
www.aging-us.com 1 AGING 

INTRODUCTION 
 

Aging is highly heterogeneous, and chronological age 

is not a sensitive measure of the unique physiological 

and developmental processes that occur across the 

human lifespan. Patterns of DNA methylation (DNAm) 

across the genome can be used to estimate DNA 

methylation age (DNAmAge), a family of measures 

strongly correlated with chronological age but better 

able to predict morbidities and mortality. Adjusting for 

chronological age, DNAmAge measures can be 

residualized to generate measures of acceleration [1], 

such that positive residuals reflect faster biological 

aging, while negative residuals reflect slower, and 

presumably healthier, aging. Since the advent of the 

first measures a decade ago, DNAmAge measures 
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ABSTRACT 
 

DNA methylation age (DNAmAge) surpasses chronological age in its ability to predict age-related morbidities 
and mortality. This study analyzed data from 287 middle-aged twins in the Louisville Twin Study (mean age 51.9 
years ± 7.03) to investigate the effect of DNAmAge acceleration on change in IQ (ΔIQ) between childhood and 
midlife, while testing childhood socioeconomic status (SES) as a moderator of the relationship. DNAmAge was 
estimated with five commonly used algorithms, or epigenetic clocks (Horvath, Horvath Skin and Blood, 
GrimAge, and PhenoAge). A factor analysis of these measures produced a two-factor structure which we 
identified as first generation and second generation measures. Results of genetically informed, quasi-causal 
regression models indicated that accelerated second generation DNAmAge predicted more negative ΔIQ from 
childhood to midlife, after accounting for genetic and environmental confounds shared by twins. The 
relationship between DNAmAge and ΔIQ was moderated by childhood SES, with a stronger effect observed 
among twins from low SES backgrounds. Second generation DNAmAge measures trained to estimate 
phenotypic biological age show promise in their predictive value for cognitive decline in midlife. Our genetically 
informed twin design suggested that epigenetic aging may represent a pathway through which early-life 
socioeconomic disadvantage impacts midlife cognitive health. 
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reliably correlate with demographic characteristics like 

education level and socioeconomic status (SES) as well 

as clinically relevant outcomes including cognitive 

performance in adulthood [2, 3]. 

 

Predicting cognitive outcomes from DNAmAge 

 

Individuals with accelerated DNAmAge have an 

increased risk of cancer, stroke, heart disease, and 

neurodegenerative disease [4–6]. While cognitive 

functioning is a crucial facet of both healthy and 

pathological aging, the link between DNAmAge and 

cognitive functioning remains unclear, partly due to 

inconsistencies in the predictive accuracy of various 

DNAmAge algorithms [7]. First generation DNAmAge 

measures, such as Horvath, Horvath Skin and Blood, 

and Hannum DNAmAge, were designed primarily to 

estimate chronological age with methylation data 

from cytosine-phosphate-guanine (CpG) sites sensitive 

to time-dependent changes [1, 8, 9]. While two  

studies found that Horvath DNAmAge was associated 

with cognitive decline [6, 10], several others have  

found no statistically significant associations between 

first generation DNAmAge measures and cognitive 

performance or decline [11–14]. 

 

In contrast, second generation DNAmAge measures, 

including PhenoAge and GrimAge, are trained to 

predict age-related outcomes by integrating DNAm 

signatures tied to clinical biomarkers, health behaviors 

(e.g., smoking), and demographic variables [15, 16]. 

These algorithms aim to capture phenotypic aging 

processes beyond chronological age, such as morbidity 

and mortality risk. Accelerated PhenoAge and GrimAge 

are consistently associated with lower cognitive 

performance in middle and older adulthood [11, 12, 17, 

18]. However, findings on cognitive decline are mixed. 

Neither Hillary et al. [18] nor Maddock et al. [12] 

reported statistically significant results, yet Reed and 

colleagues [13] found that those with cognitive decline 

in midlife showed more accelerated GrimAge scores 

than those without decline. These findings suggest that 

second generation measures, developed to more 

accurately estimate phenotypic biological age, may 

better index age-related changes in cognitive ability. 

 

Early-life exposures and pace of DNAmAge 

 

Disadvantaged socioeconomic status (SES) in childhood 

is an established risk factor for lower cognitive ability 

across the lifespan and late-life cognitive decline [19]. 

Recent research has also begun exploring links between 

childhood adversity and later-life DNA methylation age 
(DNAmAge). In retrospective accounts of adversity 

(e.g., poverty, death of parent, alcohol/drug use in 

family, abuse), only poverty was related to GrimAge 

acceleration [20]. Childhood SES but not adult SES 

predicted accelerated DNAmAge in midlife using  

the Horvath and Hannum clocks, suggesting the 

methylome, or DNA methylation modifications across 

the genome, may be particularly vulnerable to external 

stressors in childhood [21, 22]. However, findings 

remain inconsistent: McCrory et al. [23] found no 

association between childhood SES and Horvath, 

Hannum, or PhenoAge DNAmAge in adults over 50, 

and unexpectedly, Faul et al. [11] found that low 

childhood SES was associated with slower aging on the 

Horvath and Hannum clocks later in life. It is not yet 

known whether SES moderates the effects of DNAmAge 

on cognitive outcomes. 

 

Genetics, epigenetics, and classical twin designs 

 

Associations between early life exposures, mid- to late-

life outcomes, and DNAmAge have primarily been 

correlational. Two studies decomposed the variance of 

DNAmAge into additive genetic, shared environmental, 

and nonshared environmental components using a 

traditional twin model [24, 25], while two others used 

pedigree designs to estimate heritability [16, 26]. Our 

group has shown how to use a longitudinal twin design 

to go beyond estimating heritability while sharpening 

causal inference between a predictor and outcome [27]. 

Only two studies have examined the relationship 

between DNAmAge and cognitive ability while 

controlling for between-family confounds [10, 14]. In 

the Middle-Aged Danish Twin Study, no relationship 

was observed between the Horvath and Hannum clocks 

and cognitive change over 10 years in midlife [14]. 

Vaccarino and colleagues [10] found no associations 

between Horvath, Hannum, GrimAge, or PhenoAge 

clocks and baseline cognition in middle-aged male 

twins. However, there was a statistically significant 

within-twin pair effect of Horvath DNAmAge on 

cognitive decline 11 years later. The reason why only 

Horvath’s original measure predicted cognitive ability is 

unclear, as initial validation studies of PhenoAge and 

GrimAge reported associations with cognitive outcomes 

[15, 16]. 

 

Using the Louisville Twin Study (LTS), we expanded on 

this limited amount of research examining DNAmAge 

and cognitive change and sought to clarify how early life 

environmental characteristics may influence midlife 

cognitive outcomes. The LTS, initiated in 1957, includes 

intensive, prospective data on twins’ development from 

infancy through adolescence and recent re-evaluations in 

midlife on their cognitive, physical, and psychosocial 

functioning as well as epigenetic aging [28]. Parental data 
collected during the twins’ childhood further enabled us 

to examine how early life exposures, here rearing SES, 

relate to twins’ midlife epigenetic and cognitive aging. 
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The current study used a twin design to investigate causal 

effects of DNAmAge on change in IQ (ΔIQ) between 

childhood and midlife, while testing childhood SES as a 

moderator of the relationship. While observational 

designs cannot reproduce the causal inference possible 

with random assignment, twins offer a quasi-

experimental method for studying causal processes while 

controlling for family-level genetic and environmental 

confounds. If a monozygotic (MZ) twin has a higher 

DNAmAge and also a greater ΔIQ than their co-twin, the 

association cannot be due to genetic differences or early 

environmental exposures, because identical twins reared 

together are matched for these factors. For this reason, we 

refer to associations that survive twin-based controls as 

“quasi-causal” [27]. To address variability in DNAmAge 

algorithms, we conducted an exploratory factor analysis 

of five widely used measures. We expected second 

generation DNAmAge measures to be sensitive to ΔIQ in 

midlife, as they were developed to capture phenotypic 

aging processes beyond chronological age. Finally, given 

recent findings linking early life stressors with midlife 

DNAmAge, we hypothesized that the relationship 

between midlife DNAmAge and ΔIQ would depend on 

differences in childhood SES. 

 

RESULTS 
 

Descriptive statistics 

 

The sample includes 287 individual twins, comprising 

60 monozygotic and 41 dizygotic complete pairs and 85 

single twins. All participated in the childhood and 

midlife phases of the LTS (Supplementary Figure 1). 

Twins were assessed in person using three versions of 

the Wechsler Intelligence Scale for Children (WISC) 

and the Wechsler Adult Intelligence Scale (WAIS-IV). 

We used Wechsler Full-Scale Intelligence Quotient (IQ) 

scores as an overall estimate of an individual’s level of 

global cognitive ability. The average age for childhood 

IQ was 14.42 (1.93) years, and the average age for adult 

IQ was 51.87 (7.03). Mean childhood IQ was 102.7 

(13.4), and mean adult IQ was 105.4 (13.8) (Table 1). 

DNAmAge was estimated using principal components 

(PC) based epigenetic clock methodology which has 

shown significantly improved reliability and stability 

over time as compared with the traditional Horvath, 

Horvath Skin and Blood, Hannum, PhenoAge, and 

GrimAge algorithms [29]. After regressing DNAmAge 

values on chronological age and adjusting for cell type, 

Horvath, Horvath Skin and Blood, Hannum, PhenoAge, 

and GrimAge had means close to zero (Table 1). MZ 

twin correlations (0.60-0.74) were approximately 

double those for DZ twins (0.28-0.37) across most 

measures, except PhenoAge, where MZ and DZ 

correlations were more similar (0.56 vs. 0.47). Pairwise 

clock correlations are in Supplementary Table 1. 

Results from standardized univariate twin models 

decomposing the variance of individual DNAmAge 

measures showed little to no shared environmental 

variance, C, in Horvath, Horvath Skin and Blood, 

Hannum, and GrimAge clocks. Because C was estimated 

at a negative value in four of five ACE models initially, 

C was set to zero, and the constrained AE models are 

presented (Supplementary Table 2). The five DNAmAge 

measures were substantially heritable, with the additive 

genetic effects, A, ranging from 57% to 73%, and non-

shared environment, E, accounting for 27% to 43% of 

the variance in DNAmAge (Supplementary Table 2). 

 

Exploratory factor analysis of DNAmAge measures 

 

We conducted an exploratory factor analysis (EFA) 

using the five DNAmAge measures residualized for age 

and cell count. Based on Eigenvalues and fit indices, we 

selected a two-factor model (RMSEA = 0.08; 90% CI: 

[0.00, 0.20]) (Supplementary Figure 2). Results from a 

likelihood ratio test comparing a two-factor model to a 

one-factor model suggested that the two-factor model fit 

substantially better (χ2 =70.07, df=4, p < .001). First 

generation DNAmAge measures (Horvath, Horvath 

Skin and Blood, and Hannum) loaded on one factor, 

while second generation measures (PhenoAge and 

GrimAge) loaded on a second factor. We refer to these 

factors as “Gen 1” and “Gen 2”, respectively. Factor 

loadings (p < .05) are displayed in Supplementary Table 

3. The factors were correlated r = 0.57. Composite 

scores were generated for each participant based on the 

EFA. Gen 1 is the sum of standardized values for 

Horvath, Horvath Skin and Blood, and Hannum 

DNAmAge (M=0.00, SD= 2.85). Gen 2 is the sum of 

standardized values for GrimAge and PhenoAge 

DNAmAge (M=0.00, SD= 1.78). Twin pair correlations 

for Gen 1 and Gen 2 are in Table 1. 

 

Univariate twin models of Gen 1 and Gen 2 

DNAmAge 

 

We decomposed the variances of Gen 1 and Gen 2 into 

A, C, and E components using the classical twin model. 

Both Gen 1 and Gen 2 were moderately heritable, with 

A accounting for 50% of the variance in Gen 1 and 60% 

of the variance in Gen 2. The variance attributable to 

the non-shared environment was 42% in Gen 1 and 31% 

in Gen 2, while shared environment accounted for less 

than 1% of the variance in both. Standardized estimates 

are in Supplementary Table 2. 

 

Phenotypic and “quasi-causal” association models 

 
Following the twin modeling framework outlined by 

Turkheimer and Harden [27], we first estimated  

a “phenotypic association” model with no control 
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Table 1. Sample characteristics of Louisville Twins. 

Characteristic Total n (%) Mean (SD) 
MZ correlation1 

r (SE) 

DZ correlation2 

r (SE) 

Sociodemographic factors 287    

Age, years  51.87 (7.03)   

Age for childhood IQ, years  14.42 (1.93)   

Female Sex 169 (58.89)    

White 262 (91.29)    

Non-Hispanic 279 (99.29)    

Education, 16 or more years 161 (56.09)    

Childhood SES3  46.09 (26.02)   

Smoker 66 (23.00)    

Cognitive function     

Childhood IQ Score 282 102.67 (13.44) .88 (.06) .58 (.14) 

Adult IQ Score 255 105.45 (13.84) .87 (.07) .50 (.14) 

DNAmAge4 281    

Horvath   0.00 (3.37) .62 (.11) .37 (.15) 

Horvath Skin and Blood  -0.03 (3.59) .62 (.10) .32 (.15) 

Hannum  -0.01 (3.25) .60 (.11) .28 (.16) 

PhenoAge  -0.09 (4.20) .56 (.11) .47 (.14) 

GrimAge  -0.12 (3.42) .74 (.09) .37 (.15) 

Gen 1   0.00 (2.85) .62 (.10) .32 (.15) 

Gen 2   0.00 (1.78) .71 (.09) .42 (.15) 

1Monozygotic Twin Pair Correlation. 
2Dizygotic Twin Pair Correlation. 
3Childhood socioeconomic status (SES) measured using the Duncan Socioeconomic Index. 
4DNAmAge is controlled for chronological age and cell composition. Residuals are in years. 

 

for differential regressions between and within twin 

pairs. We then fit a “quasi-causal” regression model, 

using the ACE decomposition of the predictor variable 

to control for family-level genetic and environmental 

confounds in the individual-level regressions. This 

sequence (phenotypic association model and quasi-

causal regression model) was estimated for Gen 1 then 

repeated for Gen 2. Figure 1 illustrates the model: adult 

IQ was regressed on childhood IQ, DNAmAge, and the 

A and C components of each; DNAmAge was regressed 

on childhood IQ and its A and C components; SES (a 

family-level variable) was included as a linear covariate 

for DNAmAge and IQ variables and as an interaction 

term with DNAmAge. By including childhood IQ in the 
model, the conditional effects of SES and DNAmAge 

can be interpreted as predicting change in IQ from 

childhood to midlife (ΔIQ). The phenotypic regression 

coefficient (bP3) is an estimate of the relationship 

between the DNAmAge and ΔIQ with between-family 

genetic and environmental confounds controlled, i.e., 

within a pair of identical twins reared together. 

 

Predictors of DNAmAge 

Phenotypic models. In the phenotypic association model, 

there were no statistically significant associations with 

Gen 1 DNAmAge (Supplementary Table 4). However, 

accelerated Gen 2 DNAmAge was associated with lower 

childhood SES (b=-0.41, SE=0.13, p<.05) (Table 2). 

 

Quasi-causal models. Next, we used the quasi-causal 

regression model to estimate the effects of childhood IQ 

and SES on DNAmAge, using the ACE decomposition 

of childhood IQ to control for genetic and 

environmental family-level confounds. There were 

similarly no statistically significant predictors of Gen 1 

DNAmAge. In the Gen 2 quasi-causal analyses, 
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childhood SES again predicted Gen 2 DNAmAge (b=-

0.67, SE=0.19, p<.001), while childhood IQ did not 

predict Gen 2 DNAmAge (Table 2). Genetic and 

environmental confounds were not significantly 

different from zero. 

 

Predictors of midlife cognitive functioning 

Phenotypic models. In the phenotypic association 

models for both Gen 1 and Gen 2, childhood IQ 

statistically predicted adult IQ. The strong relationship 

between childhood IQ and adult IQ (r = 0.77) is also 

illustrated in Supplementary Figure 3, where adult IQ is 

regressed on childhood IQ without controlling for the 

differential regressions between and within twin pairs. 

Similarly, SES was positively associated with childhood 

IQ (b=0.56, SE=0.09, p <.001) in both phenotypic 

association models. Higher childhood SES predicted 

higher adult IQ in the Gen 1 model (b=0.16, SE=0.07, 
p<.05), though this association did not meet statistical 

significance in the Gen 2 model (Supplementary Table 

4). Gen 1 and ΔIQ were not associated with each other 

(Supplementary Table 4). We did find a statistically 

significant phenotypic association between Gen 2 and 

ΔIQ (bP3= -0.10, SE = 0 .03, p <.05). In both Gen 1 and 

Gen 2 phenotypic association models, we then tested 

the interaction between DNAmAge and SES (bint) in the 

prediction of ΔIQ but found that the interaction was not 

statistically significant. 

 

Quasi-causal models. In quasi-causal models, we then 

regressed adult IQ on childhood IQ (bP1), DNAmAge 

(bP3), and the A and C components of both variables. 

There was a statistically significant phenotypic 

association between childhood IQ and adult IQ after 

accounting for genetic and environmental confounds 

shared by identical twins in both Gen 1 (bP1 = 0.41, p 

<.01) and Gen 2 models (bP1 = 0.48, p <.001). This 

association shows that over 40% of the variance in adult 

IQ can be attributed to childhood IQ. Consistent with the 

phenotypic association results above, accelerated Gen 2 

DNAmAge predicted more negative ΔIQ from 

childhood to midlife (b = −0.18, SE=0.07, p <.05). 

Genetic and environmental confounds (bA3 and bC3) 

were not significantly different from zero. The quasi-

causal twin model implies that within a pair of MZ twins 

raised together, the member of the pair with accelerated 

DNAmAge also declines more in cognitive ability 

between childhood and midlife. These findings were 

only apparent when DNAmAge was measured with Gen 

2 DNAmAge. 

 

 
 

Figure 1. Path diagram depicting the association between DNAmAge and change in IQ, modified by childhood 
socioeconomic status (SES). Variances of ACE components are estimated, with paths to observed variables set to 1.0. All regression 

coefficients are unstandardized. bA1 and bC1 are regression coefficients from the A and C components of Childhood IQ to Adult IQ. bP1 is the 
phenotypic regression conditional on bA1 and bC1. bA2 and bC2 are regression coefficients from the A and C components of Childhood IQ to 
DNAmAge. bP2 is the phenotypic regression conditional on bA2 and bC2. bA3 and bC3 are regression coefficients from the A and C components 
of DNAmAge to Adult IQ. bP3 is the phenotypic regression conditional on bA3 and bC3. SES is a covariate for DNAmAge and the IQ variables, 
and a moderator of bP3. 
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Table 2. Phenotypic and quasi-causal regression model results for Gen 2 DNAmAge. 

Gen 2 DNAmAge 

   

Childhood IQ 

estimate (SE)   

DNAmAge 

estimate (SE)   

Adult IQ 

estimate (SE) 
P

h
en

o
ty

p
ic

 A
ss

o
ci

a
ti

o
n

 M
o

d
el

 

SES 

b 0.56 (0.09)** b -0.67 (0.20)** b 0.20 (0.11) 

Childhood IQ 

 _ bA2 _ bA1 _ 

 _ bC2 _ bC1 _ 

 _ bP2 -0.08 (0.09) bP1 0.48 (0.14)** 

DNAmAge 

 _  _ bA3 _ 

 _  _ bC3 _ 

 _  _ bP3  -0.10 (0.03)* 

DNAmAge X SES 

    bint  0.06 (0.03)* 

Variances 

A 1.15 (0.34)  1.96 (0.31)  0.50 (0.08) 

C 0.15 (0.32)  0.00 (0.00)†  0.00 (0.00)† 

E 0.22 (0.04)  0.85 (0.16)   0.24 (0.05) 

Q
u

a
si

-C
a

u
sa

l 
R

eg
re

ss
io

n
 M

o
d

el
 

SES 

b 0.56 (0.09)** b -0.67 (0.19)* b 0.18 (0.12) 

Childhood IQ 

 _ bA2 -0.78 (0.41) bA1 0.16 (0.23) 

 _ bC2 0.30 (1.42) bC1 0.80 (0.67) 

 _ bP2 0.38 (0.26) bP1 0.48 (0.14)** 

DNAmAge 

 _  _ bA3 0.13 (0.15) 

 _  _ bC3 0.00 (0.00) 

 _  _ bP3  -0.18 (0.07)* 

DNAmAge X SES 

    bint  0.07 (0.03)* 

Variances 

A 1.06 (0.29)  1.73 (0.56)  0.43 (0.12) 

C 0.21 (0.28)  0.00 (0.00)†  0.00 (0.00)† 

E 0.23 (0.04)  0.80 (0.15)  0.23 (0.05) 

bP, phenotypic association between predictor and outcome; bA, amount of variance attributable to additive 

genetic influences; bC, amount of variance attributable to shared environmental experiences; bint, estimate of 

the interaction effect. Data are presented as unstandardized regression coefficients with standard errors in 

parentheses. 
†C variances have been set to zero. 

*p <.05 **p≤ .001. 

 

We then tested the interaction between DNAmAge and 

SES (bint) in the quasi-causal models. The interaction 

revealed that twins raised in lower SES families showed 

a more negative relationship between Gen 2 DNAmAge 
and ΔIQ (b = 0.07, SE=0.03, p <.05) (Table 2). Figure 2 

illustrates the moderating effect of childhood SES by 

using a median split of our sample for SES and 

displaying the regression of adult IQ on Gen 2 

DNAmAge in both high- and low-SES groups. The 

effect of DNAmAge on ΔIQ is greater in twins raised in 

lower SES households, indicating that socioeconomic 
disadvantage may be an early exposure that amplifies 

the negative effects of epigenetic aging on cognitive 

trajectories in midlife. 
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Given smoking is both a risk factor for cognitive 

decline and is also correlated with types of DNA 

methylation, we repeated our quasi-causal regression 

models testing smoking as a covariate. The GrimAge 

clock, in particular, should be the most sensitive to 

smoking as it was trained on a DNAm-based surrogate 

of smoking pack years [16, 30], so we expected 

smoking to be significantly related to Gen 2 

DNAmAge. In fact, smoking was strongly associated 

with Gen 2 DNAmAge (b = 1.98, SE=0.22, p <.001). 

With smoking included as a covariate, and one degree 

of freedom removed, the association between Gen 2 and 

adult IQ was no longer statistically significant; 

however, the effect was in the same direction (b = 

−0.12, SE=0.07, p =.09). The interaction effect was 

similarly no longer statistically significant but was in 

the same direction (Supplementary Table 5). 

DISCUSSION 
 

DNAmAge is an effective predictor of specific aspects of 

biological aging, but challenges remain due to the lack of 

a gold standard DNAmAge measure and variations in the 

predictive accuracies of various measures. Most studies 

have focused on associations between DNAmAge and 

phenotypic aging outcomes, but few have tested whether 

such associations occur because DNAm causes biological 

aging as opposed to merely correlating with it. Our study 

first identified two factors across five DNAmAge 

measures and then used a longitudinal twin design to 

improve causal inference between early-life exposures, 

DNAmAge, and ΔIQ in midlife. 

 

As hypothesized, Gen 2 DNAmAge, but not Gen 1, 

predicted ΔIQ in midlife. This result was consistent 

 

 
 

Figure 2. Regression of Adult IQ residuals on Gen 2 DNAmAge for high and low SES groups. IQ residuals are derived from the 
regression of adult IQ on childhood IQ and childhood socioeconomic status. 
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with several previous studies showing associations 

between second generation measures and cognition 

cross-sectionally [11, 17] and longitudinally [13]. 

PhenoAge and GrimAge algorithms both incorporate 

methylation signatures of clinical markers—PhenoAge 

from blood-based biomarkers predicting physical 

function, multimorbidity, and mortality [15], and 

GrimAge from plasma proteins and smoking pack years 

selected for their prediction of time-to-death [16]. These 

second generation DNAmAge measures have already 

shown improvements over first generation DNAmAge 

in predicting physical functioning, morbidity, and 

lifespan [16, 31]. Our finding that accelerated Gen 2 

DNAmAge predicted more negative ΔIQ suggests that 

decline in cognitive ability is interwoven with other 

age-related physiological processes that associate with 

the methylome. Given that our main effect of Gen 2 

DNAmAge on ΔIQ was no longer statistically 

significant when smoking was included as a covariate, 

we cannot fully disentangle the effects of DNAmAge 

and smoking on cognitive decline in this analysis. A 

larger dataset is needed to parse the two. Recent work 

has shown that GrimAge is one pathway through which 

life course smoke exposure predicts chronic physical 

health conditions (e.g., cancer, lung disease) and 

mortality in adulthood [30]. Our results build on this, 

suggesting that DNAmAge measures that incorporate 

smoking may also act as useful biomarkers of cognitive 

health status. 

 

The within-twin pair association between Gen 2 

DNAmAge and ΔIQ that withstood controls for between 

family level confounds suggests that differences in 

environmental exposures partially explain their 

association. Two prior twin studies of DNAmAge and 

cognition had mixed findings [10, 14]. Our Gen 1 

findings were consistent with Starnawska and colleagues 

[14] who did not find within-twin pair associations 

between Horvath and Hannum DNAmAge and cognition 

cross-sectionally or longitudinally. Our results differed 

from Vaccarino et al. [10] who found no within-pair 

association between PhenoAge and GrimAge and 

cognitive decline. Differences in study design may 

explain this discrepancy: while our sample included both 

male and female twins, Vaccarino et al. examined only 

male veterans. Our study also spanned a longer age 

range, predicting change from childhood and adolescent 

IQ to midlife, whereas Vaccarino et al. used two testing 

points within participants’ 50s and 60s. Importantly, the 

LTS lifespan longitudinal design allowed us to capture 

change from premorbid assessments of cognitive ability 

to midlife, a period when subtle, age-related declines 

may emerge. 
 

While some prior studies found that lower childhood 

SES was associated with accelerated DNAmAge on the 

Horvath and Hannum clocks [21, 22], others detected 

no significant effect [23, 32]. Our results supported the 

hypothesis that early-life SES would differentially 

affect Gen 1 and Gen 2 DNAmAge. Childhood SES 

predicted Gen 2 DNAmAge but not Gen 1 DNAmAge 

in midlife, consistent with findings from McCrory et al. 

[20], who found childhood poverty was associated with 

accelerated GrimAge in 50- to 87-year-olds. Childhood 

poverty has been found to influence health across the 

lifespan by limiting access to resources like education 

and healthcare [33]. However, the interaction effect 

between DNAmAge and SES in our study offers a 

novel explanation for one pathway through which early-

life stressors become biologically embedded. The 

relationship between accelerated epigenetic age and 

cognitive decline was amplified within twin pairs from 

lower-income households, suggesting that those raised 

in poorer families are more vulnerable to the cognitive 

effects associated with the broader physiological aging 

measured by DNAmAge. 

 

Using the classical twin model, we estimated the genetic, 

shared environmental, and nonshared environmental 

variance components of five DNAmAge measures, Gen 

1, and Gen 2. Consistent with the small number of 

previous twin studies estimating DNAmAge heritability, 

we found that the variance in DNAmAge measures was 

best explained by the AE model, with C constrained to 

zero [24, 25]. Encouragingly, our heritability estimates 

for PC-trained Horvath, Hannum, PhenoAge, and 

GrimAge were mostly consistent with those reported by 

Hong and colleagues in a large sample of middle-aged 

Chinese twins [25]. 

 

To our knowledge, only one previous study has 

conducted a factor analysis on multiple DNAmAge 

measures. In a model predicting multimorbidity and 

activities of daily living, Faul and colleagues [11] 

found Horvath and Hannum measures loaded on a first 

factor and PhenoAge, GrimAge, and DunedinPACE 

loaded on a second factor. Our EFA results aligned 

with this, identifying a “Gen 1” factor with Horvath, 

Horvath Skin and Blood, and Hannum clocks, and a 

“Gen 2” factor with PhenoAge and GrimAge. 

Although we did not calculate DunedinPACE, a “third 

generation” measure that estimates rate of decline over 

nearly twenty years, future studies should compare its 

sensitivity with Gen 2 in the LTS sample [34]. These 

results contribute to an understanding of the shared 

underlying patterns of measurement in “Gen 1” and 

“Gen 2” DNAmAge. Distinguishing between these 

two domains is a step towards refining the application 

of DNAmAge: our findings suggest second generation 
DNAmAge measures may have greater utility in 

studies of cognitive aging than first generation 

DNAmAge. 
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Strengths and limitations 

 

Unlike previous studies that relied on retrospective 

reports of childhood financial hardship or parental 

occupation, ours is the first to use a prospective rating 

of childhood SES, which may have reduced recall  

bias and improved reliability. However, our childhood 

SES measure was a relatively crude indicator of 

parental occupation, and incorporating additional 

socioeconomic factors could strengthen future research. 

We did not test adult SES in this study, given that 

previous work had suggested childhood SES, but not 

adult SES, was predictive of DNAmAge [21, 22]. 

While our sample covered a broad socioeconomic 

range, it was predominantly white and recruited  

from one region of the United States, limiting 

generalizability. Future studies should examine the 

relationship between second generation DNAmAge 

measures and patterns of cognitive ability in larger and 

more diverse samples. Finally, we used IQ score as a 

proxy for global cognitive ability and future work 

should examine relationships between DNAmAge and 

specific cognitive domains including memory and 

executive functioning. 

 

MATERIALS AND METHODS 
 

Participants 

 

Participants were 287 individual twins from the midlife 

phase of the Louisville Twin Study (LTS). The LTS 

began as a study of childhood development in multiple 

birth pairs. Twins born between 1950-1997 in the 

Louisville metropolitan area were followed and 

assessed on cognitive ability, physical development, and 

temperament between 3 months and 15 years of age. 

Parents of twins provided data on demographics, 

parenting factors, and home environment. Zygosity was 

determined through blood typing during childhood. The 

sample contains same-sex monozygotic (MZ) and 

dizygotic (DZ) twin pairs, and opposite-sex DZ pairs. 

The LTS closed down in 2000 after 1,770 individual 

twins had been recruited [35]. In 2018, follow-up of 

LTS twins aged 30-65 was initiated [28], and LTS 

reopened in 2019 to begin the first midlife data 

collection of the 1,770 twins. Participants provided a 

50cc whole blood sample for genotyping and DNA 

methylation assay. Genotyping confirmed zygosity for 

any unknown twin pairs. The present sample includes 

60 MZ pairs, 41 DZ pairs, and 85 individual twins who 

completed a midlife study visit between 2019-2023. 

Singletons were included in the analysis and contributed 
to between-pair analyses but not to within-pair 

regressions. Supplementary Figure 1 illustrates the 

participant flow, attrition, and retention across study 

phases. 

Socioeconomic status 

 

Childhood socioeconomic status (SES) was measured 

using the Duncan socioeconomic index which assigns 

scores of 0-100 based on the occupation of the head of 

the household [36]. Occupational prestige was based on 

1950 US Census income data and education level 

associated with the occupation. The childhood SES of 

our sample (M=47.3, SD = 25.7) was consistent with 

the overall LTS distribution (M=46.9, SD= 26.9), 

evenly distributed, and representative of the Louisville, 

Kentucky area [35]. 

 

Smoking 

 

During the midlife assessment, participants self-

reported whether they had smoked tobacco in the last 

three years. We coded responses at 1 (smoked in the last 

three years and/or current smoker) and 0 (has not 

smoked in the last three years). 

 

Cognitive ability measures 

 

LTS participants were assessed using validated 

Wechsler batteries of cognitive functioning. Children 

and adolescents were administered one of three forms of 

the Wechsler Intelligence Scale for Children (WISC, 

WISC-R, WISC-III) [37–39]. Adults in the midlife 

phase were assessed using the Wechsler Adult 

Intelligence Scale IV (WAIS-IV) [40]. Test scores are 

age-standardized based on a standardization sample that 

is roughly representative of the United States. Wechsler 

IQ scores have a mean of 100 and a standard deviation 

of 15. Children were typically administered cognitive 

assessments at ages 7, 8, 9, 12, and 15, though not all 

twins were assessed at each timepoint; this study used 

the most recently available WISC assessment for each 

participant, with over 80% collected at age 15 (see 

Table 1 for more detailed descriptive statistics). 

 

DNAmAge measures 

 

Genomic DNA was extracted from whole-blood samples 

that were collected at the University of Louisville and 

Norton Healthcare medical campuses. Venous blood was 

collected in ethylenediaminetetraacetic acid (EDTA) 

tubes and shipped to the Norris Comprehensive Cancer 

Institute at the University of Southern California Keck 

School of Medicine. DNA was extracted with promega 

Maxwell 16 LEV blood DNA kits, and then treated  

with bisulfite reagents at the USC Molecular Genomics 

Core following manufacturer protocol. Methylation  

was assayed with the Illumina Infinium Human 
MethylationEPIC BeadChip (Illumina, San Diego, CA, 

USA) at the USC Molecular Genomics Core at the Norris 

Cancer Institute at the Keck School of Medicine. 
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Quality control was conducted in R 4.3.0 [41] using the 

minfi package [42] to identify aberrant samples and CpG 

sites, remove cross-reactive probes, conduct background 

correction, and adjust for batch effects prior to 

estimating DNAmAge variables. Background correction 

was performed using the normal-exponential out-of-

band (noob) method [43]. The ComBat method was used 

to adjust for laboratory batches [44]. 

 

We estimated blood cell composition using the 

Houseman method [45] and obtained percentages of 

CD8+ T cells, CD4+ T cells, natural killer cells (NK), B 

cells, monocytes, and granulocytes. Cell proportions are 

highly correlated, so in the current analysis we included 

the first and second principal components from a 

principal components (PC) analysis (collectively, they 

explained 86.12% of the variance) in all analyses. 

 

As replicate blood samples often have different 

methylation values due to noise in the CpG sites, batch 

effects, and sample preparation, Higgins-Chen et al. 

[29] developed a principal components-based method to 

bolster reliability in DNAmAge algorithms by training 

them based on PC analysis, extracting the covariance 

between multicollinear CpGs, including age-related 

covariance. We estimated DNAmAge using five PC-

trained algorithms, Horvath, Horvath Skin and Blood, 

Hannum, PhenoAge, and GrimAge [1, 8, 9, 15, 16]. 

 

Data analysis 

 

Descriptive statistics for the sample’s demographic 

characteristics, survey data, and cognitive ability data 

were computed in R version 4.3.2 [41]. Methylation data 

were cleaned and prepared in R. DNAmAge was 

calculated as the residual difference in PC-trained values 

predicted from chronological age in a bivariate linear 

regression model. DNAmAge values were adjusted for 

cell composition. Age and cell-adjusted variables were 

then winsorized such that values more than two standard 

deviations from the mean DNAmAge score were 

replaced with a value of two standard deviations above 

or below the mean. Pairwise correlations for the five 

DNAmAge measures were then estimated using 

maximum likelihood in Mplus Version 8.8 [46]. 

 

We used the classical twin model to decompose the 

phenotypic variance of DNAmAge into additive genetic 

(A), shared environmental (C), and nonshared 

environmental (E) components. Given that MZ twins 

share 100% of their genetic makeup and DZ twin pairs 

share half, on average, the A variance is correlated 1.0 

within MZ twin pairs and 0.5 within DZ twin pairs. In 
both MZ and DZ twin pairs, the C component includes 

experiences that make siblings raised together more 

similar, and is correlated 1.0. Nonshared environmental 

components are unique to individuals and by definition 

uncorrelated within twin pairs. We estimated a 

univariate ACE model for all five DNAmAge measures 

individually using Mplus. Because C values were 

estimated as negative, we selected to use the 

constrained AE models, with C set to zero. AE 

estimates with 95% confidence intervals calculated 

using bias corrected bootstrap standard errors are 

presented in Supplementary Table 2. 

 

Exploratory factor analysis was conducted in Mplus to 

identify underlying dimensions across the five DNAm 

clock variables (Horvath, Horvath Skin and Blood, 

Hannum, PhenoAge, and GrimAge). The number of 

factors to be rotated was determined by the scree plot of 

Eigenvalues (Supplementary Figure 2) and a likelihood 

ratio test comparing a two-factor model to a one-factor 

model. EFA models were estimated using full-

information maximum likelihood with an oblique 

(geomin) rotation. Factor loadings were evaluated for 

statistical significance, with a criterion of p < .05 

(Supplementary Table 3). We estimated composite 

scores based on the results of the EFA by standardizing 

the DNAmAge variables and summing the standardized 

values for the variables that loaded on each factor. As 

described in the results, the composite scores for each 

factor are referred to as Gen 1 and Gen 2. Each of the 

following models was fit for Gen 1 then repeated for 

Gen 2. 

 

We first estimated univariate ACE models for Gen 1 

and Gen 2 DNAmAge, decomposing their variances 

into genetic, shared environmental, and nonshared 

environmental components. Next, to explore the 

primary aims of the study, the relationship between 

DNAmAge and ΔIQ was modeled in two ways. Both 

the phenotypic association model and “quasi-causal” 

regression model were fit in Mplus. The phenotypic 

association model is equivalent to a simple phenotypic 

regression where the relationship between predictor and 

outcome is examined without controlling for genetic 

and shared environmental effects. This was estimated 

prior to all genetically informed models. Using a dataset 

wide by twin pair and estimated parameters set to be 

equal across the members of a pair, we regressed adult 

IQ on childhood IQ, childhood SES, DNAmAge, and 

the interaction between SES and DNAmAge.  

 

Finally, we fit the quasi-causal regression model to 

estimate the phenotypic regression coefficients 

conditional on bA and bC paths. The classical twin 

method was used to partition childhood IQ, adult IQ, 

and DNAmAge into A, C, and E components. In this 
case, adult IQ was regressed on childhood IQ, 

DNAmAge, and the A and C components of 

DNAmAge and childhood IQ, as illustrated in Figure 1. 
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Childhood SES was used as a linear covariate for 

DNAmAge and the IQ variables. We also estimated an 

interaction between childhood SES and DNAmAge to 

determine whether the strength of the relationship 

between DNAmAge and ΔIQ depended on the SES of 

the family in which twins were raised. A statistically 

significant bP3 coefficient affirmatively answers the 

question: Within a pair of identical twins, does the twin 

with the higher DNAmAge value also have the larger 

positive or negative ΔIQ, statistically adjusting for the 

effects of the A and C components of DNAmAge (bA3 

and bC3). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Participant flow diagram from the Louisville Twin Study. 

 

 
 

Supplementary Figure 2. Scree plot of eigenvalues. 
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Supplementary Figure 3. Relationship between childhood and adult IQ scores. 
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Supplementary Tables 
 

 

Supplementary Table 1. Pairwise correlations between DNAmAge measures.  

DNAmAge measures Horvath Horvath skin and blood Hannum PhenoAge GrimAge 

Horvath _     

Horvath Skin and Blood 0.86 _    

Hannum 0.87 0.84 _   

PhenoAge 0.57 0.60 0.61 _  

GrimAge 0.37 0.44 0.39 0.58 _ 

Correlations were estimated after DNAmAge values were adjusted for age and cell composition and were 
winsorized for values more than two standard deviations above or below the mean. Correlations were 
computed without regard for twin pair relatedness. All correlations were statistically significant at p<.001. 

 

Supplementary Table 2. Standardized DNAmAge measure ACE decompositions. 

 
A C E 

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 

Horvath 0.60 (0.39-0.75) 0.00* 0.40 (0.25-0.61) 

Horvath Skin & Blood 0.61 (0.39-0.76) 0.00* 0.39 (0.24-0.61) 

Hannum 0.57 (0.31-0.74) 0.00* 0.43 (0.26-0.69) 

PhenoAge 0.58 (0.42-0.70) 0.00* 0.42 (0.30-0.58) 

GrimAge 0.73 (0.55-0.85) 0.00* 0.27 (0.15-0.45) 

Gen 1 0.50 (-0.24-1.29) 0.08 (-0.65-0.68) 0.42 (0.25-0.67) 

Gen 2 0.60 (0.10-1.20) 0.09 (-0.50-0.54) 0.31 (0.22-0.44) 

A, additive genetic variance; C, shared genetic variance; E, nonshared environmental variance; SE, 
standard error estimate. 
*C is set to zero because variance estimated as negative. 

 

Supplementary Table 3. Results of the exploratory factor analysis. 

DNAmAge measure 
Gen 1  

Loading (SE) 

Gen 2 

Loading (SE) 

Horvath 1.00 (0.05) -0.10 (0.07) 

Horvath Skin and Blood 0.88 (0.03) 0.06 (0.06) 

Hannum 0.92 (0.01) 0.00 (0.00) 

PhenoAge 0.30 (0.16) 0.59 (0.18) 

GrimAge 0.00 (0.00) 0.77 (0.12) 

Bolded values indicate statistical significance at p < .05. The correlation between Gen 1 
and Gen 2 is 0.57 (0.12), p < .05. 
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Supplementary Table 4. Phenotypic and quasi-causal regression model results for Gen 1 
DNAmAge. 

Gen 1 DNAmAge  
  Childhood IQ 

estimate (SE) 

  DNAmAge 

estimate (SE) 

  Adult IQ 

estimate (SE) 

P
h

en
o

ty
p

ic
 A

ss
o

ci
a

ti
o

n
 M

o
d

el
 

SES 

b 0.56 (0.09)** b   -0.14 (0.22) b 0.16 (0.07)* 

Childhood IQ  
_ bA2 _ bA1 _  
_ bC2  _ bC1  _  
_ bP2 0.03 (0.15) bP1    0.71 (0.05)** 

DNAmAge  
_ 

 
_ bA3 _  

_ 
 

_ bC3 _  
_ 

 
_ bP3  -0.01 (0.02) 

DNAmAge X SES     
bint 0.01 (0.02) 

Variances 

A 1.15 (0.34) 
 

5.75 (0.93) 
 

0.50 (0.09) 

C 0.12 (0.32) 
 

0.00 (0.00)† 
 

0.00 (0.00)† 

E 0.22 (0.04)   2.15 (0.45)   0.27 (0.05) 

Q
u

a
si

-C
a

u
sa

l 
R

eg
re

ss
io

n
 M

o
d

el
 

SES 

b 0.56 (0.09)** b   -0.13 (0.11) b 0.32 (0.11)* 

Childhood IQ  
_ bA2 -0.05 (0.66) bA1 0.33 (0.23)  
_ bC2  0.36 (1.21) bC1  0.61 (0.48)  
_ bP2 0.02 (0.45) bP1    0.41 (0.14)* 

DNAmAge  
_ 

 
_ bA3 -0.01 (0.08)  

_ 
 

_ bC3  0.00 (0.00)  
_ 

 
_ bP3 0.00 (0.05) 

DNAmAge X SES     
bint   0.01 (0.02) 

Variances 

A 1.03 (0.29) 
 

5.71 (0.95) 
 

0.46 (0.10) 

C 0.22 (0.28) 
 

0.00 (0.00)† 
 

0.00 (0.00)† 

E 0.23 (0.04) 
 

2.15 (0.45) 
 

0.26 (0.05) 

bP, phenotypic association between predictor and outcome; bA, amount of variance attributable to 
additive genetic influences; bC, amount of variance attributable to shared environmental experiences; 
bint, estimate of the interaction effect. Data are presented as unstandardized regression coefficients with 
standard errors in parentheses. 
†C variances have been set to zero. 
*p <.05 **p≤ .001. 
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Supplementary Table 5. Quasi-causal regression model results for Gen 2 DNAmAge with 
smoking as a covariate. 

Gen 2 DNAmAge 

   

Childhood IQ 

estimate (SE)   

DNAmAge 

estimate (SE)   

Adult IQ 

estimate (SE) 
 

SES 

b 0.55 (0.09)** b -0.35 (0.18)* b 0.20 (0.11) 

Childhood IQ 

 _ bA2 -0.38 (0.44) bA1 0.20 (0.22) 

 _ bC2 0.38 (1.30) bC1 0.64 (0.53) 

 _ bP2 0.15 (0.26) bP1 0.47 (0.14)** 

DNAmAge 

 _ 
 

_ bA3 -0.02 (0.41) 

 _ 
 

_ bC3 0.21 (0.25) 

 _ 
 

_ bP3 -0.12 (0.07) 

DNAmAge X SES 

    bint 0.05 (0.03) 

Smoking 

b -0.06 (0.17) b  1.98 (0.22)** b -0.21 (0.19) 

bP, phenotypic association between predictor and outcome; bA, amount of variance attributable to 
additive genetic influences; bC, amount of variance attributable to shared environmental 
experiences; bint, estimate of the interaction effect. Data are presented as unstandardized regression 
coefficients with standard errors in parentheses. 
*p ≤.05 **p≤ .001. 
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