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INTRODUCTION 
 

Aging is an unavoidable biological process charac-

terized by a gradual decline in physiological function 

and an increased susceptibility to disease. Recent 

advances in aging research have focused on the role of 

epigenetic mechanisms, particularly DNA methylation 

patterns, in the regulation of aging. The concept of an 

epigenetic clock is a predictive model based on DNA 

methylation patterns that provides a more accurate 

estimate of biological age than chronological age [1, 2]. 

Physical activity has emerged as a modifiable lifestyle 

factor that can influence the epigenetic clock and may 

serve as a geroprotective intervention to extend the 

health span and possibly the life span. However, some 

studies have discussed these effects without clearly 

distinguishing between physical activity, physical 

fitness, and exercise, which are closely related terms 

[3]. In this Research Perspective, we clarify the 

definitions of these terms and outline the literature on 

their relationship with epigenetic aging. We also 

reviewed the findings of both human and animal studies 

and discussed the systemic effects of exercise on the 

epigenetic clock. In addition, we identify future 

directions and challenges in this field. 

 

Fundamental terms of exercise science 

 

Understanding the effects of exercise on aging requires 

an understanding of the basic terms used in exercise 

science (Table 1). Physical activity refers to any bodily 

movement produced by skeletal muscles that results in
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Table 1. The definitions: physical activity, exercise, and physical fitness [3–6]. 

Term Definition Characteristics Examples 

Physical 
activity 

Any bodily movement produced by skeletal 
muscles that results in energy expenditure. 

Broad concept; includes all 
movements in daily life. 

Walking, climbing stairs, 
cleaning, commuting 

Exercise 

A subcategory of physical activity that is planned, 
structured, repetitive, and purposeful, typically 
aimed at improving or maintaining physical 
fitness. 

Subset of physical activity; 
intentional and goal-directed. 

Jogging, weight training, 
swimming, yoga 

Physical 
fitness 

A set of health- and skill-related attributes related 
to the ability to perform physical activity, 
influenced by both genetic factors and training. 

Represents a physiological 
outcome rather than a 
behavior. 

VO₂ max, muscular 
strength, flexibility, 
endurance 

Abbreviation: VO2 max: maximal oxygen uptake. 

 

energy expenditure. Conversely, exercise is a subset of 

physical activity that is planned, structured, and 

repetitive, with the final or intermediate goal of 

improving or maintaining physical fitness [3]. Physical 

fitness is also a term used to describe a set of attributes 

that people have or achieve that relates to their ability to 

perform physical activities [3]. These foundational 

terms–physical activity, exercise, and physical fitness–

are often used interchangeably in the general 

population; however, they have distinct physiological 

and epidemiological implications, particularly in aging 

research. For instance, while light-intensity physical 

activity, such as casual walking, contributes to energy 

expenditure and general health maintenance, it may not 

provide a sufficient stimulus to induce the molecular 

and cellular adaptations typically associated with 

geroprotective effects. In contrast, structured exercise 

programs, especially those incorporating moderate-to-

vigorous intensity, are more likely to elicit systemic 

responses such as improved mitochondrial function, 

enhanced insulin sensitivity, and modulation of epigenetic 

markers. Furthermore, physical fitness, particularly 

cardiorespiratory fitness (CRF) and muscular strength, 

has been shown to be a robust predictor of morbidity 

and mortality in older adults [7–10]. It is important to 

note that while physical activity and exercise are 

behaviors, physical fitness represents an integrated 

outcome influenced by genetics, training status, and 

overall health. Therefore, when evaluating the impact of 

exercise on epigenetic aging, distinguishing between 

these terms allows for a more precise interpretation of 

study findings and the development of targeted 

interventions. 

 

The relationship between physical activity and 

epigenetic aging 

 

Several studies have investigated the relationship 

between physical activity and epigenetic aging, in 

contrast to the fewer investigations into the roles of the 

other two concepts, physical fitness and exercise. At the 

forefront of this field, Quach et al. reported a weak 

negative association between self-reported physical 

activity and epigenetic age acceleration [11]. A 

subsequent study by Gale et al. reported that sedentary 

and walking behaviors, objectively measured using 

accelerometers, were not associated with epigenetic age 

acceleration [12]. In a study by Sillanpaa et al., which 

included twin pairs with leisure-time physical activity 

(LTPA) discordance, there was no difference in 

epigenetic age acceleration between active and inactive 

twins [13]. Although previous studies have shown no or 

weak associations between physical activity and 

epigenetic aging, numerous subsequent studies have 

reported negative associations [14–20]. Both self-

reported [14, 15, 19, 20] and accelerometer-based 

assessments [16, 17, 18] of physical activity have 

shown a negative association with epigenetic aging. In 

contrast, sedentary behavior has been suggested to 

accelerate epigenetic aging [18, 20]. It has also been 

shown that LTPA and occupational physical activity 

(OPA) seem to have different effects, that is, LTPA is 

negatively associated with epigenetic aging and is 

positively associated with epigenetic aging [14]. 

Collectively, these findings suggest that increased 

leisure-time physical activity and reduced sedentary 

behavior may have beneficial effects on epigenetic 

aging. 

 

The effects of exercise training on epigenetic aging: 

evidence from animal and human studies 

 

Long-term exercise training interventions are essential 

for establishing a causal relationship between exercise 

and epigenetic aging. In animal studies, Murach et al. 

subjected 22- to 24-month-old mice to eight weeks of 

voluntary endurance/resistance exercise training 

(progressive weighted wheel running, PoWeR) and 

found that age-related hypermethylation of promoter 

regions and epigenetic clock progression were slightly 

suppressed in the skeletal muscles of the exercise-

trained group [21]. A study by the same group found 

that eight weeks of late-life exercise training (PoWeR) 

was associated with lower skeletal muscle mDNAge 
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using a contemporary muscle-specific epigenetic clock 

[22]. In human studies, Voisin et al. showed that 

exercise training helps retain a more youthful 

methylome and gene expression profile in skeletal 

muscles. [23]. In the study by da Silva Rodrigues et al., 

sedentary middle-aged and older females underwent 

eight weeks of combined (aerobic and strength) 

training. The group with a higher epigenetic age prior to 

the intervention showed a significant decrease in 

epigenetic age after the intervention [24]. These 

findings suggest that structured exercise training can 

effectively reverse or rejuvenate blood- and skeletal 

muscle-based epigenetic clock(s) and the aging 

methylome. 

 

The relationship between physical fitness and 

epigenetic aging 

 

Few studies have examined the relationship between 

physical fitness obtained through exercise and 

epigenetic aging. McGreevy et al. developed 

DNAmFitAge, which incorporates physical fitness 

measures into DNA methylation data, and found that 

bodybuilders had significantly lower DNAmFitAge 

compared to age-matched controls [25]. Jokai et al. 

estimated maximal oxygen uptake values based on the 

Chester step test, assigned them to medium-to-low-fit 

and high-fit groups, and compared epigenetic aging 

[26]. The results showed that epigenetic age 

acceleration in the high-fitness group was 1.5 and 2.0 

years lower in males and females, respectively, than in 

the medium-to-low-fitness group. A unique study 

comparing Olympic champions and non-champions 

who performed rigorous and long-term exercise from 

adolescence to adulthood found that epigenetic age 

acceleration was lower in Olympic champions than in 

non-champions [27]. Our study examined the 

relationship between physical fitness variables, such as 

peak oxygen uptake (VO2 peak), oxygen uptake at the 

ventilation threshold (VO2 at VT), which is the point of 

exercise intensity when breathing increases rapidly 

during exercise and the secretion of various endocrine 

hormones increases, grip strength, leg extension power, 

and epigenetic aging in older males [28]. We found a 

negative correlation between VO2 peak, VO2 at VT, and 

epigenetic age acceleration, even after adjusting for age, 

smoking, and alcohol consumption status. In addition, 

VO2 peak and VO2 at VT were more strongly associated 

with epigenetic age acceleration than grip strength and 

leg extension power. Furthermore, individuals whose 

fitness levels (i.e., VO2 peak and VO2 at VT) were 

above the reference values showed lower epigenetic age 

acceleration than those whose fitness levels were below 
the reference values. Cordero et al. investigated the 

association between blood DNA methylation profiles 

and CRF in 78 participants (including those with 

chronic airflow limitation: CAL) aged ≥ 40 years and 

found that higher CRF was associated with lower 

epigenetic age acceleration, and this effect was 

consistently observed in individuals with CAL [29]. 

These findings suggest that maintaining a high level of 

physical fitness delays epigenetic aging; however, these 

studies did not establish a causal relationship. 

 

Which organs are the targets of exercise-induced 

geroprotective effects? 

 

Most human studies have measured DNA methylation 

in blood and skeletal muscle samples. As mentioned in 

a previous Editorial [30], it is well known that the 

beneficial effects of exercise are systemic [31, 32]. 

Therefore, it is of scientific interest to identify the target 

organs of the geroprotective effects of exercise. It is 

reasonable to assume that the primary target organ is the 

skeletal muscle; however, a recent report using a rat 

model selectively bred for high and low CRF revealed 

that the group with high CRF had a lower epigenetic 

age in the adipose tissue, cardiac muscle, and liver, in 

addition to the skeletal muscle, compared to the group 

with low CRF [33]. In our latest study, we used a 

similar rat model to compare the indicators of 

epigenetic aging in multiple organs of rats with high 

and low CRF [34]. We observed that epigenetic clocks 

trained with available rat blood-derived data did not 

reflect differences in CRF in any of the organs, 

including the hippocampus, heart, skeletal muscle, or 

large intestine. In contrast, organ-specific differences 

owing to CRF were observed in the global mean DNA 

methylation in the soleus muscle and mean methylation 

entropy in the heart and large intestine, and the direction 

of these differences was opposite to that of age-related 

changes in rat blood. These findings suggest that 

maintaining physical fitness delays epigenetic aging in 

multiple organs and supports the notion that exercise as 

a geroprotector confers benefits to various organs. 

Moreover, recent findings indicate that the gut 

microbiome is associated with both epigenetic age 

acceleration and physical fitness [35], underscoring the 

need for continued research on inter-organ aging 

networks and the effects of exercise on these networks. 

 

Future challenges 

 

As described above, physical activity, physical fitness, 

and exercise may be beneficial in delaying or reversing 

epigenetic aging in various organs. Considering the 

limited scientific evidence in this field, this section 

outlines the future research directions (Figure 1). The 

accuracy of the epigenetic clock and the issue of its use 
as a surrogate endpoint for clinical trials were excluded 

from the discussion, as these topics have been 

discussed elsewhere [36, 37]. First, the standardization 
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of study design and methodology is essential to 

improve reproducibility and comparability across 

studies. This includes the unification of physical 

activity, physical fitness, and exercise assessment 

methods, training protocols, and epigenetic clock 

selection. It is also necessary to conduct studies with 

diverse subjects and populations (e.g., age, sex, and 

race). Second, further clarification of causal 

relationships based on individual variability is required. 

As noted above, responsiveness to exercise training 

may be greater in individuals with a higher epigenetic 

age at baseline [24]. Similarly, in a recent study, 

epigenetic age acceleration in response to exercise 

training did not change significantly in the overall 

average, but there was large individual variability, 

which also tended to improve, especially in those with 

higher pre-intervention age acceleration values 

(unpublished data). These findings suggest that the 

response of epigenetic aging to exercise is not 

homogeneous, and personalized exercise interventions 

are promising. More recently, causal epigenetic clocks 

(i.e., DamAge and AdaptAge) have been developed 

using CpG sites associated with age-related DNA 

methylation changes, which are presumed to have 

causal effects on health and diseases [38]. Therefore, 

testing whether exercise interventions alter the 

methylation status of these CpGs may reveal the causal 

basis for the geroprotective effects of exercise. Third, it 

is essential to understand the biological mechanisms by 

which exercise regulates epigenetic aging. The 

epigenetic clock, which is currently the dominant 

molecular biomarker for predicting biological age, was 

constructed without considering the molecular 

mechanisms underlying age-related DNA methylation 

changes [37]. Acute and long-term exercise are known 

to affect both genome-wide changes in CpG 

methylation (global methylation) and local methylation 

changes in specific gene promoter regions, primarily in 

the skeletal muscle [39]. However, the biological 

mechanisms linking exercise and epigenetic clocks are 

currently unknown, and future studies will require 

detailed observations of the effects of exercise on 

methylation levels at CpG sites that constitute the clock 

and gene expression. 

 

 
 

Figure 1. Future challenges overview. 
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