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INTRODUCTION 
 

Synucleinopathies, including Parkinson’s disease (PD), 

dementia with Lewy bodies (DLB), and multiple system 

atrophy (MSA), are neurodegenerative disorders 

characterized by increased accumulation of misfolded 

alpha-synuclein (aSyn) in Lewy bodies, Lewy neurites 

or glial inclusions [1, 2]. Alpha-synuclein, encoded  

by the SNCA gene, is a neural protein, predominantly 

located at the presynapse [3]. Its cellular function  

has not been fully elucidated, but it is implicated  

in regulating neurotransmitter release and synaptic 

function. Accumulations of aSyn can impair presynaptic 

vesicle fusion and release of neurotransmitters [4]. 

Genetic studies point to the pivotal pathogenic role of 

aSyn in synucleinopathies since point mutations and 

genomic multiplications of SNCA are associated  

with familial cases of PD [5–10]. Even in seemingly 

sporadic cases—which account for the majority—aSyn 

aggregations are the pathological hallmark [1]. 

 

The risk of developing synucleinopathies likely results 

from a complex interplay of genetic predisposition, 

aging, and environmental factors, with age being  

the highest risk factor, as reflected by increasing 

prevalence in elderly [11, 12]. Clinical diagnosis of 

synucleinopathies is based on motor symptoms that 

typically surface late during disease progression when 

neurodegeneration has already advanced. However, 

prodromal symptoms, such as smell loss, constipation, 

and REM sleep behaviour disorder often surface years 

prior to first motor impairments but lack diagnostic 

www.aging-us.com AGING 2025, Vol. 17, Advance 

Research Paper 

Brain region-specific and systemic transcriptomic alterations in a 
human alpha-synuclein overexpressing rat model 
 

Vivien Hoof1, Nicolas Casadei2,3, Olaf Riess2, Julia Schulze-Hentrich1, Thomas Hentrich1 
 
1Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany 
2Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany 
3NGS Competence Center Tübingen, Tübingen, Germany 
 
Correspondence to: Thomas Hentrich; email: thomas.hentrich@uni-saarland.de 
Keywords: alpha-synuclein, transgenic rat model, different brain regions, aging, transcriptome analysis 
Received: January 23, 2025 Accepted: October 1, 2025  Published: October 20, 2025 
 
Copyright: © 2025 Hoof et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Synucleinopathies are age-dependent neurodegenerative diseases characterized by alpha-synuclein accumulation 
with distinct vulnerabilities across brain regions. Understanding early disease stages is essential to uncover initial 
molecular changes that might enable earlier diagnosis and causal therapy. In this study, we profiled longitudinal 
and brain region-resolved gene expression changes in a rat model of synucleinopathies overexpressing human 
SNCA. Transcriptomic analyses were performed on gene and transcript level of striatal, frontocortical, and 
cerebellar tissue in 5- and 12-month-old transgenic (BAC SNCA) and wild type rats revealing that SNCA 
overexpression leads to age-dependent transcriptomic changes that largely occur region-specific. In frontal cortex, 
dysregulation of myelination-associated genes agreed with Parkinson patient data as shown before. In addition, 
BAC SNCA rats displayed more gene expression changes at younger age, with a common and characteristic 
alteration pattern across all three examined brain regions. We also identified a cross-regional set of differential 
genes that were affected by SNCA overload. This set was also partially reflected in the gut transcriptome of the 
same rat model, suggesting a systemic impact of SNCA overload. Taken together, our findings highlight both brain 
region-specific vulnerabilities and global molecular perturbations associated with alpha-synuclein biology and 
provide insights into early transcriptomic changes in synucleinopathies. 
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specificity [13, 14]. The prodromal stage of 

synucleinopathies suggests an early unfolding of 

pathology, based on underlying molecular alterations. 

Thus, investigating early time points is critical for 

understanding molecular dysregulations which could 

enable much-needed earlier diagnosis [15]. 

 

Since human brain samples typically only reflect the 

terminal point of the disease, animal models remain an 

important tool to investigate pathomechanisms in early 

stages of synucleinopathies. Previous studies have 

demonstrated that transcriptome alterations occur in 

both patients of synucleinopathies as well as animal 

models [16–18]. In this study, a transgenic (TG) rat 

model overexpressing full-length human wild type 

SNCA on a BAC/PAC fusion construct was used, as 

slow disease progression and underlying pathological 

changes in this model resemble aspects of human 

pathology [19, 20]. Progressive accumulation of aSyn in 

TG rats leads to age-dependent neural degeneration, 

with early phenotypic changes in novelty-seeking, 

avoidance, smell, and late-onset locomotor impairments 

[19]. These age-dependent phenotypic changes are 

likely due to molecular perturbations which may 

include transcriptomic dysregulations caused by SNCA 

overexpression. Therefore, this study investigated gene 

expression changes in BAC SNCA rats at a pre-

symptomatic and symptomatic stage to gain further 

insights into age-dependent transcriptomic alterations in 

synucleinopathies. 

 

In addition, it is known that brain regions not only differ 

in susceptibility to aSyn pathology [21], driven by 

differences in cell type composition and neuronal 

connectivity [22], but also ages largely region-

specifically [23]. Hence, region-resolved and longitudinal 

analyses of expression changes are required to better 

understand the pathogenesis. That is why we interrogated 

striatal, frontocortical, and cerebellar tissue of 5- and 12-

month-old TG rats as well as WT controls by RNA-

sequencing. Differential analysis on gene and transcript 

level revealed age-dependent transcriptomic changes  

in SNCA overexpressing rats that largely occur  

brain region-specifically and partially agree with human 

data. Furthermore, a core set of genes shared similar 

perturbation patterns across brain regions and extended 

in parts into gut tissue. 

 

RESULTS 
 

Overexpression of human SNCA transcripts differs 

between brain regions in rat 

 

To better understand effects of SNCA overexpression in 

brain regions, the striatal, frontocortical, and cerebellar 

transcriptomes of transgenic rats (TG) overexpressing 

full-length human SNCA, and wild type (WT) controls 

were interrogated using RNA-sequencing. By including 

5- and 12-month-old rats of both genotypes a  

particular emphasize was put on revealing longitudinal 

transcriptomic changes (Figure 1A). After preprocessing 

the raw data using well-established, community approved 

pipelines [24, 25], high quality of the data was ensured 

by stringent quality controls. Principal component 

analysis showed that gene expression differed strongly 

between brain regions (Supplementary Figure 1A), age 

and genotype (Supplementary Figures 1B, 3A, 5A, 7A). 

In line, cell type-specific single-cell reference data [26] 

indicate cell type composition differences between  

brain regions, most prominent with respect to microglia, 

pyramidal neurons, and oligodendrocytes. Within  

each brain region, experimental groups reflect great 

homogeneity suggesting that transcriptomic differences 

are unlikely to result from compositional shifts 

(Supplementary Figure 2). 

 

Since aSyn protein load differs between brain regions in 

this model [19], expression of endogenous and human 

SNCA were analysed. Endogenous Snca showed the 

highest expression in cortex and lowest in cerebellum 

and remained largely stable with respect to age and 

genotype. In striatum, however, endogenous Snca 

showed a significant age-dependent expression increase 

in both WT and TG animals (Figure 1B). On top of 

endogenous Snca levels, a region-specific expression of 

human SNCA was detected with highest expression in 

cortical samples of TG rats. Like the endogenous Snca, 

expression levels of human SNCA were not affected by 

age in cortex and cerebellum, whereas a significant age-

dependent increase was observed in striatum (Figure 

1B). Furthermore, expression of SNCA transcripts was 

analysed, revealing an intriguing addition of human 

transcripts on top of endogenous Snca in TG rats. 

Although no compositional differences of SNCA 

isoforms were observed, relative isoform expression 

differed significantly across brain regions, dominated 

by ENST00000508895.5 and ENST00000394991.8 

transcripts (Figure 1C). 

 

These results indicate that human SNCA is expressed in 

an age- and region-specific manner that follows the 

expression of endogenous Snca on both gene and 

transcript level, lending the model to learn more about 

aSyn biology under normal and disease-like conditions. 

 

Striatal transcriptomic changes under SNCA 

overexpression largely occur already in young animals 

 

Since the striatum is notably affected by aSyn pathology, 
particularly in PD [22, 27], the striatal transcriptome was 

analysed first. Globally, samples partitioned according to 

experimental conditions (Supplementary Figure 3A), and 
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differential expression was determined with respect to 

age, genotype, and their interaction. Surprisingly, more 

differential expression was detected in younger than 

older TG rats, with 578 differentially expressed genes 

(DEGs) (369 up- and 209 downregulated) in 5-month-old 

and 225 DEGs (127 up- and 98 downregulated) in 12-

month-old rats, of which 125 DEGs overlapped (Figure 

2A and Supplementary Figure 3B). The counter-intuitive 

 

 
 

Figure 1. Brain region-specific overexpression of endogenous and human SNCA in rats. (A) Schematic illustration showing the 

experimental design of 5- and 12-months-old wildtype (WT) and transgenic (TG) BAC SNCA rats. RNA was isolated from striatum, cortex and 
cerebellum for 5 animals per group and used for RNA-seq to identify differential expression. (B) Expression level of endogenous rat Snca (left) 
and human SNCA (right) as individual nRPKM data points per rat across experimental groups with mean and standard error of the mean. (C) 
Composition and expression level of endogenous and human SNCA transcript isoforms across experimental groups. 
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numbers of differential genes for an age-related disease 

also extended to transcript level (Supplementary Figure 

3E) and cannot be attributed to higher inter-individual 

variability of the data in older animals (Supplementary 

Figure 3F). Also, differential splice event counts were 

higher in young TG rats, dominated by skipped exons, 

and occurring in genes associated with cytoplasm and 

synapse. Despite splicing events were largely distinct, 

there were few reoccurring genes with respect to genotype 

and age, respectively (Supplementary Figure 18A–18D). 

 

The differential genes in 5-month-old TG rats were most 

significantly enriched for monovalent inorganic cation 

transport and sodium ion transport (Supplementary 

Figure 3C), whereas the DEGs in 12-month-old TG rats 

were neither significantly enriched for Gene Ontology 

terms, KEGG pathways, nor related annotations 

(Supplementary Figure 3D). 

 

Trying to relate the differential entities with other 

models, even the striatal transcriptome of 6-months  

old mice overexpressing the same BAC SNCA 

construct showed limited overlap in differential genes 

(Supplementary Figure 4). Similar for RNA-seq data 

from putamen of PD patients [28], while indeed 83 

orthologues were shared between TG rats and patients, 

similarity in directionality and magnitude was restricted 

to few genes only, including LILRA5 and TNNI3 as the 

most significantly up- and downregulated genes 

(Supplementary Figure 3G, 3H). 

 

With respect to age, 1988 DEGs (971 up- and 1017 

downregulated) were identified in WT and 1399 DEGs 

(482 up- and 917 downregulated) in TG rats (Figure 2A), 

suggesting that aging under aSyn overload differs 

between genotypes, which is statistically modeled by the 

interaction term that captured 98 DEGs (35 up- 63 

downregulated) showing an interaction between age and 

genotype. 

 

Borrowing reference data for striatal aging in mice [23], 

the expression patterns of these signature genes in the 

data formed four dominant clusters (Supplementary 

Figure 5). Cluster A2 and A3 contained genes that were 

either up- or downregulated specifically in TG rats, 

indicating an age-independent effect of the overexpressed 

transgene. In addition, the largest cluster (A4) contained 

genes showing an age-dependent upregulation largely 

irrespective of genotype. Furthermore, genes showing  

the strongest age-dependent upregulation, clustered 

separately in A1 because young TG rats reflected 

premature upregulation of those genes. 

 
Broadening the view on these distinct expression 

patterns, DEGs from all striatal contrasts were merged, 

visualized in a heatmap and hierarchically clustered, 

revealing eight distinct groups (Figure 2B), summarized 

as centroids (Figure 2C). These clusters contained genes 

of analogous expression patterns described before (C4, 

C5 and C8). Furthermore, the largest clusters contained 

genes showing a premature up- (C6) and downregulation 

(C1 and C3) meaning they are differential in 5-month-

old rats only (Supplementary Figure 6). Thus, premature 

alterations largely explain the high DEG count in young 

animals. Functionally, the 782 DEGs identified in cluster 

C6 were enriched for biological processes linked to 

synaptic functions including modulation of chemical 

synaptic transmission and regulation of trans-synaptic 

signalling (Figure 2D), including Gria2 which encodes 

for a glutamate ionotropic receptor with an important 

role in excitatory synaptic transmission [29] (Figure 2E). 

In addition, premature upregulated genes were enriched 

for targets of the transcription factor Pax6, which 

showed increased activity and is known to regulate 

neuronal development and neuronal plasticity [30] 

(Supplementary Figure 7). 

 

Taken together, these results indicate greater perturbation 

of the striatal transcriptome in young TG animals. At 12 

months, expression differences of these genes have 

largely converged again such that DEGs are fewer. 

 

Modest impact of SNCA overexpression on cerebellar 

transcriptome 

 

To investigate whether transcriptomic changes occurring 

largely in young TG rats is specific to the striatum, 

analyses were extended to cortical and cerebellar 

samples. While the PCA of the cerebellar samples also 

indicates a genotype effect similar to striatum, samples 

separate predominantly by age (Supplementary Figure 

8A). In line, differential analysis revealed 2475  

DEGs (1719 up- and 756 downregulated) in WT and 

1873 DEGs (1236 up- and 637 downregulated) in TG 

animals with respect to age, of which 1405 overlapped 

(Figure 3A and Supplementary Figure 8B). With respect 

to genotype, a similar DEG count of 367 (203 up- and  

164 downregulated) and 311 (166 up- and 145 

downregulated) were detected in 5- and 12-month-old 

TG rats, respectively (Figure 3A), with Sncg, Gstt4, and 

Col27a1 being the most significantly upregulated and 

P2rx4, Rtn4ip1, and Evc the most significantly 

downregulated DEGs in TG animals. Of note, the DEGs 

of TG rats could neither be characterized by significant 

enrichments for Gene Ontology terms, KEGG path-

ways, and related annotation data. Differential splice 

events were similar to striatal observations, in which 

skipped exons dominated all contrasted conditions, 

occurred in genes annotated for cytoplasm, and were 
otherwise largely disjunct with the exception of a few 

reoccurring genes with respect to age and genotype 

(Supplementary Figure 18E–18H). 



www.aging-us.com 5 AGING 

 
 

Figure 2. Striatal gene expression changes under SNCA overload largely occur in young TG rats. (A) Number of differentially 

expressed genes (DEGs) between experimental groups in the striatum, along the genotype (WT and TG) and age axes (5 and 12 months) 
and their interaction with the indicated significance cut-offs. (B) Heatmap of hierarchically clustered striatal expression changes relative to 
WT5m of 2776 DEGs (union of striatal DEGs shown in Figure 2A) across experimental groups. (C) Average gene expression changes and 
standard deviation of all striatal DEGs plotted as centroids clustered in eight groups. Numbers of DEGs shown in brackets. (D) Five most 
significant enriched biological processes for the DEGs in cluster 6 with indicated adjusted p-value, enrichment ratio and DEG count in 
brackets. (E) Expression level for Gria2 as individual nRPKM data points across experimental groups with mean and standard error of the 
mean. 
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Due to the lack of cerebellar PD patient data, relating 

differential genes to the human condition remains for 

future studies. With respect to other models, genotype-

driven DEGs partially overlapped with genes identified 

in cerebellum of PLP-alpha-synuclein transgenic mice, 

with Sncg being most significantly upregulated and 

Chst5 being the most significantly downregulated in 

both models at 5 and 2 months of age and Sorc2 and 

 

 
 

Figure 3. Modest impact of SNCA overexpression on cerebellar transcriptome. (A) Number of DEGs between experimental groups 

in the cerebellum, along the genotype (WT and TG) and age axes (5 and 12 months) and their interaction with the indicated significance cut-
offs. (B) Heatmap of hierarchically clustered cerebellar expression changes of 3402 DEGs relative to WT5m (union of cerebellar DEGs shown in 
Figure 3A) across experimental groups. (C) Average gene expression changes and standard deviation of all cerebellar DEGs plotted as 
centroids clustered in eight groups. Numbers of DEGs are shown in brackets. 
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Casq1 being most significantly up- respectively 

downregulated in both models and 12 months of age 

(Supplementary Table 1). 

 

The similar count of differential genes in the cerebellum 

of BAC SNCA rats at 5- and 12-months of age also 

extends to transcript level (Supplementary Figure 8C). 

Together, the similarity of DEGs with respect to age in 

both genotypes and the stable impact of the transgene 

agree with only 21 genes (7 up- and 14 downregulated) 

that show significant interaction between age and 

genotype, suggesting only modest deviation on how WT 

and TG rats aged (Figure 3A). Yet again, signature genes 

of cerebellar aging showed similar patterns that were 

observed for striatal reference genes (Supplementary 

Figure 9), most importantly a cluster of genes showing 

premature upregulation in TG rats (A1 in Supplementary 

Figure 9B). 

 

Investigating this further, the union of all cerebellar 

DEGs were visualized across experimental groups 

(Figure 3B), revealing expression patterns that clustered 

into eight distinct groups (Figure 3B, 3C and 

Supplementary Figure 10). Similar to striatum, two 

clusters (C5 and C3) comprise DEGs that show age-

dependent up- and downregulation, respectively, largely 

independent of genotype. In addition, there are two 

cluster (C4 and C8) which show stable genotype driven 

perturbations (C4 and C8). Lastly, the largest number of 

genes were partitioned into clusters C6 and C7, showing 

similar activation with age in both genotypes, but 

premature upregulation in young TG animals. However, 

despite of clear and homogenous expression profiles, 

these DEGs were not significant enriched for any 

biological processes and pathways. 

 

It should be noted that despite stronger overexpression 

of the transgene in cerebellum and the large DEG count 

in cerebellar contrasts their effect sizes tended to be 

weaker compared to striatal DEGs (Supplementary 

Figure 8D), suggesting that SNCA overexpression has a 

weaker impact on the aging cerebellar transcriptome. 

 

Myelination-linked genes were differential in cortex 

of BAC SNCA rats and PD patients 

 

In a next step, cortical samples of both time points and 

genotypes were examined (Supplementary Figure 11A). 

Whereas in 5-month-old TG rats 610 DEGs (362 up- 

and 248 downregulated) were identified, 255 genes (169 

up- and 86 downregulated) were differential in 12-

month-old TG animals. Having more perturbations in 

young TG animals—similar to results in striatum 
(Figure 2)—also extended to transcript level and splice 

event counts (Supplementary Figures 11C, 18I) and 

was, again, not due to increased data variability in  

older animals (Supplementary Figure 11D). Also 

similar to striatal observations, differential splice events 

occurred mostly disjunct across contrasts, and were 

enriched for cytoplasm-linked genes (Supplementary 

Figure 18J, 18K). 

 

With respect to age, 1385 DEGs (1016 up- and 369 

downregulated) were detected in WT animals, whereas 

only 526 genes (436 up- and 90 downregulated) were 

differential in TG rats, with 315 DEGs overlapping 

(Figure 3A and Supplementary Figure 11B). As 

suggested by these numbers cortical aging under SNCA 

overexpression differed significantly from WT animals, 

most prominently captured in 197 DEGs (79 up- and 

118 downregulated) showing a significant interaction 

between age and genotype, the highest number of all 

three examined brain regions (Figure 3A). 

 

In addition, overall higher effect sizes were detected 

compared to striatum and cerebellum (Figure 4B  

and Supplementary Figure 8D). Clustering of this 

expression changes revealed six distinct groups with 

similar perturbation patterns as seen in the other regions 

(Figure 4B and Supplementary Figure 12). Also similar 

to striatum and cerebellum the largest number of DEGs 

(C4 and C6 in Figure 4B) show the strongest age-

dependent upregulation and premature upregulation in 

young TG animals. This phenomenon was also reflected 

in the cortical age signature (Supplementary Figure 13). 

Functionally, the DEGs identified in cluster C4 and  

C6 were most significantly enriched for biological 

processes linked to synaptic functions including 

regulation of postsynaptic membrane potential, 

regulation of membrane potential, and modulation of 

chemical synaptic transmission (Supplementary Figure 

14A), suggesting that synapse-related pathways are 

affected early on. 

 

Further exploration of cortical DEGs under SNCA 

overload revealed significant enrichment for central 

nervous system myelination and axon ensheathment in 

central nervous system in TG rats, primarily at 12 

months of age (Figure 4C and Supplementary Figure 

14B). These genes were also significantly enriched for 

genes attributed to oligodendrocytes (Supplementary 

Figure 14C), suggesting that myelination-associated 

and oligodendrocyte-specific genes are significantly 

perturbed in old TG rats. 

 

To relate these finding in the animal model to human, 

previously published post-mortem cortical transcriptomes 

of PD patients were analysed analogous to rat samples 

[31]. Among 979 genes differentially expressed in the 
cortex of PD patients, 28 orthologues overlapped with 

DEGs identified in 12-month-old TG rats (Figure 4D). 

Intriguingly, 28 shared differential genes are specifically 
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expressed in oligodendrocytes including MOG, UGT8 

and MYRF, that showed increased and nearly identical 

expression in old TG rats and patients (Figure 4E). This 

is in line with previous transcriptomic analyses of cortical 

samples against other PD patient data [20] but did not 

extend to protein level (Supplementary Table 2). 

Taken together, these results indicate that—compared to 

striatum and cerebellum—the cortex exhibits the largest 

effect sizes of age-dependent expression changes. 

Perturbations under the transgene not only occurred 

early on but also led to the highest number of genes 

with significantly different age trajectories under SNCA 

 

 
 

Figure 4. Cortical transcriptomic perturbations under SNCA overload include myelination-linked genes in rat and PD 
patients. (A) Number of DEGs between experimental groups in the cortex, along the genotype (WT and TG) and age axes (5 and 12 months) 

and their interaction with the indicated significance cut-offs. (B) Heatmap of hierarchically clustered cortical expression changes relative to 
WT5m of 2061 DEGs (union of cortical DEGs shown in Figure 4A) across experimental groups. (C) Five most significant enriched biological 
processes for the 255 cortical DEGs of 12-month-old TG rats with indicated adjusted p-value, enrichment ratio, and DEG count in brackets.  
(D) Venn diagram comparing 255 DEGs identified in the cortex of 12-month-old TG rats and 979 DEGs identified in the cortex of PD patients 
[31]. (E) Scatter plot of 28 overlapping DEGs identified in the cortex of 12-month-old TG rats and in the cortex of PD patients. 
Oligodendrocyte associated DEGs are labelled. 
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overload. Lastly, upregulation of myelination-associated 

genes in cortex of TG rats was shared between animal 

model and PD patients. 

 

Core set of genes exhibits common perturbation 

patterns across brain regions in SNCA overexpressing 

rats 

 

To investigate whether the common patterns observed 

in all examined brain regions are based on the same 

underlying genes, the overlap of DEGs across brain 

regions was examined (Figure 5A). Indeed, among the 

most significant cross-region DEGs was Sncg, encoding 

for gamma-synuclein, another member of the synuclein 

family, Ddc encoding for dopa decarboxylase as well as 

genes like Fam111a and Gjc3 (Supplementary Figure 

15). In addition, there were several cross-region DEGs 

agreeing with known aSyn biology such as Orai2 

encoding for a calcium channel and Gpr157, both 

showing age-independent upregulation, or P2rx4 a 

 

 
 

Figure 5. Common transcriptomic changes in SNCA overexpressing rats across brain regions and tissues. (A) Venn diagram 

comparing DEGs identified along the genotype axis in 5- and 12-month-old WT and TG rats between the striatum, the cortex and the 
cerebellum. (B) Heatmap of striatal, cortical and cerebellar expression profiles of 122 overlapping genes (shown in A) as log2 expression 
change relative to striatal WT5m per experimental group. (C) Circos plot of the spatial distribution of 122 common DEGs found in TG animals 
across all examined brain regions. Genes are color coded based on their up- or downregulation in at least two brain regions. (D) Venn 
diagram comparing 122 DEGs identified as core set of DEGs in three examined brain regions in TG animals and 1697 DEGs identified in the gut 
of the same rat model [32]. (E) Scatter plot of 122 cross-regional DEGs in TG animals in striatum and gut with 37 overlapping DEGs between 
brain regions and gut highlighted in purple. DEGs with the same regulation in brain and gut are labelled. 
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ligand-gated channel with high calcium permeability 

significantly downregulated across brain regions in TG 

animals (Supplementary Figure 15). 

 

Together, the common genes extend to a total of 122 

(Figure 5A and Supplementary Table 3). Characterizing 

them further with respect to pathway and gene set 

enrichments, and known interactions did not yield 

significant or conclusive results, emphasizing that these 

DEGs can be understood only in context of the other 

region-specific DEGs (Supplementary Figures 3D, 

14B). Transcription factor analysis of the 122 genes 

revealed enrichment of targets of the transcription factor 

SP1, where SP1 itself was downregulated in an age-

dependent manner (Supplementary Figure 16). 

However, gene regulatory network analysis did not 

point to specific signalling pathway, even under relaxed 

criteria (Supplementary Figure 17). Yet, the expression 

pattern of the core genes is very clear across regions, 

with largely similar dysregulation in TG animals, and in 

which most genes show significantly altered expression 

in both young and old TG animals (Figure 5B). The 

cross-regional DEGs were also evenly distributed across 

the genome, suggesting the differential genes not to 

result from effects in the genomic vicinity of transgene 

integration sites (Figure 5C). 

 

Further support for non-random effects underlying the 

core gene set is given by similarities in differential 

splice events. While the preponderance of them occurs 

region-specifically, some affected genes are shared 

across brain regions with nearly identical impact  

on transcript isoform usage. These overlaps exist 

specifically with respect to genotype and are 

exemplified by candidates like Ptprn, Zfyve28, and Ifi44 

(Supplementary Figure 19). 

 

To investigate whether the core set of differential genes 

across brain regions are also reflected in another tissue, 

published transcriptome data from gut epithelial cells of 

the same rat model [32] were analysed analogous to 

brain samples. 37 DEGs in the gut overlapped with the 

core set of differential genes identified in brain (Figure 

5D). Again, these common DEGs displayed largely 

similar expression across both tissues in TG animals 

(Figure 5E and Supplementary Figure 20), suggesting a 

systemic effect of SNCA overexpression. 

 

These results indicate that although most transcriptomic 

changes under SNCA overexpression are brain  

region-specific, there is a core set of genes in the brain 

which share very similar perturbations under aSyn 

overload. Part of these cross-regional genes are 
similarly dysregulated in the gut, a tissue known to play 

an important role in synucleinopathies, particularly in 

PD [33]. 

DISCUSSION 
 

Synucleinopathies share an age component in their 

etiology and are often not clinically diagnosed before 

later stages of the pathogenesis, then primarily on motor 

phenotypes [34]. Due to limited access to human brain, a 

better molecular understanding of the pathomechanism 

and its unfolding remains challenging. Animal models 

can help to address this challenge and lend themselves to 

longitudinal studies of synuclein biology [35]. 

 

Here, a transgenic rat model that overexpressing human 

SNCA on a BAC construct [19] was used to determine 

gene expression differences in striatal, cortical, and 

cerebellar tissue of 5- and 12-month-old animals on 

both gene and transcript level. The expression of the 

human transgene in this model was closer to 

physiological levels [19] and, hence, agrees with the 

overall suitability of these models to mimic the process 

of slower neurodegeneration in contrast to, for example, 

toxin-induced models that better capture later aspects of 

the pathology [36, 37]. However, comparison of 

transcriptomic changes with other transgenic mouse 

models of synucleinopathies revealed only limited 

overlap, which might arise from species-specific 

differences, brain region- and age-related variability, or 

distinct molecular contexts inherent to each model 

system. 

 

Interestingly, no obvious correlation was observed 

between excess load of SNCA and the number of 

differential genes in the investigated brain regions. In 

fact, even an age-dependent increase of SNCA in 

striatum resulted in lower DEG count. The magnitude 

of expression changes over time, however, seemed to be 

indicative of differential effect sizes in context of the 

transgene, suggesting that brain regions which undergo 

stronger expression changes along normal aging also 

exhibit stronger perturbations under overexpressed 

SNCA. These observations emphasize the need for 

region- and age-resolved investigations to advance in 

synuclein biology.  

 

Translating these age- and region-specific gene 

expression changes to the human condition is typically 

restricted to only post-mortem time points. In addition, 

not for all brain regions investigated herein human 

reference data were available. Against this background, 

comparisons of striatal and cerebral effects between 

animal model and human remained limited. For cortex, 

however, previous translational attempts utilizing 

another human dataset were confirmed and centered on 

the distinctive upregulation of oligodendrocyte- and 

myelin-associated genes [20]. These findings are in line 

with the evolving shift in our understanding of 

synucleinopathies and include the involvement of non-
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neuronal cells, in particular myelin-producing oligo-

dendrocytes [38, 39]. Increase of white matter, already 

in early stages, was observed in PD patients, too, and 

might facilitate early screenings [40]. 

 

Building on the concept of early alterations, the results 

herein suggest intriguing age-dependent perturbations 

associated with SNCA overexpression. Notably, more 

pronounced transcriptomic changes occurred in young 

transgenic animals, particularly in the striatum and 

cortex. The phenomenon of early alterations aligns with 

recent studies, suggesting transcriptomic dysregulation 

arises from an interplay of general brain region-specific 

vulnerability, age, and SNCA overexpression [18, 41–

43]. In a BAC-Tg3(SNCA*E46K) transgenic mouse 

model overexpressing human mutant SNCA, the 

majority of transcriptomic alterations in the ventral 

midbrain occurred at three months of age [42]. Notably, 

these changes were detected well before any signs of 

neurodegeneration. Similarly, in a toxin-induced mouse 

model of synucleinopathies, in which aSyn preformed 

fibrils were injected, more pronounced expression 

changes were detected at the early time point compared 

to later stages [43]. These early alterations were 

primarily linked to neuroinflammatory processes, 

suggesting an active role of microglia in initial stages of 

the pathology. 

 

In the animal model used herein, the seemingly 

counterintuitive observation of detecting more expres-

sion changes in younger animals than in older can be 

largely attributed to the premature upregulation of 

specific genes in young transgenic subjects. This 

phenomenon represented a dominant and recurring 

pattern across all brain regions, evident in age-related 

signature genes and beyond. As animals aged, 

differences in gene activity between wild type and 

transgenic animals tended to converge again, resulting 

in fewer detectable changes by 12 months of age. 

 

Hypothesizing on the biology behind this intriguing 

pattern, the premature upregulation in transgenic 

animals might suggest an accelerated aging process [41, 

44]. This hypothesis, however, is not fully supported by 

the data. Crucially, older transgenic animals did not 

exhibit signs of continued acceleration or exacerbated 

aging compared to their wild type controls. Moreover, 

the pathways and cellular functions associated with the 

genes underlying this expression pattern did not align 

with typical aging processes. However, definitive 

conclusions should be approached with caution, as even 

the 12-month time point is still regarded as middle age 

in the lifespan of rats [45]. 
 

Instead, the pattern suggests a gradual, age-dependent 

upregulation of certain genes in wild type animals, 

potentially to adapt to or counteract effects of aging. 

The pathway enrichments indicate the possibility of 

physiological or morphological adaptations in synaptic 

contexts and neuritogenesis, too. In transgenic animals, 

early activation of the same genes could be 

compensatory in nature as the system attempts to 

mitigate the effects of SNCA overload [42, 46]. In line, 

Stemick et al., 2020 report that BAC SNCA rats exhibit 

neuritogenesis of serotonergic afferents within the 

dorsal striatum as a compensatory mechanism [47]. 

Despite severe loss of dopaminergic cells and neurites 

in the substantia nigra and dorsal striatum, these 

animals exhibit a significant increase in serotonergic 

fiber density in the dorsal striatum while the number of 

serotonergic neurons in the raphe nuclei remained 

unchanged [47]. This suggests that serotonergic 

plasticity, both at the structural and transcriptomic 

levels, serves as a compensatory response to SNCA 

overexpression and dopamine depletion in TG animals. 

Premature upregulation of synaptic genes in young 

BAC SNCA rats may actively drive serotonergic 

adaptation, highlighting its potential role in disease 

progression and compensation of aSyn pathology. 

Stemick et al., 2020 further identify serotonergic 

neurons as a potential ectopic source of dopamine in the 

striatum by expressing key dopaminergic machinery 

(AADC encoded by Ddc, VMAT2 encoded by Slc18a2) 

which led to reduced serotonergic autoreceptor levels 

(5-HT1A encoded by Htr1a, 5-HT1B encoded by 

Htr1b) and excessive dopamine release [47]. 

 

In line, the striatal transcriptome presented herein 

revealed age-dependent expression changes of these key 

genes in TG animals, with Ddc and Htr1b showing a 

higher expression in 5- compared to 12-month-old TG 

rats, suggesting early transcriptional activation followed 

by a decline. Although Slc18a2 was not differentially 

expressed in TG animals, its premature upregulation in 

young TG animals aligns with the notion of early 

serotonergic adaptation in response to SNCA over-

expression and dopamine depletion. Translating  

this finding to PD patients, this suggests that early 

compensatory mechanisms of increased serotonergic 

sprouting and dopamine release might initially preserve 

motor function but might also contribute to L-DOPA-

induced dyskinesia at later stages. Hypothesizing on the 

underlying mechanism of early compensatory neurito-

genesis, transcription factor analysis further revealed 

that genes showing early upregulation in TG animals 

are enriched for targets of Pax6, a regulator of neuronal 

plasticity [30], suggesting its potential involvement in 

early serotonergic adaptation. It is important to note that 

transcriptomic profiling in this study was performed on 
whole striatal tissue, which consequently might obscure 

region-specific serotonergic effects reported by Stemick 

et al., 2020. 
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The shared expression patterns observed across brain 

regions led us to investigate common transcriptomic 

changes arising from the transgene. Indeed, we 

identified a core set of differential genes affected by 

SNCA overexpression in all examined brain regions. 

Pure random as well side effects in the vicinity of 

potential integration sites of the BAC construct seem 

unlikely given the genomic location of affected genes 

and highly similar expression pattern in all three brain 

regions. 

 

Among these cross-regional DEGs neither a specific 

pathway or cellular function was enriched, nor did a 

gene regulatory network analysis reveal a dominant 

regulator or a central signalling pathway, suggesting 

that the observed transcriptional changes reflect 

widespread effects of SNCA overload, rather than the 

dysregulation of a singular pathway. However, there 

were several individual candidates of functional 

interest, including key genes of the dopaminergic 

machinery like Ddc [48], as well as Sncg encoding for 

gamma-synuclein, another member of the synuclein 

family [49], which can induce aggregations of aSyn and 

can aggregate itself. Increased expression of Sncg was 

also described in a toxin-induced non-human primate 

model of PD [50]. Among the cross-regional DEGs 

were several calcium-channels previously linked to PD 

including Orai2, Gpr157, and P2rx4 [51–53]. The core 

set of genes also included Fam111a, one of the highest 

overexpressed gene across all brain regions, encoding a 

serin protease involved in DNA replication and antiviral 

defence, whose protease activity is linked to apoptosis 

[54, 55]. Transcriptomic analysis of a toxin-induced rat 

model of PD identified Fam111a as differentially 

expressed across five brain regions, linked to synaptic 

dysfunction [56]. However, the mechanistic role of 

Fam111a in PD pathogenesis remains unclear. 

Transcription factor analysis revealed enrichment for 

target genes of SP1 among the cross-regional DEGs, 

with SP1 activity being reduced in an age-dependent 

manner. Downregulation of SP1 was shown to be 

neuroprotective in a toxin induced mouse model of PD 

[57], therefore its initial downregulation may reflect a 

compensatory response to SNCA overexpression in 

young TG animals. 

 

Notably, many of the common genes across brain 

regions were recovered even in gut tissue, pointing to a 

region-independent regulatory core upon which SNCA-

induced perturbations unfold in a region-specific 

manner. Although specific pathological changes along 

the gut-brain axis have not yet been characterized in 

BAC SNCA rats, prior studies in BAC SNCA mice 
reported phosphorylated alpha-synuclein in the dorsal 

motor nucleus of the vagus nerve as early as 2 months 

of age, which coincided with significant gait alterations 

in young TG animals [58]. These findings highlight a 

potential link between early peripheral pathology and 

central motor symptoms. Furthermore, previous work 

has demonstrated altered microbiome composition and 

alpha-synuclein protein expression in the gut of 2-

months-old BAC SNCA rats, with progressive 

accumulation of alpha-synuclein in the gut over time 

[32]. These peripheral changes support the idea that 

gut-derived alpha-synuclein may play a role in shaping 

the disease phenotype [59]. The distinctive pattern  

of gene expression changes across diverse tissues 

suggests a fundamental, systemic response to SNCA 

overexpression. It implies that while the core 

regulatory response may be consistent across tissues, 

the specific manifestations and downstream effects 

vary depending on the cellular context and function. 

Although the shared DEGs do not converge on a single 

pathway, they comprise multiple cellular functions 

aligning with known PD-related processes including 

oxidative stress response and proteostasis (Ephx2, 

Rtn4ip1, Retsat, Pex11a, Ube3d) or immune signalling 

(Ilr3a, Selplg, Mpeg1, Tmem119), the latter being 

consistent with an activated inflammatory environment 

in the gut of BAC SNCA rats [32]. While exact 

mechanistic pathways remain speculative, the observed 

transcriptomic changes in both brain and gut align with 

the hypothesis of an early, gut-brain interaction in PD 

pathophysiology. 

 

While it remains to future studies to examine the 

consequences of these transcriptomic changes on 

protein level and advance to functional implications, the 

genes and patterns we highlight here might serve as 

anker points to direct efforts to. In particular, the 

involvement of serotonergic adaptions—highlighted 

both on transcriptome level and in previous studies—

points to serotonergic receptor modulators as a 

promising avenue for future investigation, especially  

in the context of L-DOPA-induced dyskinesia. 

Pharmacological targeting of these pathways may help 

clarify the dual role of serotonergic plasticity as both 

compensatory and maladaptive in synucleinopathies. 

 

MATERIALS AND METHODS 
 

Experimental animals and tissue preparation 

 

Male homozygous transgenic rats overexpressing full-

length human SNCA including its regulatory elements 

[19] as well as WT rats with the same genetic 

background (Sprague-Dawley) were housed in a standard 

environment until the age of 5 and 12 months. 

Experimental animals were obtained by crossing 
heterozygous male with heterozygous female rats. 

Homozygous or WT status was confirmed by genotyping 

with quantitative PCR using DNA from ear biopsies with 
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primer sequences specifically for human SNCA (F: 

5′ccgctcgagcggtaggaccgcttgttttagac-3′; R: 5′-ctctttccacg 

ccactatc-3′) and normalized to β-actin as reference (F: 

5′agccatgtacgtagccatcca-3′; R: 5′-tctccggagtccatcacaatg-

3′). Animals were anaesthetized, decapitated, and the 

brain immediately dissected on ice and snap frozen in 

liquid nitrogen. The tissue was stabilized with RNAlater 

(Qiagen) at 4° C. 

 

RNA isolation and sequencing 

 

The polyadenylated fraction of RNA isolated from 

striatum, frontal cortex and cerebellum (n = 5 animals 

in each of the four experimental groups per brain 

region) was used for RNA-seq. Total RNA, miRNA, 

and DNA were simultaneously extracted using the 

DNA/RNA/microRNA Universal Kit (Qiagen) using 

the manufacturer protocol. Quality was assessed with 

an Agilent 2100 Bioanalyzer. Samples with high RNA 

integrity number (RIN > 7) were selected for library 

construction. Using the TruSeq RNA Sample Prep Kit 

(Illumina) and 100 ng of total RNA for each 

sequencing library, poly(A) selected paired-end 

sequencing libraries (125 bp read length) were 

generated according to manufacturer’s instructions. All 

libraries were sequenced on an Illumina HiSeq 2500 

platform at a depth of 20–35 million reads each. 

 

Quality control, alignment and expression analysis 

 

The Nf-core RNA-seq Pipeline (v3.13.0) [24] served as 

the primary tool for processing the sequencing data. To 

assess the read quality of the RNA-seq data FastQC 

(v0.12.0) was used [60]. Reads were aligned against a 

custom-built reference genome of the Ensembl Rattus 
norvegicus genome (mRatBN7.2) including the human 

SNCA transgene using STAR [61]. Normalized read 

counts were obtained with Rsubread (v2.12.3) [62]. 

Quality control metrics from all samples were aggregated 

and reviewed using MultiQC (v1.14) [63], including e.g. 

total number of mapped reads, read coverage, duplication 

rates, and read distribution across genomic features, to 

ensure consistency across samples. To confirm the 

absence of outlier samples, principal component analysis 

(PCA) was performed on normalized gene expression 

data. All samples clustered with their respective 

experimental groups, and no outliers were identified. 

 

DESeq2 (v1.38.3) [64] was used for the differential 

gene expression analysis. Transcripts with less than 20 

reads in the median of all samples were excluded from 

subsequent differential analysis resulting in 14,948 

genes for striatum, 14,697 for cortex and 14,521 for 
cerebellum. Gene expression was modeled in a 2 x 2 

factorial design as a function of genotype, age and their 

interaction Supplementary Tables 4–6. Significance 

thresholds for differentially expressed genes were set to 

a BH-adjusted p-value ≤ 0.05 and a |log2FC| ≥ 0.5. 

Surrogate variable analysis (v3.46.0) [65] was applied 

to remove unwanted variation in the data. 

 

Transcript abundance was quantified with Salmon 

(v1.10.1, parameters: numGibbsSamples 20, seqBias, 

gcBias, validateMappings) [25] using a gentrome based 

on the Ensembl Rattus norvegicus genome and 

transcriptome including human SNCA. Transcripts per 

million (TPM) values were imported and scaled 

(scaleInfReps) with Tximeta (v1.16.1) [66]. Only 

transcripts with at least 50 counts in at least 5 samples 

were considered for the differential transcript usage 

analysis. For differential splicing analysis rMATs 

(v4.3.0) [67] was used with default parameters. To 

identify significant splicing events filtering of detected 

splice events was based on ∆PSI ≥ 0.1 (Percent Spliced 

In) and a BH-adjusted p-value ≤ 0.01. Sashimi plots to 

visualize differential splicing events were generated 

using ggsashimi [68]. 

 

Heatmaps and centroids were plotted as log2 expression 

changes relative to the mean expression of WT5m 

samples. nRPKM values (normalized Reads Per 

Kilobase per Million total reads) were calculated using 

read counts from DESeq2 to measure the relative gene 

expression changes [69]. For gene ontology analysis 

WebGestalt and gProfiler [70] were used to identify 

overrepresented biological processes for differentially 

expressed genes [71]. Gene set enrichment analysis was 

conducted using FGSEA [72]. Transcription factor 

prediction was carried out using decoupleR [73]. Gene 

regulatory network analysis was performed using Neko 

[74] in conjunction with the Omnipath interaction 

database [75]. Bimodal interactions were excluded from 

the analysis and intermediated nodes were introduced to 

capture potential regulatory signalling pathways by 

setting the indirect network pathway length to one. 

 

Data availability 

 

RNA-seq data files have been uploaded to GEO 

database and are available under the accession number 

GSE281984. 

 

Abbreviations 
 

aSyn: alpha-synuclein; PD: Parkinson’s disease; DLB: 

dementia with Lewy bodies; MSA: multiple system 

atrophy; TG: transgenic; WT: wild type. 

 

AUTHOR CONTRIBUTIONS 
 

VH analysed the data and, together with TH wrote the 

manuscript. JSH reviewed and edited the manuscript. 



www.aging-us.com 14 AGING 

NC coordinated NGS experiments and, together with 

OR, and JSH conceived and designed the study. All 

authors read and approved the manuscript. 

 

ACKNOWLEDGMENTS 
 

We thank Eva Haas and Christine Eberhardt for 

obtaining ethical approval for the animal work, breeding 

the animals, and sample collection. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest. 

 

ETHICAL STATEMENT 
 

All experiments were carried out in line with the ethical 

guidelines of the European Council Directive 

(2010/63/EU) and were approved by the local Animal 

Welfare and Ethics committee of the Country 

Commission Tübingen, Germany (§4 v. 14.11.2016). 

 

FUNDING 
 

Research presented in this manuscript received funding 

from the EU Joint Programme - Neurodegenerative 

Disease Research (JPND) for the project “Identification 

of genes that modulate the severity of neuro-

degenerative diseases (NeuroGem)” (FKZ01ED1507). 

 

REFERENCES 
 
1. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, 

Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. 
Nature. 1997; 388:839–40. 

 https://doi.org/10.1038/42166 PMID:9278044 

2. Spillantini MG, Goedert M. The alpha-
synucleinopathies: Parkinson's disease, dementia 
with Lewy bodies, and multiple system atrophy. Ann 
N Y Acad Sci. 2000; 920:16–27. 

 https://doi.org/10.1111/j.1749-6632.2000.tb06900.x 
PMID:11193145 

3. George JM. The synucleins. Genome Biol. 2002; 
3:REVIEWS3002. 

 https://doi.org/10.1186/gb-2001-3-1-reviews3002 
PMID:11806835 

4. Calabresi P, Di Lazzaro G, Marino G, Campanelli F, 
Ghiglieri V. Advances in understanding the function of 
alpha-synuclein: implications for Parkinson's disease. 
Brain. 2023; 146:3587–97. 

 https://doi.org/10.1093/brain/awad150 
PMID:37183455 

5. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, 
Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O. 

Ala30Pro mutation in the gene encoding alpha-
synuclein in Parkinson's disease. Nat Genet. 1998; 
18:106–8. 

 https://doi.org/10.1038/ng0298-106 PMID:9462735 

6. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, 
Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer 
R, Stenroos ES, Chandrasekharappa S, Athanassiadou 
A, et al. Mutation in the alpha-synuclein gene 
identified in families with Parkinson's disease. Science. 
1997; 276:2045–7. 

 https://doi.org/10.1126/science.276.5321.2045 
PMID:9197268 

7. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper 
JM, Millhauser GL, Houlden H, Schapira AH. A novel α-
synuclein missense mutation in Parkinson disease. 
Neurology. 2013; 80:1062–4. 

 https://doi.org/10.1212/WNL.0b013e31828727ba 
PMID:23427326 

8. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros 
R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés 
B, Llorens V, Gomez Tortosa E, del Ser T, et al. The 
new mutation, E46K, of alpha-synuclein causes 
Parkinson and Lewy body dementia. Ann Neurol. 
2004; 55:164–73. 

 https://doi.org/10.1002/ana.10795 PMID:14755719 

9. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux 
V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, 
Hulihan M, Waucquier N, Defebvre L, Amouyel P, et al. 
Alpha-synuclein locus duplication as a cause of familial 
Parkinson's disease. Lancet. 2004; 364:1167–9. 

 https://doi.org/10.1016/S0140-6736(04)17103-1 
PMID:15451224 

10. Singleton AB, Farrer M, Johnson J, Singleton A, Hague 
S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, 
Nussbaum R, Lincoln S, Crawley A, Hanson M, et al. 
alpha-Synuclein locus triplication causes Parkinson's 
disease. Science. 2003; 302:841. 

 https://doi.org/10.1126/science.1090278 
PMID:14593171 

11. de Lau LM, Breteler MM. Epidemiology of Parkinson's 
disease. Lancet Neurol. 2006; 5:525–35. 

 https://doi.org/10.1016/S1474-4422(06)70471-9 
PMID:16713924 

12. Wassouf Z, Schulze-Hentrich JM. Alpha-synuclein at the 
nexus of genes and environment: the impact of 
environmental enrichment and stress on brain health 
and disease. J Neurochem. 2019; 150:591–604. 

 https://doi.org/10.1111/jnc.14787 PMID:31165472 

13. Siderowf A, Lang AE. Premotor Parkinson's disease: 
concepts and definitions. Mov Disord. 2012; 27:608–16. 

 https://doi.org/10.1002/mds.24954  
PMID:22508279 

https://doi.org/10.1038/42166
https://pubmed.ncbi.nlm.nih.gov/9278044
https://doi.org/10.1111/j.1749-6632.2000.tb06900.x
https://pubmed.ncbi.nlm.nih.gov/11193145
https://doi.org/10.1186/gb-2001-3-1-reviews3002
https://pubmed.ncbi.nlm.nih.gov/11806835
https://doi.org/10.1093/brain/awad150
https://pubmed.ncbi.nlm.nih.gov/37183455
https://doi.org/10.1038/ng0298-106
https://pubmed.ncbi.nlm.nih.gov/9462735
https://doi.org/10.1126/science.276.5321.2045
https://pubmed.ncbi.nlm.nih.gov/9197268
https://doi.org/10.1212/WNL.0b013e31828727ba
https://pubmed.ncbi.nlm.nih.gov/23427326
https://doi.org/10.1002/ana.10795
https://pubmed.ncbi.nlm.nih.gov/14755719
https://doi.org/10.1016/S0140-6736(04)17103-1
https://pubmed.ncbi.nlm.nih.gov/15451224
https://doi.org/10.1126/science.1090278
https://pubmed.ncbi.nlm.nih.gov/14593171
https://doi.org/10.1016/S1474-4422(06)70471-9
https://pubmed.ncbi.nlm.nih.gov/16713924
https://doi.org/10.1111/jnc.14787
https://pubmed.ncbi.nlm.nih.gov/31165472
https://doi.org/10.1002/mds.24954
https://pubmed.ncbi.nlm.nih.gov/22508279


www.aging-us.com 15 AGING 

14. Berg D, Postuma RB. From Prodromal to Overt 
Parkinson's Disease: Towards a New Definition in the 
Year 2040. J Parkinsons Dis. 2018; 8:S19–23. 

 https://doi.org/10.3233/JPD-181457  
PMID:30584153 

15. Kilzheimer A, Hentrich T, Burkhardt S, Schulze-Hentrich 
JM. The Challenge and Opportunity to Diagnose 
Parkinson's Disease in Midlife. Front Neurol. 
2019;10:1328. 

 https://doi.org/10.3389/fneur.2019.01328 
PMID:31920948 

16. Glaab E, Schneider R. Comparative pathway and 
network analysis of brain transcriptome changes 
during adult aging and in Parkinson's disease. 
Neurobiol Dis. 2015; 74:1–13. 

 https://doi.org/10.1016/j.nbd.2014.11.002 
PMID:25447234 

17. Tranchevent LC, Halder R, Glaab E. Systems level 
analysis of sex-dependent gene expression changes in 
Parkinson's disease. NPJ Parkinsons Dis. 2023; 9:8. 

 https://doi.org/10.1038/s41531-023-00446-8 
PMID:36681675 

18. Patterson JR, Kochmanski J, Stoll AC, Kubik M, Kemp CJ, 
Duffy MF, Thompson K, Howe JW, Cole-Strauss A, Kuhn 
NC, Miller KM, Nelson S, Onyekpe CU, et al. 
Transcriptomic profiling of early synucleinopathy in 
rats induced with preformed fibrils. NPJ Parkinsons Dis. 
2024; 10:7. 

 https://doi.org/10.1038/s41531-023-00620-y 
PMID:38172128 

19. Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schönig 
K, Zimmermann F, Bauer C, Casadei N, Giel C, 
Calaminus C, Pichler BJ, Jensen PH, et al. A progressive 
dopaminergic phenotype associated with neurotoxic 
conversion of α-synuclein in BAC-transgenic rats. Brain. 
2013; 136:412–32. 

 https://doi.org/10.1093/brain/aws358 PMID:23413261 

20. Hentrich T, Wassouf Z, Ehrhardt C, Haas E, Mills JD, 
Aronica E, Outeiro TF, Hübener-Schmid J, Riess O, 
Casadei N, Schulze-Hentrich JM. Increased expression 
of myelin-associated genes in frontal cortex of SNCA 
overexpressing rats and Parkinson's disease patients. 
Aging (Albany NY). 2020; 12:18889–906. 

 https://doi.org/10.18632/aging.103935 
PMID:33017301 

21. de Boni L, Watson AH, Zaccagnini L, Wallis A, 
Zhelcheska K, Kim N, Sanderson J, Jiang H, Martin E, 
Cantlon A, Rovere M, Liu L, Sylvester M, et al. Brain 
region-specific susceptibility of Lewy body pathology in 
synucleinopathies is governed by α-synuclein 
conformations. Acta Neuropathol. 2022; 143:453–69. 

 https://doi.org/10.1007/s00401-022-02406-7 
PMID:35141810 

22. Alegre-Abarrategui J, Brimblecombe KR, Roberts RF, 
Velentza-Almpani E, Tilley BS, Bengoa-Vergniory N, 
Proukakis C. Selective vulnerability in α-
synucleinopathies. Acta Neuropathol. 2019; 
138:681–704. 

 https://doi.org/10.1007/s00401-019-02010-2 
PMID:31006067 

23. Hahn O, Foltz AG, Atkins M, Kedir B, Moran-Losada P, 
Guldner IH, Munson C, Kern F, Pálovics R, Lu N, Zhang 
H, Kaur A, Hull J, et al. Atlas of the aging mouse brain 
reveals white matter as vulnerable foci. Cell. 2023; 
186:4117–33.e22. 

 https://doi.org/10.1016/j.cell.2023.07.027 
PMID:37591239 

24. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, 
Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-
core framework for community-curated bioinformatics 
pipelines. Nat Biotechnol. 2020; 38:276–8. 

 https://doi.org/10.1038/s41587-020-0439-x 
PMID:32055031 

25. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 
Salmon provides fast and bias-aware quantification of 
transcript expression. Nat Methods. 2017; 14:417–9. 

 https://doi.org/10.1038/nmeth.4197  
PMID:28263959 

26. Zeisel A, Muñoz-Manchado AB, Codeluppi S, 
Lönnerberg P, La Manno G, Juréus A, Marques S, 
Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco 
G, Hjerling-Leffler J, Linnarsson S. Brain structure. Cell 
types in the mouse cortex and hippocampus revealed 
by single-cell RNA-seq. Science. 2015; 347:1138–42. 

 https://doi.org/10.1126/science.aaa1934 
PMID:25700174 

27. Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di 
Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's 
disease and other synucleinopathies: from overt 
neurodegeneration back to early synaptic dysfunction. 
Cell Death Dis. 2023; 14:176. 

 https://doi.org/10.1038/s41419-023-05672-9 
PMID:36859484 

28. Irmady K, Hale CR, Qadri R, Fak J, Simelane S, Carroll T, 
Przedborski S, Darnell RB. Blood transcriptomic 
signatures associated with molecular changes in the 
brain and clinical outcomes in Parkinson's disease. Nat 
Commun. 2023; 14:3956. 

 https://doi.org/10.1038/s41467-023-39652-6 
PMID:37407548 

29. Salpietro V, Dixon CL, Guo H, Bello OD, Vandrovcova J, 
Efthymiou S, Maroofian R, Heimer G, Burglen L, 
Valence S, Torti E, Hacke M, Rankin J, et al, and SYNAPS 
Study Group. AMPA receptor GluA2 subunit defects 
are a cause of neurodevelopmental disorders. Nat 
Commun. 2019; 10:3094. 

https://doi.org/10.3233/JPD-181457
https://pubmed.ncbi.nlm.nih.gov/30584153
https://doi.org/10.3389/fneur.2019.01328
https://pubmed.ncbi.nlm.nih.gov/31920948
https://doi.org/10.1016/j.nbd.2014.11.002
https://pubmed.ncbi.nlm.nih.gov/25447234
https://doi.org/10.1038/s41531-023-00446-8
https://pubmed.ncbi.nlm.nih.gov/36681675
https://doi.org/10.1038/s41531-023-00620-y
https://pubmed.ncbi.nlm.nih.gov/38172128
https://doi.org/10.1093/brain/aws358
https://pubmed.ncbi.nlm.nih.gov/23413261
https://doi.org/10.18632/aging.103935
https://pubmed.ncbi.nlm.nih.gov/33017301
https://doi.org/10.1007/s00401-022-02406-7
https://pubmed.ncbi.nlm.nih.gov/35141810
https://doi.org/10.1007/s00401-019-02010-2
https://pubmed.ncbi.nlm.nih.gov/31006067
https://doi.org/10.1016/j.cell.2023.07.027
https://pubmed.ncbi.nlm.nih.gov/37591239
https://doi.org/10.1038/s41587-020-0439-x
https://pubmed.ncbi.nlm.nih.gov/32055031
https://doi.org/10.1038/nmeth.4197
https://pubmed.ncbi.nlm.nih.gov/28263959
https://doi.org/10.1126/science.aaa1934
https://pubmed.ncbi.nlm.nih.gov/25700174
https://doi.org/10.1038/s41419-023-05672-9
https://pubmed.ncbi.nlm.nih.gov/36859484
https://doi.org/10.1038/s41467-023-39652-6
https://pubmed.ncbi.nlm.nih.gov/37407548


www.aging-us.com 16 AGING 

 https://doi.org/10.1038/s41467-019-10910-w 
PMID:31300657 

30. Mishra S, Maurya SK, Srivastava K, Shukla S,  
Mishra R. Pax6 influences expression patterns of 
genes involved in neuro- degeneration. Ann Neurosci. 
2015; 22:226–31. 

 https://doi.org/10.5214/ans.0972.7531.220407 
PMID:26525840 

31. Cappelletti C, Henriksen SP, Geut H, Rozemuller AJ, van 
de Berg WD, Pihlstrøm L, Toft M. Transcriptomic 
profiling of Parkinson's disease brains reveals disease 
stage specific gene expression changes. Acta 
Neuropathol. 2023; 146:227–44. 

 https://doi.org/10.1007/s00401-023-02597-7 
PMID:37347276 

32. Singh Y, Trautwein C, Romani J, Salker MS, Neckel PH, 
Fraccaroli I, Abeditashi M, Woerner N, Admard J, 
Dhariwal A, Dueholm MK, Schäfer KH, Lang F, et al. 
Overexpression of human alpha-Synuclein leads to 
dysregulated microbiome/metabolites with ageing in a 
rat model of Parkinson disease. Mol Neurodegener. 
2023; 18:44. 

 https://doi.org/10.1186/s13024-023-00628-1 
PMID:37403161 

33. Liddle RA. Parkinson's disease from the gut. Brain Res. 
2018; 1693:201–6. 

 https://doi.org/10.1016/j.brainres.2018.01.010 
PMID:29360467 

34. Jankovic J. Parkinson's disease: clinical features and 
diagnosis. J Neurol Neurosurg Psychiatry. 2008; 
79:368–76. 

 https://doi.org/10.1136/jnnp.2007.131045 
PMID:18344392 

35. Visanji NP, Brotchie JM, Kalia LV, Koprich JB, Tandon A, 
Watts JC, Lang AE. α-Synuclein-Based Animal Models 
of Parkinson's Disease: Challenges and Opportunities in 
a New Era. Trends Neurosci. 2016; 39:750–62. 

 https://doi.org/10.1016/j.tins.2016.09.003 
PMID:27776749 

36. Tieu K. A guide to neurotoxic animal models of 
Parkinson's disease. Cold Spring Harb Perspect Med. 
2011; 1:a009316. 

 https://doi.org/10.1101/cshperspect.a009316 
PMID:22229125 

37. Terzioglu M, Galter D. Parkinson's disease: genetic 
versus toxin-induced rodent models. FEBS J. 2008; 
275:1384–91. 

 https://doi.org/10.1111/j.1742-4658.2008.06302.x 
PMID:18279376 

38. Yang K, Wu Z, Long J, Li W, Wang X, Hu N, Zhao X, Sun 
T. White matter changes in Parkinson's disease. NPJ 
Parkinsons Dis. 2023; 9:150. 

 https://doi.org/10.1038/s41531-023-00592-z 
PMID:37907554 

39. Stevenson TJ, Murray HC, Turner C, Faull RL, Dieriks BV, 
Curtis MA. α-synuclein inclusions are abundant in non-
neuronal cells in the anterior olfactory nucleus of the 
Parkinson's disease olfactory bulb. Sci Rep. 2020; 
10:6682. 

 https://doi.org/10.1038/s41598-020-63412-x 
PMID:32317654 

40. Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, 
Barker RA, Burn DJ, O'Brien JT. Gray and white matter 
imaging: A biomarker for cognitive impairment in early 
Parkinson's disease? Mov Disord. 2016; 31:103–10. 

 https://doi.org/10.1002/mds.26312 PMID:26202802 

41. Hentrich T, Wassouf Z, Riess O, Schulze-Hentrich JM. 
SNCA overexpression disturbs hippocampal gene 
expression trajectories in midlife. Aging (Albany NY). 
2018; 10:4024–41. 

 https://doi.org/10.18632/aging.101691 
PMID:30543522 

42. Hendrickx DM, Garcia P, Ashrafi A, Sciortino A, Schmit 
KJ, Kollmus H, Nicot N, Kaoma T, Vallar L, Buttini M, 
Glaab E. A New Synuclein-Transgenic Mouse Model for 
Early Parkinson's Reveals Molecular Features of 
Preclinical Disease. Mol Neurobiol. 2021; 58:576–602. 

 https://doi.org/10.1007/s12035-020-02085-z 
PMID:32997293 

43. Garcia P, Jürgens-Wemheuer W, Uriarte Huarte O, 
Michelucci A, Masuch A, Brioschi S, Weihofen A, 
Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, 
Sousa C, et al. Neurodegeneration and 
neuroinflammation are linked, but independent of 
alpha-synuclein inclusions, in a seeding/spreading 
mouse model of Parkinson's disease. Glia. 2022; 
70:935–60. 

 https://doi.org/10.1002/glia.24149  
PMID:35092321 

44. Collier TJ, Kanaan NM, Kordower JH. Aging and 
Parkinson's disease: Different sides of the same coin? 
Mov Disord. 2017; 32:983–90. 

 https://doi.org/10.1002/mds.27037  
PMID:28520211 

45.  Flurkey K, Currer JM, Harrison DE. Mouse Models in 
Aging Research. The Mouse in Biomedical Research. 
Academic Press. 2007; 3: 637–72. 

 https://doi.org/10.1016/B978-012369454-6/50074-1 

46. Blesa J, Trigo-Damas I, Dileone M, Del Rey NL, 
Hernandez LF, Obeso JA. Compensatory mechanisms in 
Parkinson's disease: Circuits adaptations and role in 
disease modification. Exp Neurol. 2017; 298:148–61. 

 https://doi.org/10.1016/j.expneurol.2017.10.002 
PMID:28987461 

https://doi.org/10.1038/s41467-019-10910-w
https://pubmed.ncbi.nlm.nih.gov/31300657
https://doi.org/10.5214/ans.0972.7531.220407
https://pubmed.ncbi.nlm.nih.gov/26525840
https://doi.org/10.1007/s00401-023-02597-7
https://pubmed.ncbi.nlm.nih.gov/37347276
https://doi.org/10.1186/s13024-023-00628-1
https://pubmed.ncbi.nlm.nih.gov/37403161
https://doi.org/10.1016/j.brainres.2018.01.010
https://pubmed.ncbi.nlm.nih.gov/29360467
https://doi.org/10.1136/jnnp.2007.131045
https://pubmed.ncbi.nlm.nih.gov/18344392
https://doi.org/10.1016/j.tins.2016.09.003
https://pubmed.ncbi.nlm.nih.gov/27776749
https://doi.org/10.1101/cshperspect.a009316
https://pubmed.ncbi.nlm.nih.gov/22229125
https://doi.org/10.1111/j.1742-4658.2008.06302.x
https://pubmed.ncbi.nlm.nih.gov/18279376
https://doi.org/10.1038/s41531-023-00592-z
https://pubmed.ncbi.nlm.nih.gov/37907554
https://doi.org/10.1038/s41598-020-63412-x
https://pubmed.ncbi.nlm.nih.gov/32317654
https://doi.org/10.1002/mds.26312
https://pubmed.ncbi.nlm.nih.gov/26202802
https://doi.org/10.18632/aging.101691
https://pubmed.ncbi.nlm.nih.gov/30543522
https://doi.org/10.1007/s12035-020-02085-z
https://pubmed.ncbi.nlm.nih.gov/32997293
https://doi.org/10.1002/glia.24149
https://pubmed.ncbi.nlm.nih.gov/35092321
https://doi.org/10.1002/mds.27037
https://pubmed.ncbi.nlm.nih.gov/28520211
https://doi.org/10.1016/B978-012369454-6/50074-1
https://doi.org/10.1016/j.expneurol.2017.10.002
https://pubmed.ncbi.nlm.nih.gov/28987461


www.aging-us.com 17 AGING 

47. Stemick J, Gauer C, Wihan J, Moceri S, Xiang W, von 
Hörsten S, Kohl Z, Winkler J. Compensatory 
neuritogenesis of serotonergic afferents within the 
striatum of a transgenic rat model of Parkinson's 
disease. Brain Res. 2020; 1748:147119. 

 https://doi.org/10.1016/j.brainres.2020.147119 
PMID:32919983 

48. Pereira JB, Kumar A, Hall S, Palmqvist S, Stomrud E, Bali 
D, Parchi P, Mattsson-Carlgren N, Janelidze S, Hansson 
O. DOPA decarboxylase is an emerging biomarker for 
Parkinsonian disorders including preclinical Lewy body 
disease. Nat Aging. 2023; 3:1201–9. 

 https://doi.org/10.1038/s43587-023-00478-y 
PMID:37723208 

49. Surgucheva I, Newell KL, Burns J, Surguchov A. New α- 
and γ-synuclein immunopathological lesions in human 
brain. Acta Neuropathol Commun. 2014; 2:132. 

 https://doi.org/10.1186/s40478-014-0132-8 
PMID:25209836 

50. Duperrier S, Bortolozzi A, Sgambato V. Increased 
Expression of Alpha-, Beta-, and Gamma-Synucleins in 
Brainstem Regions of a Non-Human Primate Model of 
Parkinson's Disease. Int J Mol Sci. 2022; 23:8586. 

 https://doi.org/10.3390/ijms23158586 PMID:35955716 

51. Zhang X, Wang J, Gao JZ, Zhang XN, Dou KX, Shi WD, 
Xie AM. P2X4 receptor participates in autophagy 
regulation in Parkinson's disease. Neural Regen Res. 
2021; 16:2505–11. 

 https://doi.org/10.4103/1673-5374.313053 
PMID:33907041 

52. Collins HE, Zhang D, Chatham JC. STIM and Orai 
Mediated Regulation of Calcium Signaling in Age-
Related Diseases. Front Aging. 2022; 3:876785. 

 https://doi.org/10.3389/fragi.2022.876785 
PMID:35821821 

53. Schrank S, Barrington N, Stutzmann GE. Calcium-
Handling Defects and Neurodegenerative Disease. Cold 
Spring Harb Perspect Biol. 2020; 12:a035212. 

 https://doi.org/10.1101/cshperspect.a035212 
PMID:31427373 

54. Hoffmann S, Pentakota S, Mund A, Haahr P, Coscia F, 
Gallo M, Mann M, Taylor NM, Mailand N. FAM111 
protease activity undermines cellular fitness and is 
amplified by gain-of-function mutations in human 
disease. EMBO Rep. 2020; 21:e50662. 

 https://doi.org/10.15252/embr.202050662 
PMID:32776417 

55. Welter AL, Machida YJ. Functions and evolution of 
FAM111 serine proteases. Front Mol Biosci. 2022; 
9:1081166. 

 https://doi.org/10.3389/fmolb.2022.1081166 
PMID:36589246 

56. Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, Bai L, Qin C. 
Transcriptome profiling of five brain regions in a 6-
hydroxydopamine rat model of Parkinson's disease. 
CNS Neurosci Ther. 2021; 27:1289–99. 

 https://doi.org/10.1111/cns.13702  
PMID:34347369 

57. Yao L, Dai X, Sun Y, Wang Y, Yang Q, Chen X, Liu Y, 
Zhang L, Xie W, Liu J. Inhibition of transcription factor 
SP1 produces neuroprotective effects through 
decreasing MAO B activity in MPTP/MPP+ Parkinson's 
disease models. J Neurosci Res. 2018; 96:1663–76. 

 https://doi.org/10.1002/jnr.24266  
PMID:30004136 

58. Moceri S, Bäuerle N, Habermeyer J, Ratz-Wirsching V, 
Harrer J, Distler J, Schulze-Krebs A, Timotius IK, Bluhm 
A, Hartlage-Rübsamen M, Roßner S, Winkler J, Xiang 
W, Hörsten SV. Young human alpha synuclein 
transgenic (BAC-SNCA) mice display sex- and gene-
dose-dependent phenotypic disturbances. Behav Brain 
Res. 2024; 460:114781. 

 https://doi.org/10.1016/j.bbr.2023.114781 
PMID:38043677 

59. Schaeffer E, Kluge A, Böttner M, Zunke F, Cossais F, 
Berg D, Arnold P. Alpha Synuclein Connects the Gut-
Brain Axis in Parkinson's Disease Patients - A View on 
Clinical Aspects, Cellular Pathology and Analytical 
Methodology. Front Cell Dev Biol. 2020; 8:573696. 

 https://doi.org/10.3389/fcell.2020.573696 
PMID:33015066 

60.  Andrews S. Babraham Bioinformatics - FastQC A 
Quality Control tool for High Throughput Sequence 
Data. 2010. 

61. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, 
Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast 
universal RNA-seq aligner. Bioinformatics. 2013; 
29:15–21. 

 https://doi.org/10.1093/bioinformatics/bts635 
PMID:23104886 

62. Liao Y, Smyth GK, Shi W. The R package Rsubread is 
easier, faster, cheaper and better for alignment and 
quantification of RNA sequencing reads. Nucleic Acids 
Res. 2019; 47:e47. 

 https://doi.org/10.1093/nar/gkz114 PMID:30783653 

63. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: 
summarize analysis results for multiple tools and 
samples in a single report. Bioinformatics. 2016; 
32:3047–8. 

 https://doi.org/10.1093/bioinformatics/btw354 
PMID:27312411 

64. Love MI, Huber W, Anders S. Moderated estimation of 
fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol. 2014; 15:550. 

https://doi.org/10.1016/j.brainres.2020.147119
https://pubmed.ncbi.nlm.nih.gov/32919983
https://doi.org/10.1038/s43587-023-00478-y
https://pubmed.ncbi.nlm.nih.gov/37723208
https://doi.org/10.1186/s40478-014-0132-8
https://pubmed.ncbi.nlm.nih.gov/25209836
https://doi.org/10.3390/ijms23158586
https://pubmed.ncbi.nlm.nih.gov/35955716
https://doi.org/10.4103/1673-5374.313053
https://pubmed.ncbi.nlm.nih.gov/33907041
https://doi.org/10.3389/fragi.2022.876785
https://pubmed.ncbi.nlm.nih.gov/35821821
https://doi.org/10.1101/cshperspect.a035212
https://pubmed.ncbi.nlm.nih.gov/31427373
https://doi.org/10.15252/embr.202050662
https://pubmed.ncbi.nlm.nih.gov/32776417
https://doi.org/10.3389/fmolb.2022.1081166
https://pubmed.ncbi.nlm.nih.gov/36589246
https://doi.org/10.1111/cns.13702
https://pubmed.ncbi.nlm.nih.gov/34347369
https://doi.org/10.1002/jnr.24266
https://pubmed.ncbi.nlm.nih.gov/30004136
https://doi.org/10.1016/j.bbr.2023.114781
https://pubmed.ncbi.nlm.nih.gov/38043677
https://doi.org/10.3389/fcell.2020.573696
https://pubmed.ncbi.nlm.nih.gov/33015066
https://doi.org/10.1093/bioinformatics/bts635
https://pubmed.ncbi.nlm.nih.gov/23104886
https://doi.org/10.1093/nar/gkz114
https://pubmed.ncbi.nlm.nih.gov/30783653
https://doi.org/10.1093/bioinformatics/btw354
https://pubmed.ncbi.nlm.nih.gov/27312411


www.aging-us.com 18 AGING 

 https://doi.org/10.1186/s13059-014-0550-8 
PMID:25516281 

65. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 
The sva package for removing batch effects and other 
unwanted variation in high-throughput experiments. 
Bioinformatics. 2012; 28:882–3. 

 https://doi.org/10.1093/bioinformatics/bts034 
PMID:22257669 

66. Love MI, Soneson C, Hickey PF, Johnson LK, Pierce NT, 
Shepherd L, Morgan M, Patro R. Tximeta: Reference 
sequence checksums for provenance identification in 
RNA-seq. PLoS Comput Biol. 2020; 16:e1007664. 

 https://doi.org/10.1371/journal.pcbi.1007664 
PMID:32097405 

67. Wang Y, Xie Z, Kutschera E, Adams JI, Kadash-
Edmondson KE, Xing Y. rMATS-turbo: an efficient and 
flexible computational tool for alternative splicing 
analysis of large-scale RNA-seq data. Nat Protoc. 2024; 
19:1083–104. 

 https://doi.org/10.1038/s41596-023-00944-2 
PMID:38396040 

68. Garrido-Martín D, Palumbo E, Guigó R, Breschi A. 
ggsashimi: Sashimi plot revised for browser- and 
annotation-independent splicing visualization. PLoS 
Comput Biol. 2018; 14:e1006360. 

 https://doi.org/10.1371/journal.pcbi.1006360 
PMID:30118475 

69. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, 
Goldstein LD, Appling LL, Borneo J, Poon C, Ho T, Cai F, 
Steiner P, van der Brug MP, Modrusan Z, et al. 
Untangling the brain's neuroinflammatory and 
neurodegenerative transcriptional responses. Nat 
Commun. 2016; 7:11295. 

 https://doi.org/10.1038/ncomms11295 
PMID:27097852 

70. Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, 
Peterson H. g:Profiler-interoperable web service for 
functional enrichment analysis and gene identifier 
mapping (2023 update). Nucleic Acids Res. 2023; 
51:W207–12. 

 https://doi.org/10.1093/nar/gkad347 PMID:37144459 

71. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 
2019: gene set analysis toolkit with revamped UIs and 
APIs. Nucleic Acids Res. 2019; 47:W199–205. 

 https://doi.org/10.1093/nar/gkz401 PMID:31114916 

72.  Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov 
MN, Sergushichev A. Fast gene set enrichment 
analysis. bioRxiv. 2021; 060012. 

73. Badia-I-Mompel P, Vélez Santiago J, Braunger J, Geiss 
C, Dimitrov D, Müller-Dott S, Taus P, Dugourd A, 
Holland CH, Ramirez Flores RO, Saez-Rodriguez J. 
decoupleR: ensemble of computational methods to 
infer biological activities from omics data. Bioinform 
Adv. 2022; 2:vbac016. 

 https://doi.org/10.1093/bioadv/vbac016 
PMID:36699385 

74. Ruscone M, Tsirvouli E, Checcoli A, Turei D, Barillot E, 
Saez-Rodriguez J, Martignetti L, Flobak Å, Calzone L. 
NeKo: A tool for automatic network construction from 
prior knowledge. PLoS Comput Biol. 2025; 
21:e1013300. 

 https://doi.org/10.1371/journal.pcbi.1013300 
PMID:40956863 

75. Türei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, 
Ivanova O, Ölbei M, Gábor A, Theis F, Módos D, 
Korcsmáros T, Saez-Rodriguez J. Integrated intra- and 
intercellular signaling knowledge for multicellular 
omics analysis. Mol Syst Biol. 2021; 17:e9923. 

 https://doi.org/10.15252/msb.20209923 
PMID:33749993 

  

https://doi.org/10.1186/s13059-014-0550-8
https://pubmed.ncbi.nlm.nih.gov/25516281
https://doi.org/10.1093/bioinformatics/bts034
https://pubmed.ncbi.nlm.nih.gov/22257669
https://doi.org/10.1371/journal.pcbi.1007664
https://pubmed.ncbi.nlm.nih.gov/32097405
https://doi.org/10.1038/s41596-023-00944-2
https://pubmed.ncbi.nlm.nih.gov/38396040
https://doi.org/10.1371/journal.pcbi.1006360
https://pubmed.ncbi.nlm.nih.gov/30118475
https://doi.org/10.1038/ncomms11295
https://pubmed.ncbi.nlm.nih.gov/27097852
https://doi.org/10.1093/nar/gkad347
https://pubmed.ncbi.nlm.nih.gov/37144459
https://doi.org/10.1093/nar/gkz401
https://pubmed.ncbi.nlm.nih.gov/31114916
https://doi.org/10.1093/bioadv/vbac016
https://pubmed.ncbi.nlm.nih.gov/36699385
https://doi.org/10.1371/journal.pcbi.1013300
https://pubmed.ncbi.nlm.nih.gov/40956863
https://doi.org/10.15252/msb.20209923
https://pubmed.ncbi.nlm.nih.gov/33749993


www.aging-us.com 19 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Samples are separated by brain region, age, and genotype. (A) Principal component analysis of the top 
500 most variable genes for all samples. The percentages along the axes represent variance explained between samples for first and second 
principal component. (B) Heatmap of sample-to-sample distance. Gradient of blue shows Euclidean distance and samples are color-coded 
based on experimental group. 
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Supplementary Figure 2. Cell type composition estimates between striatal, cortical, and cerebellar samples. Cell type-specific 
gene expression for five reference cell types in 5‐ and 12‐month-old WT and TG rats per brain region. Expression for each cell type based on 
reference single-cell data [26], shown as boxplots with geometric mean as well as 10th, 25th, 75th, and 90th quantile. Number of considered 
genes in brackets for interneurons (IntN), pyramidal neurons (PyrN), oligodendrocytes (Oligo), microglia (Micro) and astrocytes (Astro). 
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Supplementary Figure 3. Age-dependent transcriptomic changes in the striatum of SNCA overexpressing rats. (A) Principal 

component analysis of top 500 most variable genes in striatum for five rat samples per experimental group. The percentages along the axes 
represent variance explained between groups for first and second principal component. (B) Venn diagram comparing DEGs identified along 
the age axis in WT and TG rats between 5 and 12 months of age (left) and along the genotype axis between 5- and 12-month-old TG rats 
(right) in the striatum. (C) Five most significant enriched biological processes for the 578 DEGs in 5-month-old TG rats (shown in Figure 2A) 
with indicated adjusted p-value, enrichment ratio and DEG count in brackets. (D) Five most significant enriched biological processes for 678 
striatal DEGs in 5- and 12-month-old TG animals (shown in Figure 5A) with indicated adjusted p-value, enrichment ratio and DEG count in 
brackets. (E) Number of differential transcripts between experimental groups in striatum, along the genotype (WT and TG) and age axes (5 
and 12 months) with the proportion of overlapping corresponding DEGs in brackets and the indicated significance cut-offs. (F) Violin plot 
showing the distribution of gene-wise expression variance (calculated from variance-stabilized transformed expression values) for 
experimental groups for striatum with mean and standard error of the mean. Y-axis was limited to a maximum of 0.3 for better visualization 
of group differences and small triangle indicates presence of few outlier genes with higher variance values (up to ~ 6). (G) Venn diagram 
comparing 225 DEGs identified in the striatum of 12-month-old TG rats and 11647 DEGs identified in the putamen of PD patients [28]. (H) 
Scatter plot of 83 overlapping DEGs identified in the striatum of 12-month-old TG rats and in the putamen of PD patients. 
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Supplementary Figure 4. Comparison of striatal gene expression changes in young BAC SNCA rats and young BAC SNCA mice. 
(A) Venn diagram comparing DEGs identified in the striatum of 5-month-old BAC SNCA rats and DEGs identified in the striatum of 6-month-
old BAC SNCA mice. Overlapping genes with same regulation are marked in red. (B) Heatmap of hierarchically clustered striatal expression 
changes of DEGs identified in 5-month-old TG rats plotted in 6-month-old WT and BAC SNCA mice as log2 expression change relative to WT 
samples. (C) Average gene expression changes and standard deviation in the striatum of WT and BAC SNCA mice for DEGs identified in TG 
rats, plotted as centroids clustered in six groups. Numbers of DEGs are shown in brackets. 
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Supplementary Figure 5. Gene expression profile of a striatum-specific age signature. (A) Heatmap of hierarchically clustered 

striatal expression profiles of age-dependent differentially expressed reference genes [23] as log2 expression change relative to WT5m per 
experimental group. (B) Average gene expression changes and standard deviation plotted as centroids for age-dependent reference DEGs 
clustered in four groups. Numbers of genes shown in brackets. 
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Supplementary Figure 6. Expression level of top three ranked genes of hierarchically clustered striatal expression changes. 
Top three ranked genes per cluster of Figure 2B with individual nRPKM data points per rat across experimental groups with mean and 
standard error of the mean. Genes were selected based on the combined rank of log2FC and padj from the differential comparison with the 
highest average absolute expression change for each cluster. 
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Supplementary Figure 7. Transcription factor activity of premature upregulated genes in the striatum of SNCA 
overexpressing rats. (A) Transcription factor activity for the top three most active and inactive transcription factors with activity score and 

p-value. (B) Volcano plot of the differential target genes of the most active and inactive transcription factors for the young TG rats. Genes 
marked in blue deactivate the transcription factor and genes marked in red activate the transcription factor. 
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Supplementary Figure 8. Age-dependent transcriptomic changes in the cerebellum of SNCA overexpressing rats. (A) Principal 

component analysis of top 500 most variable genes in cerebellum for five rat samples per experimental group. The percentages along the 
axes represent variance explained between groups for the first and second principal component. (B) Venn diagram comparing DEGs 
identified along the age axis in WT and TG rats between 5 and 12 months of age (left) and along the genotype axis between 5- and 12-month-
old TG rats (right) in the cerebellum. (C) Number of differential transcripts between experimental groups in cerebellum, along the genotype 
(WT and TG) and age axes (5 and 12 months) with the proportion of overlapping corresponding DEGs in brackets and indicated significance 
cut-offs. (D) Violin plot showing distribution of expression changes of union DEGs from WT12m samples as log2 expression change relative to 
WT5m across brain regions with mean and standard error of the mean. 



www.aging-us.com 27 AGING 

 
 

Supplementary Figure 9. Gene expression profile of a cerebellum-specific age signature. (A) Heatmap of hierarchically clustered 

cerebellar expression profiles of age-dependent differentially expressed reference genes [23] as log2 expression change relative to WT5m per 
experimental group. (B) Average gene expression changes and standard deviation plotted as centroids for age-dependent reference DEGs 
clustered in four groups. Numbers of genes are shown in brackets. 
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Supplementary Figure 10. Expression level of top three ranked genes of hierarchically clustered cerebellar expression 
changes. Top three ranked genes per cluster of Figure 3B with individual nRPKM data points per rat across experimental groups with mean 

and standard error of the mean. Genes were selected based on the combined rank of log2FC and padj from the differential comparison with 
the highest average absolute expression change for each cluster. 
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Supplementary Figure 11. Age-dependent transcriptomic changes in the cortex of SNCA overexpressing rats. (A) Principal 
component analysis of top 500 most variable genes in cortex for five rat samples per experimental group. The percentages along the axes 
represent the variance explained between groups for first and second principal component. (B) Venn diagram comparing DEGs identified 
along the age axis in WT and TG rats between 5 and 12 months of age (left) and along the genotype axis between 5- and 12-month-old TG 
rats (right) in the cortex. (C) Number of differential transcripts between experimental groups cortex, along the genotype (WT and TG) and age 
axes (5 and 12 months) with the proportion of overlapping corresponding DEGs in brackets and the indicated significance cut-offs. (D) Violin 
plot showing the distribution of gene-wise expression variance (calculated from variance-stabilized transformed expression values) for 
experimental groups for cortex with mean and standard error of the mean. Y-axis was limited to a maximum of 0.3 for better visualization of 
group differences and small triangle indicates presence of few outlier genes with higher variance values (up to ~ 3). 
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Supplementary Figure 12. Gene expression profiles of hierarchically clustered cortical expression changes. (A) Average gene 

expression changes and standard deviation of all cortical DEGs plotted as centroids clustered in eight groups. Numbers of DEGs are shown in 
brackets. (B) Expression level of top three ranked genes per cluster with individual nRPKM data points per rat across experimental groups 
with mean and standard error of the mean. Genes were selected based on the combined rank of log2FC and padj from the differential 
comparison with the highest average absolute expression change for each cluster. 
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Supplementary Figure 13. Gene expression profile of a cortex-specific age signature. (A) Heatmap of hierarchically clustered 

cortical expression profiles of age-dependent differentially expressed reference genes [23] as log2 expression change relative to WT5m per 
experimental group. (B) Average gene expression changes and standard deviation plotted as centroids for age-dependent reference DEGs 
clustered in four groups. Numbers of genes in brackets. 
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Supplementary Figure 14. Cortical gene expression changes in SNCA overexpressing rats. (A) Five most significant enriched 
biological processes for the DEGs in Cluster C4 and C6 with indicated adjusted p-value, enrichment ratio and DEG count in brackets. (B) Five 
most significant enriched biological processes for 749 cortical DEGs in 5- and 12-month-old TG animals (shown in Figure 5A) with indicated 
adjusted p-value, enrichment ratio and DEG count in brackets. (C) Cell type enrichment analysis of 255 DEGs identified in the cortex of 12-
month-old TG rats. Shown is the fold enrichment for genes attributed to interneurons (IntN), pyramidal neurons (PyrN), oligodendrocytes 
(Oligo), microglia (Micro), and astrocytes (Astro) [26]. p-value represents significance in enrichment (red) or depletion (blue) over background 
by two-sided Fisher’s exact test. 
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Supplementary Figure 15. Similar dysregulated genes in SNCA overexpressing rats across brain regions. Expression level of 
Fam111a, Gjc3, Gpr157, Sncg, Ddc, Orai2, and P2rx4 as individual nRPKM data points per rat across experimental groups with mean and 
standard error of the mean. 
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Supplementary Figure 16. SP1 transcription factor activity across brain regions of SNCA overexpressing rats. (A) SP1 

transcription factor activity with the activity score across brain regions in 5- and 12-month-old TG rats. (B) Volcano plot of SP1 differential 
target genes across contrasts. Red and blue genes activate and deactivate SP1, respectively. 
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Supplementary Figure 17. Gene regulatory network of the core set of differentially expressed genes across brain regions in 
SNCA overexpressing rats. Squares represent DEGs that are part of the core set, circles represent intermediate nodes not part of the core 

set. Green edges represent activating interactions, red edges inhibitory. Node color encodes average gene expression log2 fold-change across 
brain regions and ages. 
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Supplementary Figure 18. Differential splicing events across brain regions and contrasts. (A, E, I) Differential splice event counts 

with respect to genotype and age. (age WT = WT12m/WT5m, age TG = TG12m/TG5m, genotype 5m = TG5m/WT5m, genotype 12m = TG12m/WT12m) 
for striatum (A), cerebellum (E), and cortex (I). Color code represents splice event type based on rMATs. Filtering of splice events based on 
∆PSI (Percent Spliced In) ≥ 0.1 and FDR ≤ 0.01. (B, F, J) Five most significantly enriched Gene Ontology terms for differentially spliced genes 
from A, E, I for striatum (B), cerebellum (F), and cortex (J) with indicated adjusted p-value and gene count. (C, G, K) Venn diagram of genes 
with differential splicing events for striatum (C), cerebellum (G), and cortex (K). (D, H, L) Clustered heatmap of differential splicing events. 
Color-code reflects ∆PSI values. Heatmap limited to union of top 100 most significant (gene-)events per contrast. 
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Supplementary Figure 19. Cross-regional differential splicing events with respect to age and genotype. (A) Venn diagram of 

differential splicing events across brain regions for WT and TG animals with respect to genotype. (B) Venn diagram of differential splicing 
events across brain regions for WT and TG animals with respect to age. (C, D) Isoform and Sashimi plot for Ptprn showing altered A3SS event 
(alternative 3’ splice site) in TG mice. (E, F) Isoform and Sashimi plot for Zfyve28 showing a MXE (mutually exclusive exon) towards the 3’ end 
in transcript ENSRNOT00000107164.1 isoform and compositional shift in transcript isoforms between WT and TG animals. (G, H) Isoform and 
Sashimi plot for Ifi44 showing a SE (skipped exon) event (2nd exon toward 5’ end) and isoform compositional shifts between genotypes. 
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Supplementary Figure 20. Similar expression of core gene set in brain and gut. Scatter plot of 122 cross-regional DEGs in TG 

animals in cortex (A) or cerebellum (B) and gut, with 37 overlapping DEGs between brain regions and gut highlighted in purple. DEGs with the 
same regulation in brain and gut are labelled. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 3–6. 

 

Supplementary Table 1. Overlapping differential genes between rat cerebellum (WT vs. BAC SNCA rat) and 
mouse cerebellum (WT vs. MSA mouse model) in young and old animals. 

 

Supplementary Table 2. Overlap of differential genes in prefrontal cortex of BAC SNCA rats at 12 months of age 
and differential proteins in human prefrontal cortex of PD patients. 

rat ensembl gene ID 
human ensembl 

gene ID 

rgd 

symbol 

hgnc 

symbol 

protein 

accession 

log2FoldChange_ 

protein_PD 
padj_protein_PD 

log2FoldChange 

_rat_WT-

TG_12m 

padj_rat_WT-

TG_12m 

ENSRNOG00000001404 ENSG00000106351 Agfg2 AGFG2 O95081 0.12219835 0.01660219 -0.535094 3.2558E-17 

ENSRNOG00000059510 ENSG00000078053 Amph AMPH P49418 0.04792062 0.02058255 0.64313535 5.0338E-35 

ENSRNOG00000010263 ENSG00000013297 Cldn11 CLDN11 O75508 -0.3066129 0.0341209 0.57397668 0.00000000000048484 

ENSRNOG00000009563 ENSG00000172867 Krt2 KRT2 P35908 0.36652959 0.03009904 -1.1386355 0.00003809 

ENSRNOG00000016346 ENSG00000163932 Prkcd PRKCD Q05655 -0.145365 0.00604063 -0.5225256 0.00000043932 

ENSRNOG00000014090 ENSG00000042445 Retsat RETSAT Q6NUM9 -0.1450632 0.01291154 0.652551 0.00000039173 

ENSRNOG00000058006 ENSG00000173267 Sncg SNCG O76070 0.10770146 0.01023248 2.50378994 9.4586E-64 

 

Supplementary Table 3. Core set of 122 genes exhibiting similar transcriptomic alterations in SNCA 
overexpressing rats across brain regions. 

 

Supplementary Table 4. Striatal differential gene expression analysis results for each comparison. 

 

Supplementary Table 5. Cerebellar differential gene expression analysis results for each comparison. 

 

Supplementary Table 6. Cortical differential gene expression analysis results for each comparison. 

 


