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INTRODUCTION 
 

Enhancing longevity and living a healthy life at  

older age are key objectives for healthcare systems 

worldwide. Dietary protein intake regulates longevity 

across various species [1]. Protein restriction has also 

been demonstrated to extend lifespan [2]. As proteins 

are composed of amino acids, we hypothesize that 

amino acids responding to the effects of protein 

restriction may affect lifespan. In an animal experiment, 

tyrosine has been shown to be specifically involved in 

regulation of the physiological response to low-protein 

diet [1]. Another animal experiment further shows that 

restriction of tyrosine intake lowers internal tyrosine 

levels, modulates amino acid-sensing pathways, and 

prolongs lifespan [3]. Tyrosine plays a critical role  

in metabolic pathways as a precursor to important 

neurotransmitters like dopamine, norepinephrine, and 

epinephrine [4]. These neurotransmitters are crucial for 

regulating mood, cognition, and stress responses [5], 
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ABSTRACT 
 

Background: Protein restriction increases lifespan, however, the specific amino acids affecting lifespan are 
unclear. Tyrosine and its precursor, phenylalanine, may influence lifespan through their response to low-
protein diet, with possible sex disparity. 
Methods: We applied cohort study design and Mendelian randomization (MR) analysis. Specifically, we 
examined the overall and sex-specific relationships between circulating phenylalanine and tyrosine and all-
cause mortality in the UK Biobank using Cox regression. To test causality, in two-sample MR analysis, we used 
genetic variants associated with phenylalanine and tyrosine in UK Biobank with genome-wide significance and 
uncorrelated (r2 < 0.001) with each other, and applied them to large genome-wide association studies of 
lifespan, including parental, paternal, and maternal attained ages in the UK Biobank. We also conducted 
multivariable MR to examine the independent role of phenylalanine and tyrosine. 
Results: Tyrosine was associated with shorter lifespan in both observational and MR study, with potential sex 
disparity. After controlling for phenylalanine using multivariable MR, tyrosine remained related to a shorter 
lifespan in men (−0.91 years of life, 95% confidence interval (CI) −1.60 to −0.21) but not in women (−0.36 years, 
95% CI −0.96 to 0.23). Phenylalanine showed no association with lifespan in either men or women after 
controlling for tyrosine. 
Conclusions: Reducing tyrosine in people with elevated concentrations may contribute to prolonging lifespan, 
with potential sex-specific differences. It is worthwhile to explore pathways underlying the sex-specific effects. 
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Table 1. The associations of phenylalanine and tyrosine with all-cause mortality in UK Biobank using Cox 
regression. 

Exposure Sex HR1 95% CI2 p 

Phenylalanine 

Overall 1.04 1.03, 1.05 1.1 × 10−9 

Men 1.04 1.02, 1.05 7.1 × 10−7 

Women 1.04 1.02, 1.07 1.2 × 10−3 

Tyrosine 

Overall 1.02 1.00, 1.03 2.1 × 10−2 

Men 1.03 1.01, 1.05 5.5 × 10−3 

Women 1.00 0.98, 1.03 7.2 × 10−1 

1HR: hazard ratio. In overall analysis we adjusted for age, body mass index (BMI), Townsend Deprivation Index, smoking 
status, alcohol consumption, physical activity, ethnicity, and education (in years). For combined-sex analyses, we additionally 
adjusted for sex. 2CI: confidence interval. 

 

which are vital for metabolic health and potentially 

influencing lifespan [6]. Tyrosine deprivation may  

also lead to suppression of IIS and mTORC1 pathways 

in peripheral tissues, potentially suppress organismal 

aging [3]. Phenylalanine is the precursor of tyrosine; 

specifically, tyrosine is formed through the conversion 

of phenylalanine mediated by phenylalanine hydroxylase 

(PAH). Therefore, we also examined the role of 

phenylalanine. Elevated circulating phenylalanine has 

been associated with telomere loss [7], inflammatory 

disease [8], and type 2 diabetes [9]. Experimental 

evidence shows that phenylalanine can undergo 

oxidation to form toxic metabolite meta-tyrosine  

(m-tyrosine), which has been shown to shorten C. 

elegans lifespan [10, 11]. However, the role of 

phenylalanine and tyrosine in humans has been rarely 

examined. 

 

Interestingly, lifespan differs by sex. In most regions 

worldwide, men have a consistently shorter life 

expectancy compared with women [12], and the 

disparity may have widened after the COVID-19 

pandemic [13]. With US life expectancy declining from 

78.8 years in 2019 to 77.0 in 2020 and 76.1 in 2021,  

the lifespan difference between men and women 

expanded to 5.8 years, marking the widest gap since 

1996 [13]. Notably, tyrosine also differs by sex, with 

lower levels in young women than in young men [14]. 

Whether tyrosine explains or partly explains the sex 

difference in lifespan has not been clarified. In this 

study, we assessed the associations of tyrosine and  

its precursor phenylalanine with lifespan in overall 

people and in men and women separately, using UK 

Biobank, a large cohort in UK. Since conventional 

observational designs are inherently susceptible to 

residual confounding arising from variables such as 

socioeconomic factors and health status, we also used 

Mendelian randomization (MR) (Supplementary Figure 

1). Using genetic variants as instruments, which are less 

affected by socioeconomic positions [15], MR has the 

potential to mitigate confounding. Here we employed 

MR to assess the role of tyrosine and phenylalanine in 

lifespan overall and sex-specifically. 

 

RESULTS 
 

In the cohort study, 272,475 participants with death 

status information, measurement of amino acids, and 

information on confounders were included in the 

analysis. Among these, 125,359 were men. Of these 

272,475 participants, 23,964 deaths were identified 

from death records, including 14,230 in men and 9,734 

in women. After adjustment for multiple confounders 

(details shown in Methods), plasma phenylalanine was 

linked to elevated all-cause mortality overall (Hazard 

ratio (HR) 1.04 per SD increase in phenylalanine, 95% 

confidence interval (CI) 1.03–1.05), in men (HR 1.04, 

95% CI 1.02–1.05) and in women (HR 1.04, 95% CI 

1.02–1.07). The findings were similar for both men and 

women. Plasma tyrosine was associated with a higher 

risk of all-cause mortality overall and in men (HR 1.03, 

95% CI 1.01–1.05), but not in women (HR 1.00, 95% 

CI 0.98–1.03) (Table 1), although the difference in the 

associations in men and women was not statistically 

significant (p = 0.16). 

 

The associations of phenylalanine and tyrosine with 

lifespan, both overall and stratified by sex, remained 

after excluding deaths from accidents (Supplementary 

Table 1). The Pearson correlation coefficient between 

phenylalanine and tyrosine was 0.52 (p < 0.01). A 

greater tyrosine-to-phenylalanine ratio was linked to a 

lower overall risk of all-cause mortality in overall 

people (HR 0.98, 95% CI 0.97–1.00) and also in women 

(HR 0.96, 95% CI 0.94–0.99), whereas no association 

was observed in men (HR 1.00, 95% CI 0.98–1.02). 

Restricted cubic spline analysis suggested non-linearity, 

with the turning point at the standardized concentration 

of around 0 for both amino acids (p-value <0.05, 

Supplementary Figures 2, 3 and Supplementary Table 
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2). In disease-specific mortality, we found positive 

associations of phenylalanine with both cardiovascular 

disease (CVD) mortality (HR 1.03, 95% CI 1.00–1.06) 

and cancer mortality (HR 1.04, 95% CI 1.02–1.05), 

whereas tyrosine was not associated with either 

outcome (Supplementary Table 3). These observations 

imply that phenylalanine could participate in pathways 

relevant to cardiovascular health and carcinogenesis. 

In the genome-wide association study (GWAS) of  

two amino acids, the heritability for phenylalanine  

and tyrosine was 0.04 and 0.09, respectively 

(Supplementary Table 4). The LDSC intercepts and 

attenuation ratio indicated no genomic inflation of test 

statistics due to confounding factors (Supplementary 

Table 4). The Manhattan plots were shown in Figures 

1–4, Quantile-Quantile plots were presented in 

 

 
 

Figure 1. Manhattan plot on the genome-wide association study of phenylalanine in overall people. 

 

 
 

Figure 2. Manhattan plot on the genome-wide association study of tyrosine in overall people. 
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Supplementary Figure 4. In the overall analysis, we 

identified 2,422 genetic variants with genome-wide 

significance for phenylalanine, and 11,379 for tyrosine. 

In sex-specific GWAS, we identified 1,099 genetic 

variants for phenylalanine in men and 946 in women, 

while for tyrosine, 5,297 variants reached genome-wide 

significance in men and 4,840 in women. 

 

After removing correlated genetic variants, we used 21 

and 74 single nucleotide polymorphisms (SNP) as 

genetic instruments for phenylalanine and tyrosine, 

respectively in the overall analysis (Supplementary 

Tables 5 and 6). We used 12 SNPs in men and 10 SNPs 

in women for phenylalanine, and 45 SNPs in men and  

29 SNPs in women for tyrosine (Supplementary Tables 

7 and 8). The SNPs associated with phenylalanine  

and tyrosine are located within genes critical for amino 

acid metabolism, transport, and regulation. For 

phenylalanine, essential genes include PAH, which 

catalyzes phenylalanine’s conversion to tyrosine; 

members of the solute carrier (SLC) transporter family 

(SLC17A1, SLC38A4, and SLC43A1), which facilitate 

cellular uptake and distribution of amino acids; and 

carbamoyl-phosphate synthase 1 (CPS1), an essential 

enzyme in the urea cycle linking nitrogen metabolism 

with amino acid catabolism. Additionally, genes in  

the glutathione S-transferase (GST) family, including 

GSTM1 and GSTA2, encode enzymes central to 

detoxification pathways by conjugating amino acid-

derived metabolites. For tyrosine, SNPs further  

involve the previously highlighted genes PAH,  

CPS1 and GSTM1, alongside HPD encoding 4-

hydroxyphenylpyruvate dioxygenase, which participates 

in tyrosine breakdown through homogentisate formation. 

 

 
 

Figure 3. Manhattan plot on the genome-wide association study of phenylalanine in men and women. 
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Using two-sample MR, we estimated the effect on 

lifespan, i.e., years of life. Genetically predicted higher 

phenylalanine was related to longer lifespan in men  

but not related to lifespan in overall analysis or in 

women (Figure 5). The association in men showed 

consistent directions of associations applying various 

analytic methods (Figure 6). Genetically mimicked 

higher tyrosine levels were linked to a shorter lifespan  

in the overall population and in both sexes using  

inverse variance weighting (IVW) (Figure 5). The 

associations were also shown when we used Mendelian 

randomization pleiotropy residual sum and outlier  

(MR-PRESSO) (Figure 6), after excluding outliers 

(Supplementary Table 9 and Figure 6). The associations 

in weighted median and weighted mode showed aligned 

directions of association, but the CI included the null 

(Figure 6). The associations persisted after the exclusion 

of SNPs with potential pleiotropy (Supplementary Table 

10). Scatter plot and leave-one-out plot provided no 

indication that the relationships were affected by any 

individual SNP (Supplementary Figures 5 and 6). 

Sensitivity analysis using genetic instruments from 

another GWAS in overall people without UK Biobank 

participants showed consistent directions of associations 

(Supplementary Table 11). Genetically predicted 

phenylalanine was linked to longer lifespan in men, 

whereas no relationship was observed in the overall 

people or among women. Genetically predicted tyrosine 

had an inverse association with lifespan overall using 

MR-PRESSO and had the direction of inverse 

association in men and women especially using MR-

PRESSO (Supplementary Table 11). Power calculation 

 

 
 

Figure 4. Manhattan plot on the genome-wide association study of tyrosine in men and women. 
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showed that at 80% statistical power, we can identify an 

effect size of ~1.6 life years for phenylalanine and 1.0 

life years for tyrosine (Supplementary Table 12). 

 

In multivariable MR study including both amino  

acids, we found that after controlling for tyrosine, 

phenylalanine was not related to lifespan. Interestingly, 

after controlling for phenylalanine, tyrosine was 

associated with shorter lifespan in men, while no  

clear relationship in women (Table 2). The positive 

association was shown in both IVW and MR Egger  

in men, but not shown in MR Egger in women  

(Table 2). MR Egger results provided no indication of 

directional pleiotropy (intercept p > 0.05). 

 

DISCUSSION 
 

Our novel finding contributes to the scarce 

epidemiological evidence regarding the role of tyrosine 

and phenylalanine in lifespan. Our study showed that 

tyrosine was associated with shorter lifespan in 

observational and MR studies. The association was 

independent of phenylalanine, which remained in 

multivariable MR after controlling for phenylalanine. 

The role of tyrosine may be sex-specific, with a clearer 

effect in men than in women. Phenylalanine was not 

related to lifespan after controlling for tyrosine. 

 

Based on our results, targeting tyrosine may be a 

potential strategy for improving lifespan. Partly 

consistent with our findings, animal experiment 

suggests that restricting dietary protein in rats extends 

lifespan while lowering tyrosine concentrations in  

liver and muscle [16]. The biological processes linking 

tyrosine to lifespan have not been thoroughly 

determined. Tyrosine was associated with insulin 

resistance [17]. According to evolutionary biology, 

more investment in growth and reproduction often 

comes at the expense of lifespan [18], while insulin acts 

as one of key regulators of growth and reproduction [19, 

20]. Consistently, insulin resistance has been shown to 

be related to multiple diseases and decreased lifespan 

[21]. Insulin resistance may also have sex-specific 

effects [22, 23]. Restricting caloric intake, known to

 

 
 

Figure 5. Overall and sex-specific associations of phenylalanine and tyrosine with lifespan using inverse variance weighting. 
We presented increased/decreased life years for ease of understanding; these estimates were calculated based on the log hazard ratios 
reported by the lifespan GWAS (detailed described in “Methods-Genetic associations with lifespan”). 
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reduce the risk of insulin resistance [24], also prolongs 

lifespan in a sex-specific way [25]. Insulin resistance 

may interact with sex hormones, and testosterone has 

been shown to be related to survival, with a more 

obvious effect in men than in women [26]. Meanwhile, 

tyrosine acts as a precursor for neurotransmitters such 

as dopamine, norepinephrine, and epinephrine [4], 

which are crucial for regulating mood, cognition, and 

stress responses [5] and potentially influencing lifespan 

[6]. Interestingly, these neurotransmitters are regulated 

by sex hormones [27, 28], which provides another 

explanation for the sex-specific associations. 

 

Our study, for the first time, evaluated the role of 

tyrosine and phenylalanine in lifespan using both 

conventional observational study and MR. In this  

novel study, we also examined the sex difference in  

the associations, and suggested potential sex disparity in 

the role of tyrosine. Despite of the novelty, our study 

bears some limitations. First, traditional observational 

study, including our study, is inevitably susceptible  

to residual confounding. Some confounders, such as 

socioeconomic position, is difficult to be accurately 

measured [29]. In contrast, MR study can minimize 

confounding by leveraging genetic variants that are 

randomly assigned at conception [30]. This may  

partly explain the inconsistent associations for 

phenylalanine in observational study and MR study. 

Second, MR required stringent assumptions: relevance, 

independence, and exclusion-restriction. Accordingly, 

we selected genetic instruments with strong associations 

with these amino acids. In addition, we tested the 

associations of these genetic instruments with potential 

confounders. Considering that phenylalanine and 

tyrosine have shared SNPs, including rs140584594, 

rs10750864 and rs1043011, we also conducted multi-

variable MR to examine the independent role of 

phenylalanine and tyrosine. Third, genetic associations 

with the amino acids and with lifespan are both from 

UK Biobank, the sample overlap could introduce bias 

 

 
 

Figure 6. Overall and sex-specific associations of phenylalanine and tyrosine with lifespan using different analytic methods 
(weighted median, weighted mode and MR-PRESSO). We presented increased/decreased life years for ease of understanding; these 
estimates were calculated based on the log hazard ratios reported by the lifespan GWAS (detailed described in “Methods-Genetic 
associations with lifespan”). 
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Table 2. The sex-specific associations of genetically predicted phenylalanine and tyrosine with lifespan using 
multivariable MR, including inverse variance weighting (IVW) and MR-Egger. 

Sex Methods Exposure Life years 95% CI p MR-Egger intercept p 

Men 

IVW 
phenylalanine 0.75 −0.07, 1.58 0.08 

0.61 
tyrosine −0.80 −1.40, −0.23 0.006 

MR-Egger 
phenylalanine 0.55 −0.59, 1.69 0.35 

tyrosine −0.91 −1.60, −0.21 0.01 

Women 

IVW 
phenylalanine −0.72 −1.47, 0.05 0.07 

0.15 
tyrosine −0.59 −1.11, −0.05 0.03 

MR-Egger 
phenylalanine −0.18 −1.24, 0.85 0.73 

tyrosine −0.36 −0.96, 0.23 0.24 

 

into the MR estimates. However, our sensitivity 

analysis leveraging genetic variants derived from 

GWAS conducted in combined-sex populations outside 

the UK Biobank showed consistent directions of 

associations. It would be ideal to replicate using sex-

specific GWAS not conducted in UK Biobank, but  

such GWAS was not available yet. Moreover, a recent 

study suggested that MR analyses using overlapped 

samples in large cohorts like UK Biobank can still 

provide valid estimates [31]. Fourth, the study may lack 

adequate power to identify sex difference in the role of 

tyrosine, which may explain the marginal significance 

in the testing for sex disparity on the associations of 

tyrosine. Given the consistent trends observed in both 

observational and multivariable MR studies, it is more 

plausible that the marginal significance reflects limited 

statistical power, not an actual lack of effect. This is 

further supported by power calculations. Therefore, 

replicating the study in larger cohorts would be 

worthwhile. Fifth, MR study assessed the role of 

endogenous exposures, which is different from nutrient 

supplementation. While blood levels of amino acids 

respond to nutrient supplementation or diet rich in  

these amino acids [32–34], our findings on circulating 

tyrosine or phenylalanine may not directly reflect the 

role of dietary consumption of these amino acids.  

Sixth, these amino acids were only measured at a  

single time point. Future investigations with repeated 

measures would be valuable to further elucidate how 

circulating phenylalanine and tyrosine levels fluctuate 

over time and to clarify their influence on mortality 

outcomes. Seventh, our findings need to be interpreted 

with caution. Given the potential non-linearity, the 

positive associations with mortality are more applicable 

to people with higher levels of phenylalanine or 

tyrosine. Replicating these results in populations with 

different levels of amino acids would be worthwhile. 

Finally, MR study examined the lifelong effect of 

phenylalanine and tyrosine, which is not comparable to 

randomized controlled trials assessing short-term effects 

of supplementation. 

From the perspective of etiology, our study suggests 

that tyrosine is involved in longevity. More mechanistic 

studies will be worthwhile to assess the possible 

pathways. The circulating level of tyrosine is modifiable. 

In terms of public health interventions, our findings 

indicate that nutrients or diets, such as protein-

restriction diet, which lower tyrosine will be helpful for 

prolonging lifespan. Tyrosine is also a popular nutrient 

supplement, promoted as a neurotransmitter support  

for a positive mood and mental alertness. Our study is 

not directly related to tyrosine supplement, but given 

tyrosine supplement may increase blood tyrosine, our 

study did not support the benefit of long-term use of 

tyrosine on lifespan. 

 

METHODS 
 

Study design 

 

To understand the role of phenylalanine and tyrosine in 

longevity, we used conventional observational study to 

examine their relationships with all-cause mortality in 

the UK Biobank. To minimize confounding, we applied 

univariable MR to assess the associations of genetically 

predicted phenylalanine and tyrosine with parental 

attained age. Given that phenylalanine and tyrosine  

are correlated, we further performed multivariable MR 

to examine their independent effects. To assess the  

sex-specific roles, we conducted sex-stratified analyses 

in both observational and MR studies. The study design 

was shown in the flow diagram in Supplementary 

Figure 1. 

 

Cohort study 

 

UK Biobank is a large-scale cohort study, with a current 

median follow up of 11.1 years [35]. Between 2006 and 

2010, it enrolled 502,713 individuals aged 40–69 years, 

with a mean age of 56.5 years in England, Scotland and 

Wales. Among all participants, 45.6% are men and 94% 

were identified as of European ancestry by self-report. 
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Utilizing data from UK Biobank, we studied the 

associations of baseline plasma levels of phenylalanine 

and tyrosine with all-cause mortality using Cox 

regression, controlling for age, sex (in the overall 

analysis but not in sex-specific analysis), Townsend 

index, smoking habits, alcohol intake, physical activity, 

self-reported ethnicity (white, black, Asian, and  

other), education (years) and body mass index (BMI). 

Deaths were identified by death records. We also 

conducted sensitivity analysis excluding deaths from 

accidents (V00–Y99). To assess the potential nonlinear 

associations, we used restricted cubic splines [36]. We 

also examined the correlation between phenylalanine 

and tyrosine and the association of tyrosine-to-

phenylalanine ratio with all-cause mortality. We set  

the censoring date to 19 Dec 2022, which is the latest 

date of death in the records. In addition to examining 

all-cause mortality, we also investigated disease-

specific mortality outcomes based on the International 

Classification of Diseases (ICD-10) codes. Specifically, 

we assessed the associations with CVD mortality  

(I00–I99) and cancer mortality (C00–D48), the top two 

leading contributors to mortality in UK Biobank. Plasma 

levels of phenylalanine and tyrosine were quantified in 

absolute concentrations (mmol/L), measured in a high-

throughput NMR-based metabolic biomarker profiling 

platform (Nightingale Health Ltd.). Procedures for 

sample preparation, spectrometer calibration, and quality-

control protocols are detailed in previous publications 

[35, 37, 38]. All measures were standardized before 

analyses. 

 

MR study 

 

Overall and sex-specific GWAS of phenylalanine and 

tyrosine 

We conducted a GWAS of the plasma levels of 

phenylalanine and tyrosine in the UK Biobank utilizing 

fastGWA tool (GCTA toolbox, version 1.94.1) [39].  

In the mixed linear model association analyses, we 

utilized a sparse genetic relationship matrix with a 

cutoff value of 0.05, which was computed from linkage 

disequilibrium (LD)-pruned HapMap 3 SNP set. The 

LD-pruning parameters set in PLINK included a 

window of 1,000 variants, step size of 100, r2 threshold 

of 0.9, and minor allele frequency exceeding 0.01 [40]. 

For our genome-wide association analyses, we excluded 

SNPs with an imputation score below 0.3, minor  

allele frequency under 0.1%, missing genotype rates 

exceeding 5% per individual, missing genotype rates 

over 5% per genetic variant, or p-value of Hardy-

Weinberg equilibrium less than 1 × 10−8. In the non-

pseudoautosomal X chromosome region, males were 

coded as 0 or 2 copies of the effect allele. Participants 

of European ancestry were characterized in the Pan-

ancestry genetic analysis of the UK Biobank (Pan-UK 

Biobank) [41]. Additionally, participants were not 

included in the analysis if they had withdrawn consent, 

displayed discrepancies between self-reported and 

genetic sex, exhibited sex chromosome aneuploidy, 

were identified as heterogeneity outliers or missing 

genotype rate. After quality control, we performed both 

combined and sex-stratified GWAS of phenylalanine 

and tyrosine. In the sex-specific GWAS, age and 10 

genetic principal components supplied by the Pan- 

UK Biobank were included as covariates, while sex  

was added as an additional covariate in the combined-

sex GWAS. We applied the rank-based inverse  

normal transformation to phenylalanine and tyrosine 

measurements to enable interpretation per one standard 

deviation (SD) change [42]. We computed the SNP-

based heritability and checked for inflation by LD score 

regression [43]. 

 

Genetic instruments for phenylalanine and tyrosine 

Genetic proxies for circulating phenylalanine and 

tyrosine were obtained based on the GWAS we 

conducted in the UK Biobank. Specifically, we 

selected SNPs linked to circulating phenylalanine or 

tyrosine reaching genome-wide significance (5 × 10−8) 

and meeting an LD cutoff of r2 < 0.001. The 

instruments for overall analysis were based on GWAS 

in the overall sample, whilst the genetic instruments 

for sex-specific analyses were derived from the 

corresponding sex-specific GWAS. To ensure the 

validity of the genetic variants, we verified that the F-

statistic exceeded 10 [44], with the F-statistic derived 

from a commonly used formula [45]. The selected 

genetic instruments were presented in Supplementary 

Tables 5–8. To understand the potential pleiotropy, we 

examined whether these selected SNPs were associated 

with potential confounders for the association between 

phenylalanine or tyrosine and all-cause mortality,  

such as Townsend index, education, smoking status, 

alcohol consumption and physical activity in the  

UK Biobank. SNPs showing genome-wide significant 

associations with any of these factors were excluded  

in sensitivity analysis, as shown in Supplementary 

Tables 13 and 14. 

 

Genetic associations with lifespan 

Lifespan was used as the outcome. We retrieved 

genetic associations for parental attained age (age at 

death or current age) from a large-scale GWAS 

involving 389,166 UK Biobank participants of 

European ancestry [46]. Utilizing parental lifespan  

is a common way in GWAS of longevity [46], as 

longevity is heritable [47], so parental lifespan can 

provide a proxy measure for offsprings’ lifespan, and 

it can be used even when participants are still alive. 

The combined parental attained age was calculated  

by adding the z-standardized maternal and paternal 
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attained ages [46]. The GWAS controlled for age, sex, 

and the first five principal components [46]. Genetic 

associations for paternal and maternal attained age 

were obtained from sex-specific GWAS of parental 

longevity in participants of European descent from  

the UK Biobank (fathers: n = 415,311; mothers:  

n = 412,937) [46]. Employing sex-stratified Cox 

proportional hazards model, the GWAS estimated the 

effect of offspring genetic variant on parental survival, 

adjusting for age as well as 10 principal components of 

ancestry. To enhance interpretability, GWAS summary 

statistics (log hazard ratio) were transformed into years 

of life through sign inversion and multiplication by 10 

[46, 48]. Considering the effect sizes derived from 

offspring genetic data represent half the true parental 

variant effect, we doubled the log hazard ratios in the 

overall analyses [46], and multiplied by 2.2869 for 

fathers and 2.5863 for mothers, respectively, in the 

sex-specific analyses [46, 49], as previously described 

[50]. 

 

Statistical analysis 

 

In the univariable MR, SNP-specific estimates were 

derived from Wald ratios, which were calculated as  

the genetic association with parental attained age 

divided by the association with phenylalanine or 

tyrosine. These ratios were integrated via IVW with 

multiplicative random effects [51]. For the sex-stratified 

analysis, we utilized the genetic associations from  

sex-specific GWAS of lifespan and phenylalanine or 

tyrosine. The MR estimates were presented as life years 

per SD increase in phenylalanine or tyrosine. Multiple 

comparisons were accounted for using a false discovery 

rate (FDR) threshold of less than 0.05. Associations 

showing nominal significance (p < 0.05) that failed 

multiple testing correction were defined as suggestive 

associations. To assess whether the sex difference has 

statistical significance, we performed the heterogeneity 

test with the “meta” package in R. 

 

To address possible pleiotropy, as previously [52–55], 

we applied multiple analytic approaches robust to 

pleiotropy, such as the weighted median, weighted 

mode, MR-PRESSO and MR-Egger methods. The 

weighted median approach offers a reliable estimate  

of the causal effect even if as much as half of the 

information comes from SNPs that invalid instruments 

[56]. Weighted mode assumes that the largest group of 

are valid, that is, no larger group of invalid instruments 

providing the same causal estimate exists [57]. MR-

PRESSO detects and removes outlier SNP(s) that 

disproportionately influenced associations [58], and 

gives the corrected estimates after the removal of the 

outliers. MR-Egger can determine if genetic variants 

exhibit directional pleiotropy, that is, whether their 

pleiotropic effects on the outcome deviate from zero  

on average, as indicated by a non-zero intercept, and  

it also provides a corrected estimate [59]. However,  

this approach usually gives wider confidence intervals 

compared to other methods [60]. Considering the 

overlapping in samples of GWAS for exposure and 

outcomes, we additionally performed a sensitivity 

analysis utilizing SNPs for phenylalanine and tyrosine 

derived from a GWAS which does not include 

participants from UK Biobank [61], but only overall 

GWAS is available. 

 

Multivariable MR 

In addition to univariable MR analyses, we conducted 

multivariable MR, which leverages pleiotropic SNPs 

associated with more than one exposure, to assess the 

causal effects of individual exposure adjusting for other 

exposure(s) [62]. We included genetic instruments for 

both phenylalanine and tyrosine, to examine the 

independent effect of phenylalanine and tyrosine. The 

genetic instruments for each amino acid were as used in 

univariable MR. After integrating the SNPs for both 

amino acids, we removed overlapping and correlated  

(r2 > 0.05) SNPs, and the remaining genetic variants 

were utilized for the multivariable MR analysis. We 

employed multivariable MR-Egger analysis to detect 

directional pleiotropy, and when it was identified, we 

adopted the multivariable MR-Egger estimates as the 

main analysis results [63]. 

 

Power calculation 

In power calculation, the required sample size for MR 

studies is roughly the conventional observational study 

sample size divided by the proportion of variance in the 

exposure explained by the genetic instruments [64]. 

Variance explained by individual SNP was computed 

via beta2 × 2 × (EAF) × (1-EAF), with beta as the effect 

allele’s standardized beta coefficient, EAF as its 

frequency [65]. For lifespan, we first calculated the 

detected effect size at current sample size (i.e., log odds 

ratio) based on case/non-case ratio, total sample size, 

and the variance explained by SNPs [66], and then 

converted to life years using the same way as we did in 

the statistical analysis. 

 

All statistical analyses were performed using the R 

packages “TwoSampleMR”, “MendelianRandomization”, 

“MRPRESSO” and “meta” (R version 4.0.1, R 

Foundation for Statistical Computing, Vienna, Austria). 

 

Availability of data and materials 

 

The dataset supporting the conclusions of this article is 

available upon request and approval by the UK Biobank 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-

for-access). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Flow chart of study design. 
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Supplementary Figure 2. Association of phenylalanine with all-cause mortality using restricted cubic splines. 
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Supplementary Figure 3. Association of tyrosine with all-cause mortality using restricted cubic splines. 
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Supplementary Figure 4. Q-Q plot on the genome-wide association study of phenylalanine and tyrosine in overall people, 
men and women. (A) Q-Q plot for phenylalanine in overall people; (B) Q-Q plot for phenylalanine in men; (C) Q-Q plot for phenylalanine 

in women; (D) Q-Q plot for tyrosine in overall people; (E) Q-Q plot for tyrosine in men; (F) Q-Q plot for tyrosine in women. 
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Supplementary Figure 5. Scatter plots on the associations of each SNP with amino acids and with lifespan in overall 
people, men and women. (A) Scatter plot for phenylalanine in overall people; (B) Scatter plot for phenylalanine in men; (C) Scatter plot 

for phenylalanine in women; (D) Scatter plot for tyrosine in overall people; (E) Scatter plot for tyrosine in men; (F) Scatter plot for tyrosine 
in women. 
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Supplementary Figure 6. Leave-one-out analysis on the associations of phenylalanine and tyrosine with lifespan. (A) Leave-
one-out analysis for phenylalanine in overall people; (B) leave-one-out analysis for phenylalanine in men; (C) leave-one-out analysis for 
phenylalanine in women; (D) leave-one-out analysis for tyrosine in overall people; (E) leave-one-out analysis for tyrosine in men; (F) leave-
one-out analysis for tyrosine in women. 
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Supplementary Tables 
 

Supplementary Table 1. The associations of phenylalanine and tyrosine with all-cause mortality excluding 
deaths from accidents in UK Biobank using Cox regression. 

Exposure Sex HR1 95% CI2 p 

Phenylalanine 

Overall 1.04 1.03, 1.05 3.3 × 10–9 

Men 1.04 1.02, 1.05 3.2 × 10–7 

Women 1.04 1.02, 1.07 8.7 × 10–4 

Tyrosine 

Overall 1.02 1.00, 1.03 1.9 × 10–2 

Men 1.03 1.01, 1.05 3.4 × 10–3 

Women 1.00 0.98, 1.03 7.8 × 10–1 

1HR: hazard ratio. In overall analysis we adjusted for age, body mass index (BMI), Townsend Deprivation Index, smoking 
status, alcohol consumption, physical activity, ethnicity, and education (in years). For combined-sex analyses, we additionally 
adjusted for sex. 2CI: confidence interval. 

 
Supplementary Table 2. The associations of phenylalanine and tyrosine with all-cause mortality stratified by 
amino acid level in UK Biobank using Cox regression. 

Exposure Stratified by amino acids levels1 HR2 95% CI3 p 

Phenylalanine 
Lower level 0.95 0.91, 0.99 2.5 × 10–2 

Higher level 1.05 1.04, 1.06 8.4 × 10–17 

Tyrosine 
Lower level 0.89 0.85, 0.93 2.7 × 10–13 

Higher level 1.10 1.07, 1.13 4.5 × 10–7 

1Higher or lower level means above or below standardized concentration of 0 for phenylalanine and tyrosine. 2HR: hazard 
ratio. We adjusted for age, sex, BMI, Townsend Deprivation Index, smoking status, alcohol consumption, physical activity, 
ethnicity, and education (in years). 3CI: confidence interval. 

 
Supplementary Table 3. The associations of phenylalanine and tyrosine with cardiovascular disease (CVD) and 
cancer mortality in UK Biobank using Cox regression. 

Exposure Outcome Sex HR1 95% CI2 p 

Phenylalanine CVD mortality 

Overall 1.03 1.00, 1.06 3.4 × 10–2 

Men 1.03 0.99, 1.07 1.7 × 10–1 

Women 1.05 0.99, 1.12 9.3 × 10–2 

Tyrosine CVD mortality 

Overall 1.01 0.98, 1.04 6.3 × 10–1 

Men 1.01 0.97, 1.05 7.0 × 10–1 

Women 1.00 0.94, 1.07 9.8 × 10–1 

Phenylalanine Cancer mortality 

Overall 1.04 1.02, 1.05 6.3 × 10–5 

Men 1.04 1.01, 1.06 2.7 × 10–3 

Women 1.04 1.01, 1.07 2.2 × 10–2 

Tyrosine Cancer mortality 

Overall 1.02 0.99, 1.04 1.6 × 10–1 

Men 1.01 0.99, 1.04 3.3 × 10–1 

Women 1.02 0.99, 1.06 1.9 × 10–1 

1HR: hazard ratio. In overall analysis we adjusted for age, BMI, Townsend Deprivation Index, smoking status, alcohol 
consumption, physical activity, ethnicity, and education (in years). For combined-sex analyses, we additionally adjusted for 
sex. 2CI: confidence interval. 
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Supplementary Table 4. Linkage disequilibrium score regression. 

Phenotype Population Sex h2 h2_se lambda intercept intercept_se ratio ratio_se 

Phenylalanine EUR Overall 0.036 0.009 1.121 1.028 0.009 0.143 0.043 

Phenylalanine EUR Female 0.031 0.008 1.068 1.014 0.008 0.145 0.080 

Phenylalanine EUR Male 0.042 0.010 1.059 1.011 0.009 0.110 0.082 

Tyrosine EUR Overall 0.087 0.018 1.250 1.062 0.011 0.120 0.022 

Tyrosine EUR Female 0.080 0.023 1.127 1.040 0.009 0.153 0.035 

Tyrosine EUR Male 0.114 0.026 1.152 1.035 0.010 0.114 0.032 

 
Supplementary Table 5. Genetic instruments for phenylalanine in the overall analysis. 

SNP effect_allele other_allele gene beta se p-value F-statistics 

rs1009062 G T GSTA2 −0.02 0.003 1.76E-11 45.2 

rs1043011 T G GLS2, SPRYD4 0.033 0.004 1.40E-18 77.4 

rs1047891 A C CPS1 −0.029 0.003 1.25E-20 86.7 

rs10750864 T A SLC43A1 −0.055 0.003 3.37E-59 263.2 

rs10826337 A G SLC16A9, MRPL50P4 0.017 0.003 1.30E-08 32.3 

rs117040573 A G C12orf42 0.037 0.006 3.92E-10 39.2 

rs12830698 G T STAB2 0.115 0.014 6.48E-17 69.8 

rs13254494 C T SLC25A37 −0.018 0.003 1.02E-09 37.3 

rs140584594 A G GSTM1 0.022 0.003 6.40E-12 47.2 

rs1522298 C G PAH −0.06 0.003 7.19E-85 381.1 

rs17253619 C T WDHD1 0.054 0.004 1.45E-33 145.8 

rs1800759 T G ADH4, LOC100507053 0.018 0.003 7.58E-10 37.9 

rs2239328 T C ABCC6 −0.026 0.003 2.29E-16 67.3 

rs34121855 G T MLXIPL −0.021 0.004 1.04E-08 32.8 

rs3757132 T C SLC17A1 −0.036 0.003 1.83E-27 117.9 

rs61935426 A C LINC02456 0.086 0.012 9.04E-13 51 

rs73063122 C A SLCO1B1 −0.029 0.004 2.36E-13 53.7 

rs75017413 A T SLC38A4 0.041 0.006 2.41E-12 49.1 

rs870072 C T PAH 0.111 0.003 2.66E-303 1408.7 

rs932316 C T SCGN, CARMIL1 −0.021 0.004 1.44E-08 32.1 

rs99780 T C FADS2 0.02 0.003 9.88E-11 41.8 

 
Supplementary Table 6. Genetic instruments for tyrosine in the overall analysis. 

SNP effect_allele other_allele gene beta se p-value F-statistics 

rs10027275 G C ARHGAP10 0.032 0.003 4.72E-22 93.2 

rs10164853 G A ACVR1C 0.036 0.006 1.27E-10 41.3 

rs10217762 C T CDKN2B-AS1 −0.019 0.003 9.61E-11 41.9 

rs1043011 T G GLS2, SPRYD4 0.065 0.004 3.94E-69 308.8 

rs10750864 T A SLC43A1 −0.02 0.003 2.06E-09 35.9 

rs11263465 G A LOC105369370 0.027 0.004 1.86E-10 40.6 

rs114232169 T G HRG, HRG-AS1 0.025 0.003 1.88E-16 67.7 
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rs11614623 T C HPD 0.049 0.004 4.14E-29 125.4 

rs11643623 T C ZNF276 0.018 0.003 1.86E-08 31.6 

rs11706810 C T 
TRIM59, TRIM59-

IFT80 
−0.02 0.003 4.93E-12 47.7 

rs12212085 C A SLC16A10 0.171 0.004 0 1699.8 

rs123698 G C PTBP1 0.018 0.003 9.64E-10 37.4 

rs12596084 C A 
RNA5SP427, 

MPHOSPH10P1 
−0.02 0.003 4.99E-10 38.7 

rs12811045 G A LOC102723639 0.023 0.004 6.24E-11 42.7 

rs12824518 T C / 0.028 0.004 4.60E-11 43.3 

rs13107325 T C SLC39A8 −0.037 0.005 2.36E-11 44.6 

rs13142887 T A / −0.018 0.003 7.40E-09 33.4 

rs13281892 G A SLC7A2 −0.021 0.003 2.55E-11 44.5 

rs1345901 C T LOC105371356 0.022 0.003 1.15E-13 55.1 

rs140584594 A G GSTM1 0.019 0.003 4.71E-09 34.3 

rs1433210 C A LINC01091 −0.02 0.003 5.78E-09 33.9 

rs150851429 C G LOC105371334 0.376 0.013 5.51E-198 901.1 

rs151175127 T C / −0.059 0.007 4.22E-17 70.7 

rs1531022 A G UGT2B15 0.018 0.003 6.05E-10 38.3 

rs17050272 A G LOC105373585 0.023 0.003 7.05E-15 60.6 

rs174537 T G MYRF 0.036 0.003 5.38E-32 138.6 

rs1800961 T C HNF4A −0.084 0.008 4.67E-24 102.3 

rs183657985 T C EXOC3L2 0.021 0.003 4.65E-10 38.8 

rs1883711 C G LINC01370, MAFB 0.067 0.009 6.17E-15 60.8 

rs194742 T C MAGOH3P, ZFP36L1 −0.024 0.004 7.99E-10 37.8 

rs204926 G A LMO1 0.017 0.003 3.09E-09 35.1 

rs2126263 G A LOC157273 0.034 0.005 1.13E-12 50.6 

rs2189966 C T JAZF1 −0.037 0.004 3.74E-25 107.3 

rs2393775 G A HNF1A 0.052 0.003 2.32E-69 309.9 

rs28601761 G C TRIB1AL −0.044 0.003 4.79E-49 216.7 

rs34396849 C A PGBD1 0.031 0.004 1.80E-12 49.7 

rs35048664 G T PAH 0.02 0.003 5.65E-10 38.4 

rs35757209 T C UNK 0.024 0.003 1.42E-15 63.7 

rs41289886 A G RPF2 0.066 0.012 1.88E-08 31.6 

rs4416405 A G / 0.016 0.003 3.95E-08 30.2 

rs4493565 A C SHROOM3 0.016 0.003 1.40E-08 32.2 

rs4665972 T C SNX17 −0.022 0.003 7.13E-14 56 

rs4722551 C T LOC105375199 −0.023 0.004 3.18E-09 35.1 

rs4921914 C T PSD3, NAT2 −0.026 0.003 2.30E-14 58.3 

rs511154 A G RPL31P23, PCCB −0.037 0.003 1.24E-27 118.7 

rs529565 C T ABO 0.019 0.003 1.50E-09 36.5 

rs56058728 A G INSR 0.021 0.004 1.03E-08 32.8 

rs56337219 T C SLC16A10 −0.066 0.007 3.57E-21 89.2 

rs56401710 C A SLC22A7, 0.024 0.003 3.35E-16 66.6 
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LOC124901319 

rs60718363 C T WWC2 0.02 0.003 8.86E-09 33.1 

rs61676179 A C DEPDC5 −0.046 0.007 1.88E-12 49.6 

rs62062797 G T MAPT −0.019 0.003 2.44E-08 31.1 

rs62466318 T C MLXIPL −0.027 0.004 3.27E-14 57.6 

rs6575900 C G 
WDR20, 

LOC105370677 
−0.036 0.004 6.02E-23 97.3 

rs6754311 C T DARS1 −0.021 0.003 2.01E-09 36 

rs6831352 T C ADH4, LOC100507053 0.045 0.003 4.21E-46 203.2 

rs6906327 A G CDKAL1  0.017 0.003 2.17E-08 31.3 

rs715 C T CPS1 −0.026 0.003 3.28E-17 71.2 

rs73079476 C A SLCO1B1 −0.053 0.004 1.67E-38 168.4 

rs73158176 G C PRKAG2 −0.019 0.003 2.24E-08 31.3 

rs738408 T C PNPLA3 0.025 0.003 8.18E-13 51.2 

rs7404381 A G AP1G1 −0.052 0.003 4.54E-67 299.4 

rs7537281 T A PPIAP34, ZBTB40 −0.024 0.004 1.12E-10 41.6 

rs75891099 A C REV3L 0.154 0.02 3.78E-15 61.8 

rs77042499 C T TRAF3IP2-AS1 0.089 0.01 2.69E-17 71.6 

rs78424108 G C WBP4, MIR3168 −0.034 0.006 3.89E-10 39.2 

rs78802502 A G SLC38A4 0.082 0.006 1.07E-45 201.3 

rs7909960 A T JMJD1C 0.038 0.003 5.61E-39 170.6 

rs79687284 C G PROX1-AS1 0.051 0.008 1.38E-10 41.2 

rs8021303 A G WDHD1 −0.019 0.003 1.42E-10 41.1 

rs8100204 A G SUGP1 0.029 0.004 4.64E-12 47.8 

rs8122094 G C TOP1 0.019 0.003 4.37E-08 30 

rs814573 T A APOC1P1, APOC1 −0.029 0.004 1.41E-14 59.2 

rs9972653 T G FTO 0.019 0.003 1.81E-10 40.7 

 
Supplementary Table 7. Genetic instruments for phenylalanine in the sex-specific analysis. 

SNP effect_allele other_allele gene beta se p-value F-statistics 

Male 

rs1321250 C T / −0.036 0.005 3.46E-11 43.9 

rs3757132 T C SLC17A1 −0.038 0.005 9.59E-15 60.0 

rs1009062 G T GSTA2 −0.025 0.004 2.08E-08 31.4 

rs10750864 T A SLC43A1 −0.063 0.005 3.54E-37 162.3 

rs75918019 G A SLC38A4 0.056 0.009 3.89E-09 34.7 

rs76169231 C T LINC02456 −0.032 0.005 1.44E-09 36.6 

rs1718292 G A PAH 0.115 0.004 3.15E-152 690.7 

rs1498691 G A PAH −0.060 0.005 1.28E-39 173.5 

rs12367892 C G C12orf42 0.088 0.015 1.76E-09 36.2 

rs17253619 C T WDHD1 0.062 0.007 1.72E-21 90.6 

rs2239327 A C ABCC6 −0.031 0.005 7.45E-11 42.4 

rs2229742 C G NRIP1 0.043 0.007 8.81E-10 37.6 
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Female 

rs1047891 A C CPS1 −0.039 0.004 1.13E-19 82.4 

rs1408268 A T SLC17A1 −0.035 0.005 1.08E-14 59.7 

rs10750864 T A SLC43A1 −0.048 0.005 2.24E-25 108.4 

rs4149058 G A SLCO1B1 −0.026 0.005 4.82E-08 29.8 

rs2694917 C T RBMS2 0.037 0.005 1.69E-13 54.3 

rs1498694 A G PAH, LOC124902999 0.111 0.004 2.08E-164 746.7 

rs9804734 T C PAH −0.061 0.004 1.97E-47 209.3 

rs12830698 G T STAB2 0.114 0.019 1.36E-09 36.7 

rs17253619 C T WDHD1 0.047 0.006 7.39E-15 60.5 

rs2239328 T C ABCC6 −0.024 0.004 4.38E-08 30.0 

 

 
Supplementary Table 8. Genetic instruments for tyrosine in the sex-specific analysis. 

SNP effect_allele other_allele gene beta se p-value F-statistics 

Male 

rs17050272 A G LOC105373585 0.025 0.004 4.28E-09 34.5 

rs12614487 T C ACVR1C 0.047 0.008 5.43E-09 34.0 

rs511154 A G RPL31P23, PCCB −0.037 0.005 1.35E-13 54.8 

rs12632030 C T SMC4, TRIM59-IFT80 −0.024 0.004 2.28E-08 31.2 

rs5402 A T SLC2A2 0.040 0.007 1.27E-09 36.9 

rs114232169 T G HRG, HRG-AS1 0.031 0.005 8.50E-12 46.6 

rs10020631 A G TMPRSS11E 0.031 0.005 4.99E-10 38.7 

rs1531022 A G UGT2B15 0.030 0.004 2.93E-12 48.7 

rs1800759 T G ADH4, LOC100507053 0.048 0.004 8.85E-28 119.3 

rs13107325 T C SLC39A8 −0.044 0.008 3.65E-08 30.3 

rs10027275 G C ARHGAP10 0.028 0.005 1.53E-08 32.0 

rs72839445 A G CDCA7P1, POM121L2 0.038 0.007 3.03E-08 30.7 

rs1051952 C A 
TEAD3, TULP1, 
LOC124901309 

−0.025 0.004 3.79E-09 34.7 

rs62646255 C T SLC22A7 0.029 0.004 4.19E-11 43.5 

rs12206654 C T MFSD4B-DT 0.192 0.006 5.81E-215 979.3 

rs17717962 C T LOC105377944 0.088 0.015 1.08E-08 32.7 

rs35614968 A G FYN −0.129 0.014 3.85E-21 89.0 

rs116862171 G A FYN 0.100 0.017 6.55E-09 33.7 

rs4719841 G A LOC105375199 0.027 0.004 7.84E-10 37.8 

rs73091233 C T JAZF1 −0.085 0.010 1.83E-16 67.8 

rs9987289 A G LOC157273 0.044 0.007 2.22E-09 35.8 

rs2980888 T C TRIB1AL 0.061 0.005 6.00E-39 170.4 

rs10761756 T C JMJD1C 0.049 0.004 1.00E-30 132.8 

rs2297644 C T HOGA1 −0.031 0.006 4.63E-08 29.9 

rs174537 T G MYRF 0.035 0.004 3.80E-15 61.8 

rs4766214 G A LOC105369612 −0.025 0.004 4.88E-09 34.2 

rs1871395 G A SLCO1B1 −0.059 0.006 1.07E-22 96.1 

rs79295634 G A SLC38A4 0.086 0.009 1.82E-23 99.6 
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rs1043011 T G GLS2, SPRYD4 0.067 0.006 1.70E-34 150.0 

rs12811045 G A LOC102723639 0.032 0.005 7.46E-10 37.9 

rs2464190 C T HNF1A 0.047 0.004 1.27E-26 114.0 

rs4760099 A G HPD 0.052 0.006 9.16E-16 64.6 

rs78424108 G C WBP4, MIR3168 −0.047 0.008 1.19E-08 32.5 

rs3783642 C T GCH1 −0.024 0.004 3.71E-08 30.3 

rs6575900 C G WDR20, LOC105370677 −0.042 0.005 5.89E-15 60.9 

rs9746832 A G LOC105371334 0.087 0.004 2.37E-92 415.5 

rs116992380 C T PKD1L3 0.206 0.015 3.23E-45 199.1 

rs8047723 T G / 0.029 0.004 7.98E-11 42.3 

rs10221244 G A UNK 0.026 0.004 8.30E-09 33.2 

rs123698 G C PTBP1 0.024 0.004 4.04E-08 30.1 

rs58542926 T C TM6SF2 0.060 0.008 8.09E-14 55.8 

rs814573 T A APOC1P1, APOC1 −0.032 0.006 1.18E-08 32.5 

rs1883711 C G LINC01370, MAFB 0.078 0.013 9.02E-10 37.5 

rs1800961 T C HNF4A −0.085 0.012 3.17E-12 48.6 

rs738408 T C PNPLA3 0.031 0.005 2.30E-09 35.7 

Female 

rs4665972 T C SNX17 −0.025 0.004 1.11E-09 37.1 

rs1047891 A C CPS1 −0.032 0.004 1.15E-14 59.6 

rs895893 C T RPL31P23, PCCB −0.037 0.005 1.12E-15 64.2 

rs35491981 C T LOC100507053 0.045 0.004 2.94E-24 103.3 

rs7697204 C T ARHGAP10 0.035 0.004 2.53E-15 62.6 

rs35261542 A C CDKAL1 0.027 0.004 2.24E-09 35.8 

rs11961853 T C UBQLN1P1, MICC 0.028 0.005 4.84E-08 29.8 

rs75661418 G A SLC16A10 −0.076 0.012 9.66E-10 37.4 

rs12206654 C T MFSD4B-DT 0.177 0.006 7.63E-218 992.5 

rs56236906 A G FYN 0.083 0.014 5.28E-09 34.1 

rs35614968 A G FYN −0.109 0.012 1.11E-18 77.9 

rs146133919 C T FYN −0.076 0.013 4.92E-09 34.2 

rs2189966 C T JAZF1 −0.034 0.005 1.79E-12 49.7 

rs34346326 C T MLXIPL −0.030 0.005 4.09E-10 39.1 

rs330093 G C PPP1R3B-DT 0.026 0.005 2.61E-08 31.0 

rs28601761 G C TRIB1AL −0.037 0.004 3.83E-20 84.5 

rs7902343 T C JMJD1C 0.029 0.004 1.83E-13 54.2 

rs174555 C T FADS1 0.038 0.004 3.29E-19 80.3 

rs4149059 T C SLCO1B1 −0.041 0.005 5.37E-18 74.7 

rs76943648 C T SLC38A4 0.078 0.008 6.15E-24 101.8 

rs2657879 G A GLS2, SPRYD4 0.064 0.005 2.31E-37 163.2 

rs2393775 G A HNF1A 0.057 0.004 1.22E-45 201.1 

rs372273603 G A HPD 0.047 0.006 5.04E-16 65.8 

rs1595261 C A / 0.025 0.004 1.12E-08 32.6 

rs6575900 C G WDR20, LOC105370677 −0.031 0.005 3.16E-10 39.6 

rs150851429 C G LOC105371334 0.389 0.017 3.12E-119 539.0 

rs11640725 A G AP1G1, LOC124903714 −0.046 0.004 9.96E-30 128.2 
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rs1135688 C T UNC13D 0.025 0.004 2.82E-09 35.3 

rs1800961 T C HNF4A −0.083 0.011 1.96E-13 54.0 

 

 
Supplementary Table 9. The outliers detected in MR-PRESSO. 

Phenotype Sex Outlier 

Phenylalanine Overall rs73063122 

 Female rs1047891 

Tyrosine Overall rs183657985, rs4493565 

 

 
Supplementary Table 10. MR results after exclusion of SNPs significantly associated with potential confounders. 

Phenotype Sex Method beta se p-value 

Phenylalanine Overall 

Inverse variance weighted −0.05 0.43 0.90 

Weighted median −0.20 0.37 0.58 

Weighted mode −0.09 0.35 0.80 

MR-PRESSO 0.17 0.33 0.61 

Phenylalanine Male 

Inverse variance weighted 0.76 0.31 0.01 

Weighted median 0.60 0.39 0.12 

Weighted mode 0.60 0.39 0.13 

MR-PRESSO 0.76 0.28 0.02 

Phenylalanine Female 

Inverse variance weighted −0.66 0.60 0.27 

Weighted median −0.43 0.46 0.35 

Weighted mode −0.39 0.46 0.40 

MR-PRESSO −0.36 0.48 0.48 

Tyrosine Overall 

Inverse variance weighted −0.60 0.28 0.03 

Weighted median −0.14 0.29 0.62 

Weighted mode −0.15 0.28 0.59 

MR-PRESSO −0.41 0.25 0.10 

Tyrosine Male 

Inverse variance weighted −0.69 0.32 0.03 

Weighted median −0.47 0.34 0.16 

Weighted mode −0.26 0.35 0.47 

MR-PRESSO −0.69 0.32 0.04 

Tyrosine Female 

Inverse variance weighted −0.68 0.30 0.03 

Weighted median −0.16 0.36 0.66 

Weighted mode −0.21 0.33 0.53 

MR-PRESSO −0.68 0.30 0.03 

For phenylalanine, rs34121855 was excluded in the overall analysis, due to its potential pleiotropic effect concerning alcohol 
intake frequency. For tyrosine, the following SNPs were excluded due to their potential pleiotropic effects: in the overall 
analysis, rs6754311 and rs7909960 were excluded due to their associations with age completed full time education. 
Additionally, rs13107325, rs4665972, rs62062797, rs62466318, and rs9972653 were excluded because of their potential 
effects on alcohol intake frequency. Within the female subgroup, rs7902343 was excluded for its pleiotropic effect with the 
age of completing full-time education, and rs4665972 was also excluded due to its impact on alcohol intake frequency. In the 
male subgroup, rs13107325 was removed from the analysis for its pleiotropic effect on alcohol intake frequency. 
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Supplementary Table 11. Sensitivity analysis on the association of genetically predicted phenylalanine and 
tyrosine with life years using genetic instruments from a GWAS without UK Biobank participants. 

Exposure Sex Method #SNPs Beta (95% CI) p-value outlier 

Phenylalanine 

Overall 

Inverse variance weighted 9 0.35 (−0.74, 1.44) 0.53  

Weighted median 9 −0.10 (−1.04, 0.85) 0.84  

Weighted mode 9 −0.12 (−1.14, 0.90) 0.82  

MR-PRESSO 8 −0.02 (−1.23, 1.20) 0.97 rs28365897 

Male 

Inverse variance weighted 9 1.05 (0.03, 2.08) 0.04  

Weighted median 9 1.00 (0.05, 1.95) 0.04  

Weighted mode 9 0.94 (−0.06, 1.93) 0.07  

MR-PRESSO 9 1.05 (−0.15, 2.26) 0.08  

Female 

Inverse variance weighted 9 −0.12 (−1.55, 1.32) 0.88  

Weighted median 9 −0.19 (−1.31, 0.94) 0.74  

Weighted mode 9 −0.39 (−1.60, 0.82) 0.53  

MR-PRESSO 7 −0.19 (−1.09, 0.71) 0.63 
rs1047891, 
rs28365897 

Tyrosine 

Overall 

Inverse variance weighted 19 −0.21 (−2.16, 1.73) 0.83  

Weighted median 19 −0.31 (−0.90, 0.28) 0.30  

Weighted mode 19 −0.36 (−0.89, 0.17) 0.19  

MR-PRESSO 17 −0.67 (−1.24, −0.09) 0.03 
rs4149083, 
rs429358 

Male 

Inverse variance weighted 19 −0.52 (−2.03, 0.99) 0.50  

Weighted median 19 −0.47 (−1.13, 0.19) 0.16  

Weighted mode 19 −0.47 (−1.09, 0.15) 0.13  

MR-PRESSO 17 −0.82 (−1.67, 0.03) 0.06 
rs1021956, 

rs117866491 

Female 

Inverse variance weighted 19 0.09 (−2.20, 2.38) 0.94  

Weighted median 19 −0.14 (−0.88, 0.59) 0.70  

Weighted mode 19 −0.18 (−0.86, 0.50) 0.61  

MR-PRESSO 17 −0.58 (−1.18, 0.02) 0.06 
rs1021956, 

rs117866491 

 
Supplementary Table 12. Power calculation in the MR analysis on lifespan. 

Exposure Sex r2 Case Control Sample size 
Effect size detected 

(odds ratio) 
Effect size detected 

(life years) 

Phenylalanine 

Overall 

0.01 

208,118 181,048 389,166 1.09 −1.72 

Men 317,652 97,659 415,311 1.10 −2.18 

Women 246,941 165,996 412,937 1.09 −2.23 

Tyrosine 

Overall 

0.03 

208,118 181,048 389,166 1.06 −1.17 

Men 317,652 97,659 415,311 1.06 −1.33 

Women 246,941 165,996 412,937 1.06 −1.51 

The calculation of r2 was based on beta2 × 2 × (EAF) × (1-EAF). The number of cases and controls are from the GWAS of 
parental lifespan we used in the MR analysis (Pilling LC et al., Aging (Albany NY). 2017; 9:2504–20). The power calculations for 
the MR analysis were performed using the online tool available at https://sb452.shinyapps.io/power/. 

 
  

https://sb452.shinyapps.io/power/
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Supplementary Table 13. Associations of genetic instruments for phenylalanine with potential confounders in 
UK Biobank. 

SNP 

p-value with potential confounders 

Townsend 
deprivation index at 

recruitment 

Age completed 
full time 

education 

Current 
tobacco 
smoking 

Alcohol 
intake 

frequency 

Time spent 
doing moderate 
physical activity 

Time spent doing 
vigorous physical 

activity 

Overall 

rs1009062 4.08E-01 1.48E-01 7.22E-01 3.80E-01 9.17E-01 6.08E-01 

rs1043011 2.76E-01 2.26E-01 3.28E-01 3.60E-02 1.99E-01 3.57E-01 

rs1047891 7.47E-01 5.65E-01 7.13E-01 6.55E-01 6.43E-01 5.96E-01 

rs10750864 8.60E-01 7.38E-01 1.92E-01 5.31E-01 2.82E-01 8.53E-01 

rs10826337 8.67E-01 2.28E-01 3.65E-01 8.92E-01 9.91E-01 6.33E-01 

rs117040573 6.06E-01 3.96E-01 3.23E-01 7.11E-01 9.31E-01 8.96E-01 

rs12830698 1.07E-01 7.87E-01 5.99E-01 2.05E-01 3.95E-01 9.10E-01 

rs13254494 3.63E-02 9.43E-01 2.52E-01 2.56E-01 3.23E-01 5.61E-01 

rs1522298 9.87E-01 2.09E-01 9.15E-01 5.10E-01 2.26E-01 5.16E-01 

rs17253619 2.55E-01 7.67E-01 7.82E-01 3.43E-01 8.67E-01 7.11E-02 

rs1800759 9.50E-02 1.58E-01 1.07E-02 6.18E-02 9.67E-01 4.28E-01 

rs2239328 1.78E-01 4.65E-02 4.32E-01 2.89E-01 3.50E-01 5.83E-01 

rs34121855 9.48E-01 1.34E-01 4.78E-01 1.45E-09 3.96E-01 7.49E-01 

rs3757132 6.20E-02 1.97E-01 9.95E-01 2.89E-01 8.80E-01 1.35E-01 

rs61935426 2.01E-01 6.92E-01 1.86E-01 5.99E-01 9.95E-01 9.35E-01 

rs73063122 9.59E-01 3.35E-01 7.93E-01 6.59E-03 3.12E-01 3.17E-01 

rs75017413 6.30E-01 4.46E-01 2.50E-01 4.75E-01 7.10E-01 6.04E-02 

rs870072 6.17E-01 5.12E-01 6.58E-02 7.36E-01 3.44E-01 1.80E-01 

rs932316 4.21E-02 6.04E-01 7.37E-01 4.04E-02 5.17E-01 8.98E-01 

rs99780 5.22E-03 2.17E-01 1.33E-01 2.42E-01 2.80E-01 3.63E-01 

Male 

rs1009062 6.84E-01 3.99E-02 2.48E-01 2.78E-01 7.57E-01 5.05E-01 

rs10750864 9.38E-01 2.97E-01 7.82E-01 9.46E-01 2.74E-01 2.26E-01 

rs12367892 7.20E-01 7.03E-01 7.30E-01 8.41E-01 6.71E-03 6.59E-01 

rs1321250 1.42E-01 9.64E-01 3.54E-01 3.01E-01 6.76E-01 1.55E-01 

rs1498691 6.95E-01 9.02E-01 2.29E-01 8.08E-01 6.10E-01 7.84E-01 

rs1718292 1.53E-01 7.76E-01 6.69E-01 3.65E-01 9.39E-01 3.96E-02 

rs17253619 7.90E-02 6.80E-01 7.19E-01 2.55E-01 2.90E-01 6.11E-02 

rs2229742 8.04E-01 7.03E-01 3.07E-01 3.47E-02 4.54E-02 7.23E-01 

rs2239327 1.82E-01 3.12E-02 8.02E-01 6.36E-03 1.03E-01 9.26E-01 

rs3757132 2.21E-01 7.37E-01 5.54E-02 4.99E-01 5.85E-01 4.30E-01 

rs75918019 5.99E-01 8.97E-01 1.45E-01 5.11E-01 3.82E-01 1.69E-02 

rs76169231 6.03E-01 2.98E-01 6.38E-01 6.11E-01 4.32E-01 2.08E-01 

Female 

rs1047891 5.59E-01 7.24E-01 6.97E-01 8.12E-01 4.00E-01 4.00E-01 

rs10750864 9.58E-01 3.27E-01 4.78E-01 3.22E-01 1.93E-01 1.93E-01 

rs12830698 7.16E-02 5.36E-01 8.82E-01 2.82E-01 7.36E-02 7.36E-02 

rs1408268 8.21E-01 3.74E-01 1.10E-01 6.44E-02 9.39E-02 9.39E-02 

rs1498694 8.27E-01 6.17E-01 3.80E-02 2.02E-01 7.24E-01 7.24E-01 
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rs17253619 4.36E-01 6.12E-01 3.71E-01 2.35E-01 5.94E-01 5.94E-01 

rs2239328 9.82E-01 8.96E-01 9.93E-01 4.51E-01 9.77E-01 9.77E-01 

rs2694917 3.31E-01 4.91E-01 3.02E-01 1.50E-01 6.98E-01 6.98E-01 

rs4149058 8.92E-01 2.97E-01 4.81E-01 5.96E-01 8.76E-01 8.76E-01 

rs9804734 6.82E-01 9.49E-02 8.91E-02 6.57E-01 2.65E-01 2.65E-01 

A significant association was observed between rs34121855 and alcohol intake frequency in the overall analysis. 

 

 
Supplementary Table 14. Associations of genetic instruments for tyrosine with potential confounders in UK 
Biobank. 

SNP 

p-value with potential confounders 

Townsend 
deprivation index 

at recruitment 

Age completed 
full time 

education 

Current 
tobacco 
smoking 

Alcohol 
intake 

frequency 

Time spent doing 
moderate physical 

activity 

Time spent doing 
vigorous physical 

activity 

Overall 

rs10027275 4.22E-01 2.30E-02 5.63E-01 8.65E-01 7.62E-01 8.64E-01 

rs10164853 5.43E-03 1.33E-01 4.75E-01 7.63E-01 3.17E-01 3.54E-01 

rs10217762 1.98E-02 3.76E-03 2.82E-01 1.34E-01 6.48E-01 3.39E-01 

rs1043011 2.76E-01 2.26E-01 3.28E-01 3.60E-02 1.99E-01 3.57E-01 

rs10750864 8.60E-01 7.38E-01 1.92E-01 5.31E-01 2.82E-01 8.53E-01 

rs11263465 9.19E-01 2.89E-01 6.34E-01 1.77E-01 6.03E-01 9.25E-02 

rs11614623 7.33E-01 9.79E-01 1.47E-01 1.55E-01 5.68E-01 1.91E-01 

rs11643623 7.83E-01 5.02E-01 3.52E-01 1.53E-01 2.93E-01 9.28E-01 

rs11706810 2.01E-02 2.29E-02 3.01E-01 1.15E-04 3.83E-01 2.37E-01 

rs12212085 6.01E-02 2.20E-02 1.25E-02 6.70E-01 7.28E-01 3.05E-01 

rs123698 4.82E-02 8.98E-01 6.81E-01 7.04E-01 4.14E-01 4.17E-01 

rs12596084 8.09E-01 8.16E-01 6.93E-01 3.84E-01 4.11E-01 3.00E-01 

rs12811045 5.26E-01 6.75E-02 4.21E-01 6.74E-01 4.82E-01 6.15E-01 

rs12824518 2.92E-01 8.89E-02 7.39E-01 8.43E-01 4.06E-02 6.61E-02 

rs13107325 1.13E-01 6.86E-04 5.26E-05 6.90E-15 7.56E-02 6.82E-02 

rs13142887 3.37E-01 1.24E-01 1.41E-01 8.19E-01 3.70E-02 9.90E-01 

rs13281892 3.58E-01 9.48E-01 2.48E-01 8.42E-01 3.79E-01 4.60E-01 

rs1345901 5.22E-01 5.33E-01 4.90E-01 1.19E-01 9.58E-01 5.72E-01 

rs1433210 1.73E-01 5.45E-01 1.10E-01 4.10E-02 7.25E-01 7.86E-01 

rs150851429 1.31E-01 5.11E-04 4.15E-01 3.92E-01 8.74E-01 8.21E-01 

rs151175127 7.05E-01 4.91E-02 4.26E-01 2.07E-01 1.45E-01 1.39E-01 

rs1531022 7.35E-01 9.55E-01 3.23E-01 1.98E-01 6.48E-01 6.56E-01 

rs17050272 3.54E-01 9.43E-01 9.45E-02 8.25E-01 3.47E-02 2.13E-01 

rs174537 1.53E-02 1.87E-01 1.74E-01 1.45E-01 4.00E-01 4.30E-01 

rs1800961 2.23E-01 5.28E-01 3.89E-01 7.53E-01 8.20E-01 4.26E-01 

rs183657985 5.15E-03 1.46E-04 4.42E-01 4.37E-04 7.74E-01 9.44E-01 

rs1883711 5.45E-02 1.29E-01 3.08E-01 2.49E-02 9.61E-01 4.84E-01 

rs194742 6.59E-01 5.53E-01 6.49E-01 6.10E-01 5.21E-01 7.71E-01 

rs204926 5.16E-01 8.86E-01 7.45E-02 3.28E-01 8.67E-01 8.46E-01 

rs2126263 3.92E-01 8.37E-01 9.10E-03 4.80E-03 7.82E-01 9.72E-01 

rs2189966 5.23E-01 9.57E-01 2.26E-01 6.22E-02 1.06E-01 8.13E-01 

rs2393775 4.72E-01 5.63E-01 5.15E-01 2.70E-02 7.19E-01 1.17E-01 

rs28601761 1.47E-01 5.07E-02 9.22E-01 3.64E-05 3.42E-01 5.10E-01 
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rs34396849 5.75E-05 7.95E-02 6.57E-04 3.44E-01 9.10E-01 1.08E-01 

rs35048664 1.00E+00 2.07E-01 9.25E-01 4.98E-01 2.25E-01 5.17E-01 

rs35757209 9.56E-01 3.71E-01 8.82E-01 6.63E-01 8.48E-01 3.00E-02 

rs41289886 1.80E-01 1.57E-01 5.29E-01 6.71E-01 2.04E-01 6.73E-01 

rs4493565 1.80E-02 1.37E-01 4.81E-02 3.12E-02 7.66E-01 7.26E-01 

rs4665972 3.83E-01 3.05E-01 1.74E-01 3.10E-55 3.41E-01 9.50E-01 

rs4722551 7.84E-01 7.26E-01 3.27E-01 1.79E-02 8.01E-01 9.23E-02 

rs4921914 9.65E-01 1.65E-04 5.17E-01 2.00E-01 9.49E-01 5.61E-01 

rs511154 9.79E-01 2.48E-01 7.19E-01 2.46E-01 4.72E-01 7.69E-01 

rs56058728 1.33E-01 4.31E-01 2.80E-01 2.33E-01 9.39E-01 6.63E-01 

rs56337219 1.69E-01 3.95E-01 2.02E-01 3.05E-02 2.93E-01 1.53E-01 

rs56401710 7.95E-01 7.13E-01 1.00E-01 1.26E-04 2.44E-01 9.62E-01 

rs61676179 2.82E-01 6.06E-01 5.49E-01 6.93E-01 1.15E-01 5.39E-01 

rs62062797 9.63E-01 2.27E-01 1.94E-02 3.09E-11 1.54E-01 3.53E-03 

rs62466318 9.36E-01 2.10E-02 2.30E-01 1.44E-11 7.15E-01 8.15E-01 

rs6575900 1.56E-01 4.02E-01 3.67E-01 4.12E-01 1.03E-03 3.14E-01 

rs6754311 2.02E-01 2.11E-10 5.81E-01 7.68E-02 2.42E-01 1.30E-01 

rs6831352 5.83E-02 9.62E-02 7.61E-04 8.25E-04 7.86E-01 5.56E-01 

rs6906327 2.03E-01 8.49E-01 7.99E-01 7.48E-01 3.71E-01 9.83E-01 

rs715 6.32E-01 6.41E-01 6.19E-01 6.64E-01 7.13E-01 7.73E-01 

rs73079476 9.36E-01 3.13E-01 6.90E-01 1.80E-03 3.06E-01 2.31E-01 

rs73158176 7.99E-03 8.07E-01 9.87E-01 4.71E-01 7.11E-01 7.25E-01 

rs738408 7.65E-03 3.17E-01 6.52E-01 1.63E-02 4.29E-01 9.96E-01 

rs7404381 4.49E-03 2.11E-02 5.01E-04 3.45E-01 1.56E-01 6.48E-01 

rs7537281 2.43E-01 7.68E-02 3.64E-01 6.54E-03 2.69E-01 2.60E-01 

rs77042499 1.92E-02 7.94E-02 5.66E-03 6.52E-01 3.56E-01 9.88E-01 

rs78424108 9.02E-02 6.01E-01 4.25E-01 4.56E-01 1.57E-01 6.24E-01 

rs78802502 6.19E-01 4.46E-01 2.39E-01 4.61E-01 7.62E-01 6.27E-02 

rs7909960 2.69E-01 3.71E-11 1.34E-05 1.80E-01 5.50E-01 2.47E-01 

rs79687284 4.32E-02 5.59E-01 1.74E-01 4.12E-01 2.23E-01 7.56E-02 

rs8021303 1.93E-01 8.29E-01 1.59E-01 8.30E-01 2.03E-01 1.09E-01 

rs8122094 4.36E-01 9.08E-01 9.73E-01 1.64E-04 9.24E-01 7.71E-01 

rs9972653 5.78E-01 1.33E-01 5.42E-01 1.83E-09 9.07E-01 7.24E-01 

Male 

rs10020631 3.37E-01 6.33E-01 2.86E-01 9.27E-01 9.18E-01 5.90E-01 

rs10027275 6.33E-01 7.72E-01 2.10E-01 5.41E-02 7.83E-01 5.70E-01 

rs10221244 8.65E-01 6.50E-01 2.53E-01 7.39E-01 3.85E-01 1.86E-01 

rs1043011 2.09E-01 5.84E-01 5.85E-01 3.60E-01 1.53E-01 4.58E-01 

rs1051952 4.67E-01 9.91E-01 1.05E-02 8.31E-01 1.08E-01 4.11E-01 

rs10761756 1.37E-01 5.50E-03 9.17E-02 2.71E-01 3.41E-01 2.41E-01 

rs116862171 9.54E-01 1.86E-01 2.23E-01 1.72E-02 3.13E-01 7.77E-02 

rs116992380 7.85E-01 2.00E-01 6.55E-01 6.78E-01 5.73E-01 9.88E-01 

rs12206654 1.08E-02 6.04E-01 1.46E-04 6.69E-01 8.37E-01 6.78E-01 

rs123698 6.77E-01 7.31E-01 7.08E-01 2.12E-01 7.47E-01 7.23E-01 

rs12614487 1.39E-01 4.70E-01 9.49E-01 4.17E-01 3.60E-01 1.29E-01 

rs12632030 1.39E-01 5.51E-02 5.16E-02 1.23E-03 7.97E-01 2.88E-01 

rs12811045 7.47E-01 6.10E-02 4.41E-01 2.17E-01 2.18E-01 7.27E-01 

rs13107325 1.68E-01 3.25E-03 4.93E-02 5.49E-12 7.76E-01 4.58E-02 
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rs1531022 6.14E-01 9.52E-01 9.80E-01 2.29E-01 6.26E-01 7.28E-01 

rs17050272 9.63E-01 1.29E-01 2.29E-01 5.13E-01 4.13E-01 7.76E-01 

rs174537 3.09E-02 6.32E-02 2.29E-01 1.62E-01 3.31E-01 4.46E-01 

rs17717962 8.91E-01 1.69E-01 3.42E-01 7.57E-01 7.63E-02 8.59E-01 

rs1800759 2.33E-01 2.35E-02 3.49E-03 2.71E-01 2.18E-01 3.56E-01 

rs1800961 1.49E-01 6.07E-01 4.53E-01 2.29E-01 3.94E-01 9.91E-01 

rs1871395 3.06E-01 3.74E-01 3.22E-01 1.24E-01 6.88E-01 6.84E-01 

rs1883711 4.79E-01 9.51E-01 8.20E-01 5.26E-03 9.49E-01 7.16E-01 

rs2297644 3.71E-01 1.88E-01 4.44E-01 5.80E-01 1.45E-01 9.89E-01 

rs2464190 7.12E-02 5.88E-01 8.99E-01 3.72E-01 8.19E-01 7.08E-01 

rs2980888 3.53E-01 4.77E-01 1.13E-01 2.46E-02 1.79E-01 8.17E-01 

rs35614968 9.48E-01 9.16E-01 8.74E-02 6.75E-01 8.01E-01 7.76E-01 

rs3783642 7.39E-01 8.06E-01 1.69E-02 1.91E-01 1.90E-01 7.80E-02 

rs4719841 7.44E-01 9.17E-01 7.96E-01 1.51E-01 9.87E-01 7.10E-02 

rs4760099 4.16E-01 1.29E-01 8.34E-01 6.45E-01 4.76E-01 7.44E-02 

rs4766214 8.23E-02 4.26E-01 6.95E-01 1.99E-01 6.21E-01 5.22E-02 

rs511154 1.02E-01 2.72E-01 3.15E-01 2.24E-01 6.74E-01 3.41E-01 

rs58542926 5.20E-01 1.85E-03 5.12E-01 3.45E-01 2.19E-01 8.95E-01 

rs62646255 3.53E-01 7.26E-01 5.09E-01 6.42E-04 6.09E-01 2.12E-01 

rs6575900 4.22E-01 2.10E-01 3.69E-01 3.43E-01 2.32E-04 1.68E-01 

rs72839445 3.77E-03 5.10E-01 8.81E-05 9.95E-01 6.33E-01 8.53E-01 

rs73091233 4.76E-01 1.37E-01 4.59E-01 2.39E-01 6.13E-01 4.65E-01 

rs738408 4.06E-02 6.35E-01 1.10E-01 3.69E-01 8.91E-02 1.40E-01 

rs78424108 2.31E-03 9.21E-01 3.82E-01 2.43E-01 6.69E-01 5.03E-01 

rs79295634 4.18E-01 7.96E-01 1.29E-01 9.06E-01 7.53E-02 1.96E-03 

rs8047723 7.49E-01 1.66E-01 1.35E-01 8.25E-01 8.57E-01 2.34E-01 

rs9987289 9.13E-01 6.10E-02 2.62E-02 7.12E-01 1.41E-01 8.95E-01 

Female 

rs1047891 5.59E-01 7.24E-01 6.97E-01 8.12E-01 4.00E-01 4.00E-01 

rs1135688 4.84E-01 4.03E-01 6.07E-01 3.80E-01 9.52E-01 9.52E-01 

rs11640725 2.40E-02 1.90E-03 1.66E-01 4.00E-01 8.47E-01 8.47E-01 

rs12206654 7.67E-01 3.85E-01 4.97E-01 3.03E-01 4.35E-01 4.35E-01 

rs146133919 9.49E-01 3.07E-01 6.54E-01 2.73E-01 2.37E-01 2.37E-01 

rs150851429 9.94E-01 2.08E-03 8.76E-01 1.73E-01 6.60E-01 6.60E-01 

rs1595261 4.71E-01 7.72E-01 9.28E-01 6.24E-01 9.97E-01 9.97E-01 

rs174555 5.08E-03 7.43E-01 5.62E-01 5.13E-01 2.75E-01 2.75E-01 

rs1800961 8.75E-01 9.62E-01 3.47E-01 7.43E-01 4.93E-01 4.93E-01 

rs2189966 1.11E-01 6.17E-01 8.64E-01 6.47E-01 7.46E-01 7.46E-01 

rs2393775 1.24E-01 8.55E-01 5.90E-02 2.07E-01 1.59E-02 1.59E-02 

rs2657879 2.39E-01 1.53E-01 5.06E-01 1.94E-01 3.68E-01 3.68E-01 

rs28601761 1.90E-01 5.31E-02 1.72E-01 2.04E-03 3.65E-01 3.65E-01 

rs330093 7.26E-01 3.04E-03 9.60E-01 2.46E-01 1.45E-01 1.45E-01 

rs34346326 3.56E-01 8.05E-01 3.10E-01 1.33E-05 9.21E-01 9.21E-01 

rs35261542 3.39E-01 4.68E-01 3.70E-01 1.09E-01 1.19E-01 1.19E-01 

rs35491981 4.99E-01 8.94E-01 2.43E-01 5.44E-01 5.20E-01 5.20E-01 

rs35614968 4.62E-01 1.11E-01 4.70E-01 9.63E-01 2.42E-01 2.42E-01 

rs372273603 6.15E-01 1.19E-01 2.54E-01 3.27E-01 7.76E-01 7.76E-01 

rs4149059 9.03E-01 3.09E-01 5.11E-01 6.02E-01 8.72E-01 8.72E-01 
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rs4665972 7.50E-01 6.57E-01 3.71E-02 8.95E-21 7.45E-01 7.45E-01 

rs56236906 5.05E-02 3.78E-01 1.28E-01 6.92E-01 8.54E-01 8.54E-01 

rs6575900 7.37E-01 8.57E-01 7.02E-01 1.89E-01 4.91E-01 4.91E-01 

rs75661418 9.41E-01 6.46E-01 2.00E-01 2.40E-01 4.78E-01 4.78E-01 

rs76943648 9.59E-01 6.52E-01 4.48E-01 4.42E-01 7.13E-01 7.13E-01 

rs7697204 3.62E-01 2.76E-01 3.39E-01 5.81E-01 4.35E-01 4.35E-01 

rs7902343 2.70E-02 3.23E-09 2.27E-02 1.50E-01 9.07E-01 9.07E-01 

rs895893 3.90E-01 9.92E-01 5.84E-01 3.69E-01 3.92E-01 3.92E-01 

 

 


