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INTRODUCTION 
 

The biology of cancer and ageing are strongly 

intertwined. The risk of the large majority of cancers 

increases with age [1]. Dietary restriction, perhaps the 

most consistent and best studied anti-ageing intervention 

[2], dramatically reduces both cancer incidence and 

progression [3, 4]. Long-lived species, such as elephants 

and whales, have evolved different cellular anticancer 

mechanisms [5, 6]. Interestingly, other long-lived 

animals have evolved very different mechanisms than 

our own. For example, in comparison bats evolved 

limited cell-intrinsic barriers to prevent excessive 

proliferation [7, 8]. The field of comparative biology 

into ageing and cancer was given a strong impetus when 

Peto identified that humans have substantially more cells 

than mice, but do not have substantially larger incidence 

of cancer [9, 10]. Peto’s paradox has subsequently been 

loosely interpreted as representing the lack of correlation 

between a species’ body mass and their cancer incidence 

[11–13]. Some of these interpretations go as far as 

rejecting Peto’s paradox based on their recent finding of 

a small increase of cancer prevalence with species’ body 

mass [14]. Although another recent paper gives a more 

nuanced interpretation of a similar finding [15]. 

 

The original identification of Peto’s work presenting a 

paradox [9, 10, 15] did so by pointing to the lack of a 

strong positive correlation between cancer incidence 

and a species’ body mass [10]. The problem posed by 

Peto’s paradox is that if individual cells have the same 

risk per time to acquire malignancy, then bigger 

organisms that are composed of more cells should have 

much higher cancer incidence. Malignancy is predicted 

to increase dramatically with body size if only one 

damaged cell is required for a tumour to develop. 

Detailed modelling and predictions have been made 

previously [16, 17]. For illustration purposes imagine a 

chance of one in a million for a cell to develop 

malignancy per a given time. Predicted cancer incidence 

is limited for species with low cell count, increases 

dramatically for species with 10,000 cells, and saturates 

with all individuals getting cancer at around three 

million cells (Figure 1). Note, this discrepancy is even 

bigger as body mass co-evolves strongly with lifespan, 

over a scale of over hundred-fold in vertebrates [5, 18]. 

Bigger animals thus both have more cells at risk but 

also have a longer time to accrue somatic damage that 

leads to malignancy. 

 

The observation that cancer incidence increases with 

body mass [15], therefore, in itself does not resolve 

Peto’s paradox, contrary to the conclusions of Butler  

et al. [14]. Instead, it is the magnitude of increase in 

cancer incidence scaled by body mass which is critical. 

The null hypothesis of Peto’s paradox of the relationship 

between a species’ body mass and cancer incidence is 

not that there is no relationship. The paradox is resolved 
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when cancer incidence would increase dramatically with 

a species’ body mass (Figure 2). Perhaps fitting with this 

interpretation mistake is that the incidence metric 

reported in the main text by Butler et al. is without  

clear units, due to the way count observation data are  

 

 
 

Figure 1. Cancer incidence plotted against total somatic 
cell count (C) of an organism for difference p (chance)  
of malignancy per cell. Calculation of cancer incidence is  

the chance of at least one cell becoming malignant: Pmaligancy = 1-
(1-p)C. 
 

 
 

Figure 2. The relationship between a species’ body mass 
and cancer incidence is not predicted to be flat (dotted 
line) by Peto’s paradox. It is the predicted dramatic 
relationship with body mass that is the null hypothesis for Peto’s 
paradox (solid line). A comparative relationship (dashed) that has 
a shallower slope than this null hypothesis is no proof against the 
validity of Peto’s paradox. Note, however, that the exact shape of 
null prediction of the relationship between a species’ body mass 
and cancer incidence is not known, it is however predicted to be 
dramatic (as in Figure 1). 

modelled. However clearly ~2.5% to ~7% in cancer 

incidence on a linear scale (Fig S13 in Butler et al. 2025) 

across 8 (natural log) powers of magnitude in body mass 

is a small effect and this does not come near the scale of 

the effect of Peto’s paradox (Figure 1). The increase 

reported in Butler et al. is similar (1.30% slope on log10 

scale) to the slopes reported in Compton et al. (0.65% 

and 2.9% when corrected for gestation time [15]). The 

future of comparative oncology should not be aimed to 

refute Peto’s paradox [14] but as Compton et al. argue 

should be aimed at explaining variation in rates of 

malignancy across animal species. As in human 

epidemiology of cancer, assessing incidence is data 

hungry. The different levels of accuracy due to sample 

size and different levels of bias, may still limit this quest 

to the species at the extreme ends of this variation. 

 

Another explanation for Peto’s paradox is that we do 

not understand the underlying variables well enough to 

make an accurate null hypothesis of how cancer 

incidence should scale with age [19]. Still, the original 

simplicity of Peto’s paradox is its strength. Any 

adaptation that co-evolves with body mass that changes 

the susceptibility to cancer is of fundamental and 

possibly ultimately clinical relevance. Especially 

relevant and probably clinically relevant is how 

different species’ tissue microenvironment constraints 

or facilitates malignant growth. Indeed, it is becoming 

increasingly recognised that somatic mutation is not the 

sole explanation for carcinogenesis [20]. It is without 

doubt that Peto’s paradox holds. Understanding how 

large-bodied organisms have evolved resistance to 

cancer, especially in exceptionally large mammals has 

the potential to reveal mechanisms that can be harnessed 

in oncology and biology of ageing research [5]. 
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