engineering, has 

undergone a transformative journey over eons. Its 

evolution, from rudimentary contractile systems in 

primitive organisms to the intricate multi-chambered 

structure in mammals, is a testament to nature’s 

adaptability. From primordial beginnings to advanced 

mammalian design, the heart’s evolutionary trajectory 

traces its lineage from the most basic life forms to  

the complexity of humans [30]. Early multicellular 

organisms, around 800 million years ago, featured a 

primitive coelom surrounded by endoderm, serving 

passive roles in respiration, nourishment, and 

reproduction [30]. Over time, the specialization of  

this “gastroderm” led to the emergence of mesoderm  

in Bilateria (organisms with bilateral symmetry as 

developing embryos), giving rise to the initial cardiac 

myocytes [30]. A “gastrovascular” formation appeared 

and this structure’s evolution in bilaterian offshoots like 

Ecdysoa (Drosophila) and Deuterostoma (amphioxus) 

eventually led to a basic tubular heart devoid of valves, 

blood vessels, or even blood, but with a singular 

contracting mesodermal layer [30]. The emergence of 

Chordata saw this rudimentary heart undergo significant 

transformations: it looped, established a one-way 

circulation, developed a closed vascular system, and 

introduced a conduction mechanism [30]. In mammals, 

the heart has reached a pinnacle of complexity, with 

four chambers that ensure efficient separation and 

circulation of oxygenated and deoxygenated blood. 

 

Mechanism of cardiac aging 
 

Cardiac aging happens due to several factors that change 

how the heart works over time. As we age, some heart 

cells become less effective and can cause inflammation 

[31]. Increased levels of harmful molecules can damage 

heart cells, and over time, the heart tissue can become 

stiffer due to more collagen buildup. Mitochondria, 

which are the energy producers in cells, may not work as 

well, leading to cell death [32]. Additionally, low-level 

inflammation can worsen heart health, and aging can 

disrupt how calcium moves in and out of heart cells, 

reducing their ability to contract and relax properly. 

Together, these changes make older adults more 

vulnerable to heart diseases [33]. The heart’s aging 

process is a multifaceted phenomenon driven by a 

combination of genetic factors, environmental exposures, 

and intrinsic cellular changes. As the heart ages, it 

undergoes a series of complex phenotypic changes  

that can compromise its function and increase the risk  

of cardiovascular diseases (CVD) [34]. These changes 

encompass pathological myocardial remodeling, left 

ventricular systolic and diastolic dysfunction, cardiac 

hypertrophy, arrhythmia, microcirculatory dysfunction, 

and heart failure (HF) [35]. Such biological alterations 

can lead to a decline in cardiac function, making  

the heart more susceptible to stress. Consequently,  

the heart’s vulnerability significantly elevates the risk  

of CVD [36]. This heightened risk manifests as an 

increased incidence of conditions like coronary heart 

disease, myocardial infarction (MI), stroke, and 

atherosclerosis, all of which become more prevalent with 

advancing age [35]. While aging per se does not directly 

induce HF, it does decrease the threshold for the disease 

to manifest. As the average age of populations in most 

developed nations rises, the significance of aging as  

a risk factor for all CVD correspondingly escalates.  

In the United States, for instance, it’s projected that  

by 2030, the population over 65 years old will reach 

approximately 70 million, constituting nearly a quarter 
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of the total population [37]. As individuals age, there’s a 

noticeable decline in physiological reserves referred to 

as homeostenosis. This depletion makes older adults 

intolerant to further challenges, leading to frailty once 

the reserves are exhausted. Yet, without challenges, 

many age-related changes remain clinically silent. These 

reserves are partly utilized for maintaining homeostasis, 

and measuring their usage, termed allostatic load, can 

predict age-related outcomes. Low-level inflammation 

associated with age may drive many of these processes. 

The vast heterogeneity in how aging is experienced, 

including differences between men and women, 

contributes to the nonspecific presentations of illness 

among older adults, reflecting the variability in the loss 

of reserves [38]. 

 

As the heart ages, it undergoes a multitude of changes 

across its structure, function, cellular composition,  

and genetics (Figure 2). Structural shifts involve 

increased vascular stiffness, thickening of the left 

ventricular wall, fibrosis, and enlargement of the 

atrium. Functional adjustments result in diminished 

cardiac output, atherosclerosis, and disruptions in 

cardiac autonomic regulation. On a cellular level, 

there’s observed mitochondrial dysfunction, heightened 

fibrosis, formation of amyloid fibrils, and endothelial 

senescence. Moreover, genetic modifications, including 

DNA damage, endothelial dysfunction, and telomerase 

shortening, are evident with aging. 

 

Impaired cellular autophagy 
 

Autophagy describes a cellular “self-consuming” process 

that plays a pivotal role in maintaining cellular 

homeostasis [39]. This lysosomal-dependent biological 

process is responsible for the degradation and recycling 

of long-lived or misfolded proteins and damaged 

organelles ensuring the renewal of organelles and 

supporting cellular metabolism [28]. Autophagy’s role  

in cellular health is multifaceted. On one hand, it 

contributes to cell survival by eliminating damaged 

organelles or cellular components. On the other, 

excessive autophagy can promote cell death in many 

physiological and pathological conditions [28]. This 

 

 
 

Figure 2. Effects of aging on heart. As the heart ages, it experiences a range of structural, functional, cellular, and genetic changes. 
Structural alterations include vascular stiffness, thickening of the left ventricular wall, fibrosis, and enlargement of the atrium. Functional 
changes manifest as reduced cardiac output, atherosclerosis, and dysfunction in cardiac autonomic regulation. At the cellular level, there’s 
mitochondrial dysfunction, heightened fibrosis, amyloid fibril formation, and endothelial senescence. Additionally, genetic alterations such as 
DNA damage, endothelial dysfunction, and telomerase shortening occur with age. 
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duality is particularly evident in the context of cardiac 

aging. Autophagy is crucial for maintaining cellular and 

protein homeostasis in cardiomyocytes, and it plays a 

vital role in reducing cardiac injury and preserving 

cardiac function during the aging process [40]. However, 

the aging heart has been found to display decreased 

autophagic activity with time [40]. In a study done by 

Taneike et al., a heart-specific knockdown of the Atg5 

gene drastically reduced mitochondrial respiration and 

hastened left ventricular hypertrophy and cardiac aging in 

mouse models when compared to wild type controls [41]. 

Structural analysis of these mice displayed chaotic 

sarcomere structure and mitochondria that had collapsed 

resulting in decreased aerobic respiration functions [41]. 

According to the above studies, cardiac aging is marked 

by several pathological changes, including myocardial 

hypertrophy, fibrosis, accumulation of misfolded proteins, 

and mitochondrial dysfunction all of which deficient 

autophagy plays a major role [40–42]. Despite the 

mounting evidence underscoring the significance of 

autophagy in cardiac aging, the therapeutic potential of 

enhancing autophagy in patients with cardiac aging 

remains an area of active research. 

 

Oxidative stress in cardiac aging 
 

Oxidative stress plays a pivotal role in the aging process 

of the heart. At the molecular level, free radicals, 

particularly ROS, are atoms or groups known for  

their strong oxidizing characteristics [36]. Due to their 

high reactivity and instability, ROS can easily interact 

with other molecules, leading to cellular damage  

[43]. Harman’s free radical theory of aging, proposed  

in 1956, suggests that endogenous free radicals, 

originating from oxidation-reduction reactions during 

fundamental metabolic processes, contribute to aging-

associated diseases by exerting long-term harmful 

effects on cells and tissues [36, 43]. Cardiomyocytes, 

the muscle cells of the heart, have high energy 

requirements and to meet these demands, the heart has a 

higher rate of oxygen consumption compared to other 

tissues, leading to increased ROS production [28, 44]. 

ROS have been implicated in the development of 

several cardiovascular diseases, such as hypertension, 

atherosclerosis, cardiac hypertrophy, and heart failure 

[45]. Recent studies have highlighted the profound 

effects of oxidative stress on cardiac aging. Oxidative 

stress can activate the TGF-β pathway, leading to the 

accumulation of miR-29, which contributes to cardiac 

aging. Blocking this pathway can improve cardiac 

function in aging mice, suggesting its potential as a 

therapeutic target [46]. Enzymes that are associated 

with oxidative reactions, such as mitochondrial 

superoxide dismutase (SOD) and monoamine oxidase 

(MAO), also aggravates cardiac aging [47]. Notably, 

MAO, located on the outer mitochondrial membrane, 

catalyzes the oxidative deamination of substrate 

monoamine, producing hydrogen peroxide and 

contributing to intracellular ROS production [36]. 

 

While the role of oxidative stress in cardiac aging is 

evident, the use of antioxidants as a therapeutic 

intervention has been met with mixed results. Some 

studies have suggested that low concentrations of ROS 

might play a protective role by triggering defense 

mechanisms against cell damage this has been termed 

mitohormesis and suggests that while high levels of free 

radicals are associated with cell injury, a moderate 

increase can stimulate cells to enhance protective 

mechanisms [48]. Contrary to the traditional view that 

ROS are harmful, mitohormesis posits that low ROS 

concentrations are essential for cell function and health, 

mediating vital signaling pathways that support cell 

survival and proliferation [48]. 

 

Mitochondrial dysfunction in cardiomyocytes 
 

Mitochondria, often referred to as the “powerhouses” of 

the cell, play a pivotal role in cellular energy production 

and homeostasis [28]. These semiautonomous organelles, 

encapsulated by two layers of membranes, are the 

primary sites for aerobic respiration and ATP generation 

in eukaryotic cells [28]. With age, the functionality of 

these organelles can be compromised, leading to a 

cascade of detrimental effects on the cell [49]. One of  

the hallmarks of this dysfunction is the accumulation  

of mutations in mitochondrial DNA, which encodes 

essential components of the electron transport chain.  

As age progresses, point mutations and deletions in 

mitochondrial DNA increase, especially harming tissues 

with high energy demands like the heart [49]. When 

mitochondria or mitochondrial DNA are damaged by 

internal or external stimuli, there’s an imbalance between 

oxidative stress and antioxidation, leading to increased 

ROS production and genomic instability [50]. 

 

The intricate relationship between oxidative stress and 

mitochondrial dysfunction in cardiac aging is evident. 

To further exacerbate this aging process, it is well 

known that cardiomyocytes have the most plentiful 

mitochondria of all bodily cells [51]. The inability to 

implement suitable modifications in mitochondrial 

characteristics could potentially disrupt the metabolism 

of energy substrates or hasten the production of  

ROS [51]. This is crucial as mitochondria play a 

pivotal role in energy production, and any imbalance 

can lead to cellular dysfunction and increased 

oxidative stress. In the landscape of hypertension and 

cardiac hypertrophy, the shadows of mitochondrial 

alterations loom large. These conditions exhibit clear-

cut changes in both the quantity and quality of 

mitochondria, mirroring the compromised state of 
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these organelles and their contribution to the 

exacerbation of these cardiac conditions [51]. These 

changes can contribute to the progression of cardiac 

conditions by impairing the energy supply necessary 

for heart function and increasing oxidative damage to 

cardiac cells. The resulting mitochondrial dysfunction 

is a significant factor in the pathophysiology of 

hypertension and cardiac hypertrophy, underscoring 

the importance of maintaining mitochondrial health for 

optimal cardiac function [51]. 

 

The exploration of mitochondrial dynamics in the 

context of cardiac health and aging is not just a scientific 

endeavor but a pressing imperative. A deeper, more 

nuanced understanding of these aspects will not only 

enrich the academic dialogue around cardiac aging but 

also pave the way for the development of innovative, 

targeted therapeutic strategies. These approaches, 

anchored in the enhancement and preservation of 

mitochondrial function, could emerge as potent shields 

against the onslaught of cardiac aging, hypertension, and 

hypertrophy, bolstering cardiac health and longevity 

amidst the challenges of aging. 
 

Gender and cardiac aging: a comprehensive 

analysis 
 

COVID-19, stemming from the SARS-CoV-2 virus, 

impairs older individuals, especially men, ethnic 

minorities, and those with underlying conditions like 

compromised immunity, cardiovascular disease, and 

diabetes, disproportionately. The variation in COVID-

19 incidence and severity is multifaceted, likely 

influenced by biological, social, and nutritional factors 

[52]. Cardiovascular diseases, whether pre-existing or 

developing during infection, play a pivotal role in 

determining COVID-19 outcomes, with differing 

impacts observed between men and women [53]. While 

COVID-19 is primarily a severe respiratory illness, it 

often leads to acute myocardial injury, as indicated by 

elevated levels of high sensitivity cardiac troponin I 

(cTnI) or cardiac troponin T (cTnT) in up to 28% of 

confirmed cases [54]. Artico and colleagues study 

showed that in contrast to contemporary controls, 

individuals with COVID-19 and heightened cardiac 

troponin levels exhibit greater ventricular impairment 

and myocardial scarring in early convalescence. 

Nevertheless, the incidence of myocarditis was 

minimal, and scar development varied, encompassing  

a newly identified pattern of microinfarction [55]. This 

myocardial injury is linked to significantly worse 

outcomes, with mortality rates increasing 7- to 11-fold. 

Patients with pre-existing cardiovascular disease and 

elevated TnT levels face the highest mortality rates 

[56]. Pre-existing cardiovascular disease (CVD) appears 

to correlate with more severe outcomes and a higher 

risk of death among patients with COVID-19 [57]. 

Additionally, COVID-19 can trigger myocardial injury, 

arrhythmias, acute coronary syndrome, and venous 

thromboembolism [58]. While a plethora of factors such 

as smoking have been firmly established as risk factors 

for cardiovascular disease, an escalating acknowledgment 

of gender’s significant impact on cardiovascular system 

aging is emerging [59]. These gender-related cardiac 

differences, discernible early in life, have the potential 

to exert profound effects in later years. Despite 

overarching similarities in cardiac aging across genders, 

several crucial differences prevail (Figure 3). 

 

The potential variations based on sex, gender is a 

multifaceted social construct encompassing social  

roles, identities, and relationships, which may impact 

exposure to and risk of infectious diseases. For instance, 

epidemiological evidences suggest a potential gender 

predisposition to COVID-19, with men being more 

prone to experiencing severe manifestations, and among 

older individuals, men constitute the majority of 

fatalities [60], possibly due to men’s higher prevalence 

of risky behaviors such as smoking and alcohol 

consumption. Moreover, men are more likely to work in 

high-risk occupations, such as transportation, which 

increases their likelihood of exposure to the infection or 

delays in seeking medical attention when symptoms 

worsen. These factors could, at least partially, explain the 

greater severity of infections and subsequent outcomes 

in men [61]. 

 
Age is not only a risk factor for CVD but age- 

related changes in the immune system, known as 

immunosenescence, are widely acknowledged as the 

primary cause of heightened susceptibility to infections, 

notably respiratory ones like influenza, and diminished 

response to vaccinations. Chen and colleagues suggested 

an immunological explanation for the vulnerability of 

older adults to COVID-19. This explanation revolves 

around the age-related decline in immune defenses 

against SARS-CoV-2, termed immunosenescence, and 

the heightened risk of immune-related pathology [62]. 

Patients with COVID-19 often experience cardiovascular 

complications, which can stem from either systemic and 

cardiac inflammation associated with the virus or a 

hypercoagulable state induced by the virus itself [63]. 

Another challenge faced by older patients with CVD is 

their reluctance to seek medical care due to concerns 

about contracting COVID-19. It’s important to note  

that hypertension, diabetes, and obesity, frequently 

associated with CVD, are already established as risk 

factors for severe COVID-19, necessitating vigilant 

management [64]. 

 
Aging leads to ventricular hypertrophy, fibrosis, and 

changes in how the heart functions, but these processes 
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differ between men and women. In older men, the heart 

often shows eccentric remodeling, systolic dysfunction, 

and reduced sensitivity to adrenergic signals. In 

contrast, older women tend to experience diastolic 

dysfunction and concentric remodeling. While some of 

these changes may be linked to fluctuations in sex 

hormones, others are likely influenced by non-hormonal 

factors or occur at different times in men and women 

[65]. The impact of biological sex on heart disease has 

been recognized for some time. Men have a higher 

incidence of hypertension, which increases in women 

after menopause. Premenopausal women are generally 

at lower risk for cardiovascular disease compared to 

age-matched men, but this advantage diminishes after 

menopause, indicating that sex hormones boosts blood 

pressure regulation. Additionally, the heart undergoes 

remodeling throughout life, with different patterns 

observed in men and women. Premenopausal women 

tend to have lower autonomic tone, better baroreceptor 

response, and improved vascular function compared  

to men of the same age. However, after menopause, 

women experience stiffer arteries than men [66]. 

Hormones, especially estrogen, play an indispensable 

role in cardiac aging. The cardioprotective attributes  

of estrogen elucidate the generally lower risk of  

CVD in premenopausal women compared to their male 

counterparts [67]. Nevertheless, the postmenopausal 

phase, marked by a decline in estrogen levels, augments 

oxidative stress and free fatty acid levels, thereby 

heightening women’s vulnerability to metabolic 

syndrome and insulin resistance [68–70]. This hormonal 

transition culminates in an escalated risk for CVD  

[69, 70]. Similarly, testosterone was found to play even a 

minor cardioprotective role when it came to aging men 

and an extent aging women. As men age, hypogonadism 

correlates with lowered testosterone levels due to 

advanced age [71]. Although women have lesser 

amounts of testosterone throughout their lives, it also 

decreases as they age. It was discovered in a study [72] 

that lower levels of testosterone were associated with 

CAD in postmenopausal women. Low testosterone was 

shown to be attributed to a high incidence of CAD in 

men. A study revealed that at 40 years old, men who had 

serum testosterone levels under the suggested level also 

 

 
 

Figure 3. A summary of different factors that contribute to the differences in cardiac agedness in men and women. The 

incidence of cardiovascular complications in COVID-19 pathology appears to be linked to differences in sex and gender. This likely contributes 
to the greater severity and poorer outcomes of SARS-CoV-2-mediated disease in male patients compared to females. 
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had a higher mortality risk due to CVD [71]. Similarly, 

in the case of COVID-19, estrogens enhance both  

innate and adaptive immune responses, potentially 

leading to faster pathogen clearance, milder symptoms, 

and stronger vaccine responses in women. Additionally, 

estrogen decreases the expression of angiotensin-

converting enzyme 2 (ACE2) receptors, which are crucial 

for SARS-CoV-2 entry into host cells. Conversely, 

testosterone suppresses immune function, possibly 

explaining men’s greater susceptibility to infectious 

diseases. Furthermore, declining testosterone levels in 

aging men are linked to increased proinflammatory 

cytokines, raising the risk of severe COVID-19 

progression and outcomes in older men [61]. 

 

Gender-based structural differences in the heart further 

contribute to the complexity of cardiac aging. Women 

typically possess smaller hearts with thicker walls and 

smaller chambers [73, 74]. This structural distinction 

may influence the onset of conditions like heart failure, 

as smaller hearts may lack adequate reserve capacity  

to withstand age-related changes [74]. Despite these 

challenges, data suggest a more favorable long-term 

prognosis for heart failure in women compared to men 

[75–77]. Both men and women experience worse health 

outcomes with extremes of body mass index and older 

age. Like, obesity has a greater impact on COVID-19 

outcomes in women, while the influence of older  

age on outcomes is more significant in men [78]. 

Similarly, aging process also manifests differently in the 

blood vessels of men and women. Premenopausal 

women generally exhibit a more gradual progression  

of atherosclerosis compared to men of analogous age 

[79, 80]. Postmenopausal women, conversely, tend to 

have stiffer arteries compared to their male counterparts 

[81]. This vascular aging pattern is partially attributed 

to the protective influence of estrogen on vascular 

health. In light of estrogen’s impact on the heart and 

vasculature, HRT emerges as a potential strategy  

to offset the augmented CVD risk accompanying 

declining estrogen levels in postmenopausal women 

[81]. However, the HRT debate continues, emphasizing 

the necessity for individualized decision-making [59]. 

 

Gender significantly influences COVID-19 and cardiac 

aging, impacting both the risk and progression of 

cardiovascular diseases. COVID-19 infection is linked 

to heightened short- and long-term risks of CVD and 

mortality. Continual monitoring of signs and symptoms 

indicating the development of these cardiovascular 

complications post-diagnosis and for at least one year 

post-recovery could be advantageous for infected 

patients, particularly those who experienced severe 
illness [82]. In addition to COVID-19 infection, 

COVID-19 mRNA vaccines have also demonstrated 

effects on cardiac health. Myocardial injury, presenting 

clinically as myocarditis, has recently emerged as a 

potential severe adverse event following COVID-19 

mRNA vaccine administration, predominantly affecting 

young men within a few days post-vaccination  

[83]. The intricate interplay of hormones, particularly 

estrogen, alongside structural differences, crafts a 

landscape necessitating gender-specific approaches  

to prevention and treatment. Despite the current 

limitations in research advancement, the ongoing 

exploration of COVID-19 infection and its effect on 

gender and cardiac aging is paramount. As we continue 

to demystify the complexities of COVID-19, gender and 

cardiac aging, the development of tailored strategies 

addressing each gender’s unique needs is necessary, 

ultimately enhancing cardiovascular health outcomes 

for all individuals. 
 

Influence of ethnic orientation on cardiac 

agedness 
 

COVID-19 has had devastating effects on global 

healthcare systems, especially impairing the elderly and 

individuals with chronic comorbidities who are at 

particularly high risk of mortality and morbidity [84]. 

Studying the association between COVID-19 severity 

and noncommunicable diseases such as hypertension, 

diabetes, and cardiovascular disease in ethnic groups  

is crucial. Cardiac aging is intricately intertwined  

with diverse elements including genetic predisposition, 

lifestyle choices, and healthcare accessibility. These 

factors are deeply rooted in ethnic orientation and play a 

crucial role in shaping the trajectory and impact of 

cardiac aging across various populations. The growing 

evidence highlighting the escalating prevalence of CVD 

and accelerated cardiac aging within minority groups 

underscores the critical need for a nuanced, ethnically 

sensitive approach to cardiac health management [85]. 

 

The COVID-19 pandemic has underscored disparities 

among at-risk populations. Black and Hispanic patients 

have borne a disproportionate burden in terms of 

hospitalizations, morbidity, and mortality compared to 

non-Hispanic Whites [86]. Although death rates from 

COVID-19 were highest among Hispanic populations, 

the most significant mortality increases occurred in the 

Black population, largely attributed to heart disease and 

diabetes rather than COVID-19 itself [87]. Previous 

studies have demonstrated a higher disease burden, 

lower rates of bystander cardiopulmonary resuscitation 

(BCPR), and poorer outcomes among Black and 

Hispanic patients following out-of-hospital cardiac arrest 

(OHCA). Female OHCA patients also exhibit lower 

BCPR rates compared to males, with differences in 
survival outcomes. However, the impact of the COVID-

19 pandemic on OHCA incidence and outcomes among 

different health disparity populations remains uncertain 
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[88]. Another previous study found that non-Hispanic 

Black, Hispanic, and non-Hispanic Asian populations 

experienced a significantly higher rise in deaths related 

to heart and cerebrovascular diseases during the 

COVID-19 pandemic compared to the non-Hispanic 

White population [89]. Before the onset of the COVID-

19 pandemic, structural and social factors, including 

housing and job insecurity, as well as high poverty rates, 

disproportionately affected racial and ethnic minority 

populations. These factors contributed to the higher 

burden of CVD observed in these communities. The 

effects of the COVID-19 pandemic are likely to have 

worsened these social disadvantages, leading to 

increased CVD mortality among specific racial and 

ethnic populations [90]. Not only general population but 

healthcare workers, especially those from ethnic 

minority backgrounds, have also been disproportionately 

higher risk of Severe Acute Respiratory Syndrome 

Coronavirus 2 infection compared to the general 

population [91]. Due to the unequal impact of COVID-

19 on minority communities, it’s imperative to include 

ethnic minority populations in COVID-19 trials. This 

inclusion is essential for comprehending variations in 

intervention effects on disease severity and outcomes, 

and for addressing significant knowledge gaps [92]. 

Also, achieving vaccine equity requires multifaceted 

policies and programming that respect community 

concerns, prioritize informed deliberation, invest in 

community-based engagement, improve accessibility 

and transparency of information, and reduce structural 

barriers to vaccination [93]. 

 

The role of exercise in mitigating cardiac aging  

and preventing COVID-19 infection emerges as a 

significant area of focus. The research underscores the 

transformative impact of exercise training in reversing 

cardiac aging signs, even in populations with a high 

predisposition to heart failure with preserved ejection 

fraction, a prevalent subtype of heart failure in aging 

adults [94]. Similarly, literature indicates that engaging in 

physical activity plays a significant role in preventing and 

treating COVID-19. It can aid in the recovery of physical 

function, alleviate symptoms of post-acute COVID-19 

syndrome, and enhance patients’ psychological well-

being [95]. Despite the proven efficacy of exercise 

training and cardiac rehabilitation in enhancing cardiac 

quality of life and reducing hospitalization rates [96], 

ethnic disparities in physical activity levels persist, as 

noted by the CDC [97]. Healthcare access is known  

to be a linchpin in the modulation of cardiac aging  

that further accentuates these ethnic disparities. A 

diminished likelihood of cardiac rehabilitation referrals 

among minority populations, including Black, Hispanic, 
and Asian individuals, compared to their white 

counterparts, highlights the systemic barriers faced by 

these communities [98]. This healthcare access gap, 

coupled with the pivotal role of early detection and 

timely interventions in cardiac health maintenance, 

underscores the imperative to dismantle these barriers  

to ensure equitable cardiac health outcomes across 

diverse populations. The intricate mosaic of cardiac 

aging, painted with strokes of genetics, lifestyle, and 

healthcare access, is further complicated by the overlay 

of ethnic disparities. The heightened vulnerability of 

certain ethnic groups to accelerated cardiac aging and 

associated cardiovascular conditions necessitates a 

comprehensive, culturally sensitive approach to cardiac 

health management. This approach should encompass 

targeted interventions addressing unique ethnic risk 

factors, promotion of physical activity, and enhancement 

of healthcare accessibility and equity. By ensuring a 

holistic, inclusive, and effective strategy for diverse 

populations, we can pave the path towards optimal 

cardiac health and well-being for all individuals, 

irrespective of their ethnic orientation. 

 

In the United States, differences in cardiovascular risk 

are mainly linked to socioeconomic status (SES) rather 

than race or ethnicity. It’s important to focus on lifestyle 

counseling and early screening for risk factors among 

socioeconomically disadvantaged individuals, regardless 

of their racial or ethnic background, to help reduce 

disparities in cardiovascular health outcomes [99].  

Since CVD is the leading cause of death in the United 

States, with significant disparities in CVD-related illness 

and mortality. Marginalized racial and ethnic groups, 

such as Black Americans, Indigenous People, South  

and Southeast Asians, Native Hawaiians, and Pacific 

Islanders, are generally at higher risk for CVD and the 

development of traditional risk factors, compared to non-

Hispanic Whites. Additionally, many of these groups 

face adverse social determinants of health, particularly 

lower SES, which may contribute to accelerated arterial 

aging, although South Asians typically experience 

higher SES [100]. 

 

Communities of color face significant disparities in 

access to and quality of CVD care. A major barrier is 

the lack of health insurance, with nearly 7.3 million 

nonelderly adults with CVD in the U.S. uninsured in 

2018 [101]. Despite improvements from the Affordable 

Care Act, uninsured rates remain 2 to 4 times higher 

among Hispanic (28.7%) and Black (12.9%) individuals 

compared to White individuals (7.4%) [102]. Racial 

health inequities are reinforced by discriminatory 

policies at both state and federal levels that are 

ingrained in the healthcare system. Evidence shows that 

hospitals serving underserved communities face higher 

financial penalties for lower quality care scores, such as 
readmission rates. These metrics often overlook critical 

social risk factors that significantly influence health 

outcomes in these populations [103]. 
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Cultural differences in diet and lifestyle, along with 

genetic predispositions, play a significant role in cardiac 

aging among ethnic groups. For instance, traditional 

diets rich in fruits, vegetables, and whole grains, as seen 

in Mediterranean and Asian cuisines, may promote 

better heart health, while diets high in processed  

foods can increase cardiovascular risk. Additionally, 

genetic factors can influence metabolic processes and 

susceptibility to heart diseases, leading to variations in 

cardiac aging. These combined influences underscore 

the importance of culturally tailored health interventions 

to address disparities in cardiovascular health outcomes. 
 

Metabolic disorders and cardiac dysfunction 
 

The interplay between COVID-19 infection, diabetes,  

and cardiac aging involves a complex array of 

pathophysiological mechanisms, leading to significant 

morbidity and mortality. While the risk of COVID-19 

infection is elevated in individuals diagnosed with 

diabetes compared to those without, there is a lack of 

research on the risk of cardiovascular disease CVD in 

COVID-19-infected patients with diabetes compared 

to those without COVID-19 infection [104]. Emerging 

evidence indicates that COVID-19 infection may  

lead to incident CVD in the long term, with chronic 

conditions like diabetes potentially aggravating this 

risk. A recent study explored the risk of CVD after 

COVID-19 diagnosis in adults with and without 

diabetes, revealing a significantly higher post-acute 

risk of incident cardiovascular outcomes among 

patients with COVID-19, irrespective of diabetes 

status. Thus, ongoing monitoring for new-onset CVD 

may be crucial beyond the initial 30 days following a 

COVID-19 diagnosis [105]. 

 

Another study revealed that pregnant women with 

comorbidities such as diabetes mellitus, hypertension, 

and cardiovascular disease faced heightened risks  

for severe COVID-19-related outcomes, maternal 

complications, and adverse birth outcomes. Additionally, 

the study identified lesser-known risk factors, including 

HIV infection, prepregnancy underweight, and anemia. 

Despite pregnant women being recognized as a high-

risk population, those with these additional risk factors 

warrant special attention for prevention and treatment 

[106]. Patients with underlying metabolic dysfunction, 

such as type 2 diabetes mellitus and obesity, face  

an elevated risk of COVID-19 complications, including 

multi-organ dysfunction, due to a disrupted immune 

response and cellular energy deficiency. These 

individuals experience chronic inflammation, heightening 

susceptibility to severe immune reactions triggered by 
the hypoxic cellular environment and cytokine storm 

associated with COVID-19. The altered metabolic 

profile and energy production of immune cells further 

contribute to an imbalanced immune response. 

Understanding these critical immune-metabolic 

interactions may aid in developing effective treatments 

for COVID-19 [107]. 

 

Roy and colleagues examined recent literature on  

the association between CVD and diabetes mellitus  

in COVID-19 infections, highlighting potential 

mechanisms. Despite lacking prior CVD history, 

COVID-19 patients can develop complications such  

as myocardial injury, cardiomyopathy, and venous 

thromboembolism following infection with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), 

requiring emergency clinical support for management. 

While the link between diabetes and severe COVID-19 

complications remains unclear, limited data suggest that 

markers such as interleukin (IL)-1, IL-6, C-reactive 

protein, and D-dimer are associated with COVID-19 

severity in diabetic individuals [108]. In another study, 

by Bioinformatic analysis the important Genes and their 

key functions in Type 2 diabetic hearts were identified. 

Patients with type 2 diabetes (T2D) and SARS-CoV-2 

infection develop acute cardiovascular syndrome, 

necessitating understanding of underlying mechanisms. 

Bioinformatic analysis of public datasets identifies 

pathogenic and prognostic genes in T2D hearts, revealing 

CAPNS1 as a crucial gene. CAPNS1 upregulation in 

T2D hearts is associated with calpain/CAPNS1-mediated 

Junctophilin2 (Jp2) hydrolysis and nuclear translocation, 

suggesting CAPNS1 as a potential therapeutic target for 

adverse prognostics in T2D patients with SARS-CoV-2 

infection [109]. 

 

In addition to standard post-COVID-19 assessments, 

patients with an elevated metabolic risk profile should 

undergo supplementary evaluation by a cardiologist, 

which may include comprehensive echocardiography. 

This evaluation should be conducted both during the 

acute infection phase and throughout the recovery period 

[110]. Vitamin D is crucial for immune function and has 

anti-inflammatory properties, which could be significant 

in the context of CVD and COVID-19. However, current 

studies have shown limited benefits of vitamin D 

supplementation in COVID-19 patients, with no specific 

research on those with CVD and related complications. 

Additionally, while vitamin D offers protective effects on 

the cardiovascular system, such as enhancing myocardial 

contractility and anti-thrombotic effects, it remains 

uncertain whether vitamin D supplementation can 

alleviate CVD complications associated with COVID-

19 [111]. Malnutrition is recognized to heighten 

susceptibility to viral infections and disease progression. 

Thus, considering the nutritional status of diabetic 
patients and providing appropriate supplementation of 

essential nutrients can help alleviate the symptoms of 

COVID-19 in individuals with diabetes mellitus [112]. 
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Inflammatory pathways and oxidative stress 
 

The role of inflammation and oxidative stress in 

diabetic cardiomyopathy is a topic that is being highly 

researched [113]. Systemic inflammation has been 

recognized as both a cause and an outcome of diabetes 

[114–116]. Recent findings indicate that the activation 

of Cannabinoid 2 receptor (CB2R) signaling pathways 

in mitigating myocardial dysfunction suggests that 

pharmacological activation of CB2R can attenuate 

diabetes-induced inflammation, oxidative/nitrative 

stress, fibrosis, and cell death, resulting in the 

preservation of cardiac function [113]. This indicates  

a potential therapeutic target for managing cardiac 

complications in diabetes. 

 

SGLT2 and cardiac inflammation 
 

Mroueh et al. (2023) advance this understanding by 

evaluating the expression of Sodium-Glucose Co-

Transporter 2 (SGLT2) in the left ventricle of cardiac 

patients. Their study establishes a correlation between 

SGLT2 mRNA expression and pro-inflammatory 

markers, suggesting a role for SGLT2 in heart failure 

associated with diabetes. This finding is particularly 

relevant given the emerging role of SGLT2 inhibitors in 

the management of heart failure [117]. These recent 

studies highlight the potential of CB2R activation and 

SGLT2 inhibition in mitigating the cardiac complications 

of diabetes, offering hope for improved clinical outcomes 

in this vulnerable population. 

 

Overview of long-term effects of COVID-19 on 

cardiac health and cardiac aging 
 

The COVID-19 pandemic, caused by the SARS-CoV-2 

virus, has manifested a colossal number of clinical 

complications that extend beyond the respiratory 

system. There is emerging evidence that highlights 

significant cardiac implications (Figure 4). The long-

term effects of COVID-19 on cardiac health and cardiac 

aging are areas of flourishing research, due to the many 

clinicians and scientists who endeavor to understand 

and mitigate these impacts. 

 

 
 

Figure 4. Cardiovascular complications of COVID-19 in elderly people. COVID-19 exacerbates cardiac injuries, especially in older 
patients with a cardiovascular medical background, increasing the likelihood of developing critical conditions. 
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Adverse cardiac effects of SARS-CoV-2 infection 
 

The SARS-CoV-2 virus has been identified as a 

significant threat to cardiovascular health due to the 

ability of the virus to directly infiltrate myocardial cells, 

setting off a cascade of detrimental cardiac events 

including myocarditis, myocardial infarction, and heart 

failure [118]. Additionally, the systemic inflammatory 

response elicited by the virus can exacerbate pre-

existing cardiac conditions and contribute to the  

onset of new cardiovascular complications (Figure 4). 

The body’s effort to combat viral infection leads  

to a widespread inflammatory response, which can 

inadvertently exacerbate pre-existing cardiac conditions. 

Individuals with a history of cardiovascular diseases 

may find their conditions worsening under the strain  

of the body’s immune response to the virus and  

the inflammation can lay the groundwork for new 

cardiovascular complications, even in previously 

healthy individuals, by contributing to the buildup of 

plaque in the arteries, disrupting blood flow, and leading 

to arrhythmias [118]. The long-term consequences of 

these effects remain a significant concern, necessitating 

ongoing monitoring and management of COVID-19 

survivors for potential cardiac sequelae [118]. The 

inflammatory damage inflicted on the heart and the 

vascular system may persist, leading to chronic cardiac 

conditions, endothelial dysfunction, microvascular 

damage, reduced cardiac function, and an increased risk 

for future cardiac events [119]. 

 

The SARS-CoV-2 binding site has increased affinity  

for the angiotensin I converting enzyme 2 (ACE2) 

receptor which is expressed in the lung and vascular 

endothelial cells [120]. It has yet to be established 

whether a higher rate of cardiac injury with increased 

age is due to viral injury or a crushing immune response 

within myocardium, or both. It is typical of aging 

systems to have a reduction in circulating levels of 

CD4+ and CD8+ T lymphocytes and a decreased 

capability to phagocytose apoptotic cells by aging 

macrophages may induce a vascular pro-inflammatory 

state [120]. This imbalance is exacerbated with SARS-

CoV-2 infection leading to further deficiency of CD4+T 

cells and macrophage response. Therefore, elderly 

patients tend to have reduced viral clearance, which in 

turn generates a cytokine storm [120]. 

 

Therapeutic strategies to improve cardiac health 
 

The human heart’s remarkable endurance and resilience 

are continuously challenged by a myriad of physiological 

and external stressors throughout life. Despite its robust 
nature, the heart’s capacity for regeneration and repair  

is notably limited, particularly in the adult stages of  

life. This limitation underscores the critical need for 

innovative therapeutic strategies aimed at enhancing 

cardiac regeneration and mitigating damage inflicted 

upon the myocardial architecture. Research findings  

in CVD significantly influence treatment strategies  

and preventive measures by providing evidence- 

based insights into the pathophysiology, risk factors,  

and effective interventions for these conditions. For 

instance, identifying genetic predispositions and  

lifestyle factors such as diet, exercise, and smoking  

can lead to personalized medicine approaches and 

targeted interventions. Additionally, advancements in 

understanding the molecular mechanisms of CVD can 

result in the development of novel drugs and therapies, 

improving patient outcomes. The gap between research 

and clinical practice can be bridged by adopting the 

following strategies: clinical research should focus on 

practice-oriented questions, involving practitioners in 

setting the agenda and formulating research questions; 

the divide between empiricist and constructivist 

positions, as well as between quantitative and qualitative 

methods, can be resolved through epistemological and 

methodological pluralism; clinical research should be 

guided by a developmental perspective; and collaboration 

between practitioners and researchers should occur at 

both programmatic and institutional levels [121]. 

 

Macrophages: key to enhanced cardiac 

regeneration 
 

The adult heart is incapable of regenerating itself after an 

injury and instead, the extensive cardiomyocyte death is 

followed by scar formation that can reconstruct the 

myocardial architecture. However, neonatal hearts are 

capable of regenerating after an injury. Since the 1960s, 

newborn patients who survived an MI soon after birth 

were able to restore much structural and functional 

capabilities within weeks. Regenerative hearts were 

found to have retained macrophages for a longer period 

following an injury [122]. The cardiomyocytes of 

neonates contained a greater proportion of proliferating 

cardiomyocytes in comparison to those of older adult 

patients, suggesting that cardiac regeneration, while 

possible in neonates, is an ability that is lost with  

age [123]. In the case of myocardial infarction, 

macrophages play a role in mitigating the injury and 

scavenging cellular debris through the secretion of 

cytoprotective factors that reduce the inflammatory 

response, particularly by suppressing myofibroblast 

activation and fibrosis [124]. While the reason why 

macrophages are a crucial part of the heart’s 

regenerative response is not fully understood, several 

pathways, including axonal regrowth, angiogenesis, 

ECM degradation, and efferocytosis, commonly involve 
macrophages and are activated during the process of 

regeneration [124]. In one study, examining the shifts in 

macrophage population concerning age and disease in 
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mice, it was found that depletion of CX3R1+ 

macrophages before an MI led to impaired healing, 

reduced cardiac function, and increased mortality [125]. 

Considering the importance of macrophages’ role in 

regeneration, therapies related to modifying adult 

macrophage populations can potentially be used to 

enhance repair. 

 

Exosomes in cardiac care 
 

Exosomes, which are a type of extracellular vesicle 

capable of being produced by each cell type under 

stressful conditions like ischemia, also have the 

potential to be used as a therapeutic agent [126]. 

Exosomes delivered in vivo have been found to restore 

cardioprotective effects, including the suppression of 

proinflammatory cytokine expression and efferocytosis 

[126]. Additionally, an RNA component of the cardiac 

exosome, EV-YF1, increased IL-10 expression and 

protection against ischemia when delivered to 

macrophages [127]. Exosomal miRNAs have also been 

shown to be crucial to exosome therapy. miRNA-146a, 

which is down-expressed in cardiovascular aging, has 

had protective effects after an MI injury, along with 

miR-181b, which can protect cardiac function and 

reduce infarction size, but is often decreased in the 

aging aorta [128]. However, delivering an adequate 

amount of exosomes to macrophages is often found to 

be challenging as they can instead be taken up by 

macrophages or other immune cells other than the 

macrophages at the site of injury [129]. As a result, 

strategies have been developed to create a more 

streamlined way of delivering exosomes. In one study, 

cloaking, a modification that is directly applied to the 

exosome rather than through a producer cell, resulted in 

the localization of exosomes to the site of ischemic 

myocardium [130]. Exosomes were cloaked with a 

biotin-tagged ischemic peptide and were found in 

higher quantities within the infarcted region of the heart 

compared to exosomes without the cloak [130]. 

 

Targeting reactive oxygen species 
 

Reactive oxygen species (ROS) are directly involved 

with the dysfunction of cardiac tissues by promoting 

myocardial growth, extracellular matrix remodeling, 

and activating hypertrophy and apoptotic signaling 

pathways [131]. An excess of ROS in ryanodine 

receptors within the sarcoplasmic reticulum increases 

the activity of (RyRs), thus increasing the release of 

calcium from the SR during excitation-contraction 

coupling, and decreasing the activity of SR calcium-

adenosine triphosphatase 2 (SERCA2), resulting in a 

calcium overload [132]. Mitochondria also serves as a 

source of ROS, particularly from the electron transport 

chain complexes. ROS can impair ATP levels, which 

was seen when looking at the status of energy 

metabolism in the context of a myocardial infarction 

[133]. Using ROS as a target has been shown to 

suppress the cardiac aging process, with aged cardiac 

stem cells being transformed into a younger phenotype 

upon the reduction of ROS generation [134]. Another 

pathway for reducing ROS production is through the 

inhibition of xanthine oxidase. The activity of SERCA2a 

and Ca transient channels is boosted following the use of 

a xanthine oxidase inhibitor as well, hence preventing 

calcium overload [135]. Lasers have also been used to 

correct mitochondrial function, resulting in reduced 

oxidative stress, and leading to improved systolic 

dysfunction and reduced infarct size [136]. The 

consumption of foods rich in antioxidants has also been 

found to reduce levels of oxidative stress markers like 

MDA and the incidence of cardiac remodeling, however, 

evidence of the benefit of antioxidant therapies in 

clinical trials is limited [131]. 

 

Stem cells and senescence 
 

Mesenchymal stem cells (MSCs) are heterogeneous 

stromal cells originating from the mesoderm and 

ectoderm [28]. They contain multipotency and 

regenerative characteristics and evidence supports their 

role in maintaining tissue homeostasis, and preventing 

aging-related diseases, and have been used in clinically 

relevant therapies [137]. The human heart relies on its 

stem cells to replace aging or dying cells [138] In 

human cardiac stem cells, dysfunctional telomeres are 

biomarkers for aging and heart failure. The shortest 

telomere, rather than the mean telomere length, 

determines the function and fate of the cell [139]. As 

individuals age, the capacity of their stem cells to 

replicate, regenerate, and proliferate diminishes. 

Concurrently, the stem cells show increased cell cycle 

arrest, oxidative stress injury, and a decline in 

immunomodulatory capacity and paracrine effects 

[137]. Cellular senescence, characterized by irreversible 

cell cycle arrest, can be triggered by various factors, 

including DNA damage, telomere shortening, and 

stress. While senescence serves as a tumor-suppressive 

mechanism by preventing the proliferation of damaged 

cells, it also contributes to aging and age-related 

diseases [140]. Evidence shows that senescent cells, 

although in cellular arrest, remain metabolically active. 

The senescence-associated secretory phenotype (SASP), 

secretes factors, including proteases, that detrimentally 

affect the tissue microenvironment. Proteases secreted 

by SASP can target the extracellular matrix, leading  

to alternations in tissue structure. This, in turn, can 

potentially diminish tissue tension and elasticity [140]. 

 

The first approach to slowing, preventing, and possibly 

even reversing the senescence of MSCs is targeting their 
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genetics [141]. Epigenetic reprogramming involves the 

modification of both coding and noncoding RNA 

epigenetics, which is a promising direction. By targeting 

RNAs either directly or indirectly involved in MSC 

senescence, their effects might be mitigated [141]. 

Additionally, miRNAs are small molecules that interfere 

with transcription in many ways, a primary way being 

interaction with the target gene RNA [142]. It has been 

shown that miR-195, significantly increased TERT 

expression and that miR-195 inhibition significantly 

induced telomere lengthening in aged MSCs [143]. 

Building upon this discovery, the inhibition of many 

additional miRNA molecules (miR-141-3p, mi-34a, 

miR-155, etc.) was found to slow the senescence  

of MSCs [144–146]. Finally, senescence-associated 

secretory phenotype (SASP) factors are involved in 

propagating inflammation responses and contribute to 

the aging and senescence of nearby cells [143]. 
 

Lifestyle changes to improve cardiac health 

span 
 

Separate from small molecule therapies to combat 

cardiac aging are interventions aimed at improving 

metabolic function. These therapies include dietary 

modifications, aerobic and resistance training, as  

well as some supplementation therapies [147]. Caloric 

restriction, while avoiding malnutrition, has been 

associated with increased life span and improved 

metabolic health in multiple model systems [148]. The 

CALERIE study demonstrated that calorie restriction in 

humans was associated with weight loss, a reduction in 

total daily energy expenditure (TDEE), and a reduction 

in inflammatory markers [149] (Figure 5). Regular 

exercise has also been shown to reduce central body fat, 

improve muscle mass and function, and increase insulin 

sensitivity compared to sedentary adults [150, 151]. 

Exercise has also been shown to increase the activation 

of satellite cells and improve progenitor cell function 

[152]. Resistance training has also been shown to 

increase skeletal muscle mass and function, however, 

older adults will need to increase protein intake 

compared to younger individuals to achieve similar 

results [153]. Finally, in addition to behavioral 

modification, some pharmacologic supplementation has 

also been shown to be effective. Leucine supplementation 

and b-hydroxy-b-methylbutyrate (HMB) has been shown 

to increase muscle mass and function in conjunction 

with resistance training [154]. Omega-3 fatty acids have 

also shown improved muscle mass and function with 

aging; however, their mechanism of action is not well 

understood [155]. 

 

 
 

Figure 5. To prevent the impact of COVID-19 on aging hearts, implement measures such as vaccination, adherence to public 
health guidelines, managing chronic conditions, staying active, and seeking regular medical care. 
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Long term effects of COVID-19 on cardiac 

health 
 

The COVID-19 pandemic resulted in cardiac 

complications, adverse lifestyle alterations during 

lockdowns, and constraints in preventive, diagnostic, 

and therapeutic measures. The cardiac issues arising 

from acute COVID-19 have been extensively 

documented, yet the subsequent cardiovascular effects 

of COVID-19 in the post-acute phase remain 

inadequately characterized. The cardiovascular effects 

of COVID-19 exhibit pathophysiological, consequential, 

and time-dependent patterns, encompassing myocardial 

injury, thrombotic events, heart failure, and arrhythmias. 

These range from acute COVID-19 cardiovascular 

syndrome to short-term and long-term post-COVID-19 

manifestations [156–158]. Using US Department of 

Veterans Affairs national healthcare databases, Xie  

and colleagues constructed a cohort of 153,760  

COVID-19 individuals and two control cohorts totaling 

11,496,058 individuals. The study found that beyond  

30 days post-infection, COVID-19 patients faced 

increased risks of various cardiovascular outcomes, 

irrespective of hospitalization status. These risks 

escalated based on the level of care during the acute 

phase, emphasizing the significant long-term burden  

of cardiovascular disease post-COVID-19, warranting 

attention in survivor care pathways [156]. Similarly, 

Loboda and team conducted a study in which at 

approximately 4 months post-infection, they evaluated 

cardiac complications, exercise capacity, blood pressure, 

echocardiography, Holter monitoring, and lab results 

(cholesterol, glucose, creatinine) in convalescent 

individuals. Using the Systemic Coronary Risk 

Estimation 2 algorithm, they estimated the 10-year risk 

of fatal and nonfatal atherosclerotic cardiovascular 

events, revealing a small number of post-COVID-19 

cardiac issues, particularly in men, alongside a  

notable risk of atherosclerosis-related diseases. Hence 

recommended that medical assessment for COVID-19 

survivors should include managing atherosclerosis risk 

factors [159] (Figure 6). 

 

 
 

Figure 6. Ways COVID-19 contributes to cardiac aging. A COVID-19 infection can cause macroscopic and microscopic altercations that 
induce cardiovascular dysfunction. Image created by Biorender.com. 
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Socioeconomic status (SE) significantly predicts early 

morbidity and mortality in overall health, with lower SE 

correlating with heightened CVD mortality and poorer 

CVD risk profiles. COVID-19 severity and mortality 

are elevated in individuals with CVD comorbidity, as 

both conditions share critical risk factors. The pandemic 

disproportionately impacts those of lower SE and ethnic 

minority backgrounds, with mortality rates doubling in 

the most deprived regions compared to the least 

deprived ones [160]. For instance, African Americans 

(AA) have faced a disproportionate impact from 

COVID-19, accounting for 30%-60% of deaths despite 

comprising only 13% of the US population. Preliminary 

evidence indicates that pregnant women and individuals 

with CVD may encounter more severe outcomes from 

severe coronavirus infection [161]. Similarly, gender 

disparities exist, contributing to underlying causes and 

predictors of immediate and short-term cardiovascular 

readmissions following COVID-19 hospitalizations in 

the USA. Vardar and team’s research revealed that 

among COVID-19 patients requiring hospitalization, 

factors such as male gender, as well as underlying  

renal, pulmonary, and liver conditions, correlate with 

increased cardiovascular readmission risk. These 

findings offer valuable insights for healthcare systems 

to develop strategies aimed at reducing readmissions 

[162]. With various previous studies we have learnt that 

cardiac injury was prevalent during acute COVID-19, 

linked to poorer short-term outcomes, and its etiology  

is multifaceted, with imaging abnormalities often 

present regardless of acute illness severity. Yet, there  

is still much to uncover about the progression and 

clinical significance of these findings in survivors, 

particularly those experiencing post-acute COVID-19 

syndrome [163]. 

 

In addition to cardiovascular disease, diabetes and 

hypertension are significant risk factors for severity and 

mortality in individuals infected with COVID-19. These 

conditions should be a primary focus in managing  

this infection [164]. Current evidence indicates  

that COVID-19 infection can lead to hyperglycemia, 

ketoacidosis, and occasionally new-onset Type 1 

diabetes, while also worsening prediabetes and existing 

Type 2 diabetes. Since the onset of the pandemic, it has 

become clear that individuals with metabolic diseases 

face a higher risk of severe COVID-19 and increased 

mortality compared to those without these conditions. 

Furthermore, COVID-19 infection may exacerbate 

metabolic disorders and is associated with a higher 

prevalence of long-COVID among diabetes patients, 

who tend to experience more long-term effects. The 

underlying mechanisms for these differences are not  
yet fully understood and warrant further research in  

the coming years [165]. As the COVID-19 pandemic 

significantly altered daily routines worldwide due to 

lockdowns, impacting various factors that worsen  

blood pressure (BP). While some changes, like 

increased sleep and reduced pollution, could lower BP, 

other behaviors—such as higher alcohol consumption, 

smoking, decreased physical activity, and poor 

medication adherence—likely contributed to increased 

BP levels [166]. A study by Akpek and colleagues 

examined COVID-19 impact on BP in 153 hospitalized 

patients, revealing that both systolic and diastolic BP 

were significantly higher post-infection compared to 

admission. New onset hypertension occurred in 18 

patients within an average follow-up of about 32  

days, suggesting that COVID-19 may lead to increased 

BP and new hypertension cases [167]. In addition  

to impacting the lungs, COVID-19 can damage the 

cardiovascular, digestive, urinary, hepatic, and central 

nervous systems. Beyond its immediate effects, the 

virus may lead to long-term complications as well [168]. 
 

CONCLUSIONS 
 

The journey of cardiac aging is intricate, shaped by 

genetic, environmental, and physiological factors, 

posing a significant challenge for scientific and medical 

communities. Understanding the cardiovascular system’s 

structure and function reveals its essential role in 

sustaining life through the delicate balance of oxygen, 

nutrients, and waste removal. However, oxidative stress, 

mitochondrial dysfunction, and impaired autophagy 

contribute to the gradual decline of cardiovascular health 

with age, highlighting the need for a comprehensive 

understanding of cardiac aging mechanisms. Gender 

and ethnicity further influence cardiac aging, with 

estrogen providing a protective shield for women’s 

cardiovascular health that diminishes post-menopause. 

Ethnic predispositions and cultural lifestyle elements 

add complexity, emphasizing the need for personalized 

cardiac care approaches. The COVID-19 pandemic 

amplifies cardiac health concerns, revealing severe 

cardiovascular complications in adults and children 

alike. Monitoring, managing, and mitigating these 

impacts require sustained research, clinical observation, 

and healthcare strategies. Innovative therapeutic 

strategies, including cardiac regeneration and myocardial 

damage alleviation, hold promise, with potential roles 

for macrophages, exosomes, and reactive oxygen 

species targeting. A comprehensive understanding of 

the diverse influences on cardiac aging is crucial  

for targeted interventions. Integrating insights into 

structural, functional, and external influences on cardiac 

aging is essential for promoting cardiac health in an 

aging global population, representing a societal 

commitment to enhancing longevity and quality of life. 
Moreover, a multidisciplinary approach is essential  

to effectively tackle cardiovascular diseases. By 

integrating insights from genetics, molecular biology, 
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public health, and geriatrics, we can gain a more  

holistic understanding of CVD and develop innovative 

solutions. This comprehensive perspective allows for 

personalized treatment strategies, targeted prevention 

programs, and improved patient outcomes, addressing 

the complex interplay of factors that contribute to 

cardiac health. Collaboration across these diverse fields 

is crucial for advancing research and implementing 

effective interventions to reduce the global burden of 

cardiovascular diseases. 

 

FUTURE DIRECTIONS 
 

Technological advances in recent years have enabled  

us to assist a broader range of patients with complex 

cardiac and coronary anatomy. With novel devices and 

advanced imaging techniques, we can now treat more 

intricate coronary conditions and address valvular 

diseases in patients with multiple comorbidities. These 

advancements in interventional cardiology will continue 

to shape our practice in the future, making their 

widespread availability to sicker patients crucial [169]. 

Future research directions for addressing cardiac  

health in aging populations post-COVID-19 include 

longitudinal studies to assess long-term cardiovascular 

effects, exploration of novel therapeutic interventions 

targeting cardiac regeneration and inflammation 

reduction, and investigation of gender-specific and 

ethnic disparities in cardiac outcomes. Implementing 

comprehensive cardiac rehabilitation programs tailored 

for aging individuals, exploring telemedicine and remote 

monitoring technologies, and examining socioeconomic 

determinants on cardiac health outcomes are crucial. 

Enhancing analysis of patients referred to cardiac 

rehabilitation by race, gender, socioeconomic status, and 

other factors at an institutional level can illuminate 

disparities, with potential for a standardized systematic 

approach to improve referral rates. Collaboration across 

disciplines is essential for developing evidence-based 

strategies to mitigate long-term cardiovascular risks  

and improve access to cardiac care for vulnerable  

aging populations impaired by COVID-19. 
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