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ABSTRACT

Background: Senescence identification is rendered challenging due to a lack of universally available biomarkers.
This represents a bottleneck in efforts to develop pro-senescence therapeutics — agents designed to induce the
arrest of cellular proliferation associated with a senescence response in cancer cells for therapeutic gain. This is
particularly true in contexts such as basal-like breast cancer (BLBC), which often express high levels of widely
reported senescence hallmarks, which has led to the designation of these subtypes as senescence marker
positive (Sen-Mark+). Unfortunately, these are often cancers with the most limited treatment options, where
novel pro-senescence compounds would be of potential clinical utility.

Results: To address these challenges, we have developed SAMP-Score, a machine learning classification tool for
identifying senescence induction in Sen-Mark+ cancers. This technique builds upon our previous observation
that senescent cells develop distinct senescence-associated morphological profiles (SAMPs), which can be
assessed readily in traditionally challenging contexts for senescence identification, including high-throughput
screens.

Conclusions: Through application of SAMP-Score, we have identified QM5928, a novel pro-senescence
compound, that is able to induce senescence in a variety of Sen-Mark+ cancers and has potential utility as a tool
molecule to explore the mechanisms and pathways through which senescence induction occurs in these cells.

INTRODUCTION

Senescence is a term given to a set of related terminal
cell fates; in which tumour suppressor mechanisms
arrest proliferation following cellular insult to protect
against malignant transformation [1]. The senescence
programme is executed by cyclin-dependent kinase
inhibitor (CDKi) signalling axes, most notably p53-p21
and pl16, which act to prevent the phosphorylation of
retinoblastoma (Rb) family members and consequently

inhibit the production of E2F transcription factor
targets, thus arresting cell cycle progression [2]. These
tumour suppressors present a potent barrier to cancer
development and, as such, are some of the most
frequent mutations found in cancer cells [3]. This is
reflected in the designation of senescence, and
particularly its failure, as an emerging hallmark of
cancer [4]. Therefore, the targeted activation of the
senescence programme (so called pro-senescence) is an
attractive therapeutic strategy in cancer.
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Paradoxically, many cancers present with high
expression of senescence markers, including the CDKi
p16 [5]. Importantly, these subtypes are often associated
with aggressive forms of the disease leading to poor
prognoses and clinical outcomes [6]. A notable example
of this is basal-like breast cancer (BLBC), a subtype
with significant (>90%) overlap with triple-negative
histological classification [7]. These tumours stain
positive for p16 so frequently, that it has been proposed
as a surrogate subtype marker [8]. Crucially, this is a
disease area with a profound unmet clinical need, with
the triple negative status limiting the use of targeted
treatment options [7]. Furthermore, modern pro-
senescence therapeutic approaches, which act to mimic
perturbed cell senescence pathways, including
compounds such as the CDK4/6 inhibitor and pl6
mimetic palbociclib, have been demonstrated to lack
efficacy in cancers with high levels of pl6 [9].
Therefore, there is an outstanding challenge within the
field to identify both pathways and compounds that can
engage a senescence programme in these cancer
subtypes — which we refer to as Sen-Mark+ cancers
(senescence-marker positive cancers) [10].

A major obstacle to such endeavours is the reliable
classification of a pro-senescence response in cancer
subtypes already positive for a principal senescence
marker. As standard, senescence classification requires
the use of multiple complimentary hallmarks, as no
single marker is universal [11]. Identifying senescence
in cancer provides a particular challenge, as reliable
markers such as initiation of a DNA damage response
(DDR) or positive senescence-associated beta galacto-
sidase (SA-B-Gal) staining are often already observed
in proliferating cancer cells [1, 12]. Furthermore, loss
of proliferation (a fundamental distinction between
senescence and cancer) is insufficient alone to
confidently classify a senescence phenotype, with
experimental readouts such as reduced cell count
attributable to other outcomes such as toxicity or
slowed, rather than arrested, cell division [13, 14].
These issues are further exacerbated in contexts such as
screening, which do not readily lend themselves to
complex classification readouts with multiple marker
stains, both practically and financially [13, 15].
Therefore, there is a need for the development of
scalable methods of senescence identification,
particularly in Sen-Mark+ cancer subtypes [1, 16].

Previously, we utilised multiparameter assessment of
high content microscopy images to demonstrate that
senescent cells acquire distinctive senescence-associated
morphological profiles (SAMPs) [17]. These can be
visualised through simple nuclear and cell dyes (DAPI
and Cell Mask) making such analysis readily applicable
to high throughput contexts [18]. However, our previous

use of SAMPs has focused on characterisation and
subpopulation assessment of senescence models, as
opposed to classification or identification per se.
Recently, several tools have been developed, which
successfully utilise machine learning (ML) algorithms to
assess of cell morphologies for senescence classification
[19-21]. However, it remains unclear how generalisable
these methods are, for instance in contexts such as pl6
positive cancer cells [22]. Furthermore, model
development to date has relied on establishing ground
truth through canonical senescence markers, to
quantitate model performance [19, 22]. Given the
established limitations of senescence markers
(particularly in Sen-Mark+ cancers), this represents a
potential barrier to identifying novel senescence pheno-
types where conventional markers prove insufficient to
establish ground truth. This underpins the discovery
challenge facing the identification of pro-senescence
approaches in p16 positive cancers.

Here, we build upon our previous observation that
senescent cells are associated with distinct SAMPs [17].
By utilising unsupervised cluster analysis to assess the
morphological profiles of a genome-wide siRNA screen
in HeLa cells (pl6-positive cervical cancer) we
developed a stacked meta-model classification tool
incorporating prediction scores from multiple individual
ML models which we term SAMP-Score. To
demonstrate the potential application of SAMP-Score in
p16 positive cancer therapeutic discovery, we assessed a
diversity screen of 10,000 novel chemical entities in
MB-468 cells (pl6 positive BLBC). Pro-senescence
compound hits were identified through SAMP-Score
classification and the effect of increasing concentration
on senescence scoring was then assessed through a
second dose response screen. SAMP-Score classification
was then used to select a compound for validation of
pro-senescence induction - QM0005928/DDD01293078
(QM5928), which was demonstrated to produce a
senescence response in multiple Sen-Mark+ cancer lines.
Collectively, SAMP-Score represents a versatile tool for
therapeutic discovery and senescence classification
across pl6 positive cancers and has identified a
promising novel compound in BLBC.

RESULTS

Genome-wide siRNA screening for senescence
labelling — classical screening criteria

Sen-Mark+ cancer cells represent a particular challenge
for developing ML classification tools for the
identification of senescence. This is because the
labelling of an initial training dataset generally requires
a known “ground truth”, where observations are placed
into the categories to allow the model to be both
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constructed and its effectiveness assessed [22]. For Sen-
Mark+ cancers, confidence in the labelling of any
particular observation as either senescent or not is
hindered by the lack of available biomarkers within the
context of these cells, which, circularly, is the very
reason such classification tools are needed [10].
Furthermore, restricting the labelling of training data to
be based upon a small set of hallmarks with known
limitations also has the potential to miss uncommon,
idiosyncratic, or novel phenotypes, potentially limiting
the application of such tools, particularly for identifying
new senescence contexts.

Therefore, where traditional ML model development
would first identify conditions of senescence, before
measuring their morphologies, for our approach we
worked in reverse. First, we generated and assessed as
diverse a range of potential cell morphologies as
possible before exploring different approaches to
labelling those which resembled our previously
observed senescence-associated morphological profiles
(SAMPs) as senescent. This allowed us to capture the
breadth of potential senescent cell morphologies, with
the ultimate goal of serving as a training dataset for
development of a flexible tool to identify senescence in
the context of Sen-Mark+ cancers.

We performed a genome-wide siRNA screen in pl6
positive cervical cancer cells (HeLa — Supplementary
Figure 1A). This screen consisted of 63 384-well plates,
with a pool of 3 siRNA per well per target, giving a
total of 21,658 treatments (excluding controls),
representing a comprehensive perturbation of cellular
pathways. To assess the morphology of these cells, we
refined our previous SAMP methodology to limit the
influence of co-linearity, aiding computing time and
interpretability (Supplementary Figure 1D, 1E). This
was achieved by taking the morphology profiles from
all individual siGLO control cells (~1.16 M cells) and
removing redundant features, as identified by Pearson
correlation assessment. This resulted in a parsimonious
set of 36 features, which were then assessed for all
siRNAs and control conditions (Figure 1A). As
expected, a broad range of profiles were generated, with
most siRNAs producing little to no change compared to
the siGLO control profile (which would appear as an
entirely black heatmap). However, a heterogenous set of
altered morphologies was also produced by many
treatments, which appeared similar to the SAMPs we
have previously observed in senescence. We then
explored several options for establishing senescence
“hits”. First, we assessed the magnitude to which
treatments produced a combined reduction in cell count
and increase in cell area, which have previously been
employed as readouts in senescence screens [23]. We
filtered the profiles according to several thresholds in

these two features, which served as high (>3 Z-score
change), medium (>1.92 Z-score change) and low (>1
Z-score change) stringency criteria (Supplementary
Figure 2A-2C). We observed that the potency of
morphology changes followed the stringency of the
senescence thresholding, suggesting that the altered
profiles were associated with conditions that produce a
reduction in cell count and general increase in cell area.
Importantly, we also demonstrated no correlation
between the overall cell number and the cell area,
suggesting that morphological changes are not tied to a
simple confounding influence such as confluency, and
emphasising the limitation of relying on cell counts as a
senescence readout alone (Supplementary Figure 2D,
2E). These canonical screening thresholds were a useful
starting point for suggesting altered morphology
profiles are associated with conditions that would
traditionally have considered senescent and corroborate
our previous reports [23]. However, we previously
observed significant heterogeneity in the composition of
SAMP profiles between different senescence models.
Given this, we sought to explore other methods for
classifying profiles as senescent, in order to broaden the
range of profiles within this class and potentially
capture less conventional phenotypes.

The advent of large-scale profiling techniques, such as
RNA sequencing, has provided greater depth into our
understanding of the pathways that are altered in
senescence. Of pertinence to this work, the SENCAN
classifier and SENESCopedia database, provide an insight
into directionality of target expression in senescent cancer
cells [24]. We explored whether siRNAs against targets
which are downregulated in SENCAN/SENESCopedia
would lead to the generation of distinctive senescence
phenotypes (Supplementary Figure 3A, 3B). We also
performed this process for targets which fall within the
KEGG gene ontology pathways “Cell Cycle” and
“Senescence” (Supplementary Figure 3C, 3D). In general,
we found this produced a far more mixed set of profiles
than those we had generated with our previous
thresholding strategy, with most profiles appearing
unchanged compared to the control, suggesting they were
not SAMPs. This may be due to factors such as variability
between cancer types (which was strongly observed by
the SENCAN authors) or that the downregulation of many
of the targets may be a consequence but not a driver of
senescence induction. Therefore, we concluded that a
biased, pathway driven approach was inadequate for
identifying profiles that could be labelled as senescent.

Genome-wide siRNA screening for senescence
labelling — unsupervised ML criteria

Next, we utilised several methods of unsupervised ML,
in order to group profiles based on similarity, rather
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Figure 1. Genome-wide siRNA Hela screen and cluster-based senescence labelling. (A) Heatmap representing high content
analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen. Treatments (siRNAs; x-axis) were grouped into three through
hierarchical clustering. (B—D) Heatmap of individual hierarchical clusters. (E) UMAP plot showing 36 feature profiles of every treatment
within the screen, labelled with K-means clustering groups. (F) Heatmap profiles of K-means clusters. (G) Nuclei counts for treatments in
each K-means cluster. (H) Venn diagram showing overlap between hierarchical and k-means clustering. (1) Heatmap profiles of treatments
labelled as either Non-Senescence or Senescence. (J) Heatmap profile showing cell area and nuclear count Z-Scores of all senescence
conditions. In all heatmaps, purple indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from siGLO
control. Black indicates a Z-score between —1.96 and 1.96.
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than through rigid screening thresholds. We then
inspected these algorithm generated groups, to
determine whether any resembled SAMP profiles. The
first method used was unsupervised hierarchical
clustering (HC). This algorithm groups together profiles
based on pairwise distances and is represented by the
dendrogram on the x-axis of the heatmap (Figure 1A).
Whilst the clustering itself is unsupervised, the decision
of where to cut the tree to determine the size of
groupings is provided by the user. This could range
from 1 cluster containing all siRNAs to 21,658 clusters
of 1 siRNA per group. We chose to break the screen
into 3 clusters, which were the clearest from the
dendrogram and which also appeared to have the
longest branches, signifying the greatest difference
between groups. When these clusters were visualised
separately, their distinctions became obvious. HCI
(Figure 1B) and HC3 (Figure 1D) contained 5,329
and 172 siRNA respectively, and represented clear
morphological changes from the siGLO control,
reminiscent of SAMP profiles, with HC3 appearing to
contain more potent profiles than those in HC1. HC2
(Figure 1C) in contrast, contained 16,157 siRNA
profiles, which demonstrate comparatively little
change from the siGLO control. Together, this
suggested that the unsupervised hierarchical clustering
had successfully split the siRNAs into those that change
the morphology of the HeLa cells, and those that do not.

Next, to further explore the range of potential
morphologies as well as additional subgroupings, we
then plotted the profiles via UMAP dimensionality
reduction, where each point on the chart represents the
36-feature profile from a single treatment (Figure 1E).
We also employed an alternative K-means clustering
(KMC) algorithm, to explore the effect of using
different clustering methods on profile groupings. The
UMAP allowed us to identify a small group of siRNAs
that produced a phenotype which was distinct from the
other profiles. However, isolating this group within its
own cluster required increasing the total number of
groups to four (K = 4). The heatmap profiles (Figure
1F) show the 64 siRNAs in this group, KMC3,
generated a potent phenotype. The large reductions in
cell count for treatments in this cluster, generally below
the level of seeding, made it evident that these
treatments had induced toxicity in the cells as opposed
to senescence (Figure 1G). By contrast, KMC4
contained 749 profiles that had clear morphological
changes reminiscent of the SAMPs we have described
previously, whilst KMC1 contained a much larger range
of 6,527 profiles that were variable in potency. The
intensity of profile changes observed between these
clusters also mirrored the relative reduction in their
respective cell counts. As before, a large cluster,
KMC2, contained 14,318 profiles that differed little

from the control, indicating most treatments do not alter
morphology. Interestingly when looking at a Venn
diagram of how the two clustering algorithms overlap,
we see that through KMC we have been able to split the
172 potent profiles from HC3 into 64 toxic profiles
(pink box KMC3 - Figure 1H) and 108 strong senescent
(dark green box KMC4 - Figure 1H). We can also see a
large overlap between the HC1 and KM1 (blue box -
Figure 1H) which represents the profiles with more
modest change, but also with KM4 (light green box -
Figure 1H) accounting for the more potent profiles
observed in HCI1. For the purposes of labelling our
cluster-based training data, we took the entirety of
KMC4, as well as those treatments that overlapped
between HC1 and KMCI1 (light green, dark green and
blue boxes — 4,989) and labelled these as senescent.
This strategy was deliberately designed to be inclusive
in order to capture as many potential phenotypes as
possible (Figure 11). The trade-off with this approach
was that any model developed based on this data may
have been more prone to generating false positives,
which was later accounted for and minimised through
application of a stringent decision boundary (see
below).

Next, we sought to understand how the clustering-based
strategy for senescence labelling would compare the
“traditional” approach based on rigid thresholds for
nuclei count and cell area. 88.5% of those siRNAs which
would have been considered hits according to the classic
criteria of reduced count and increased area (using the
medium stringency threshold of 1.92 Z-Score change)
were contained within the senescence grouping
(Supplementary HTML Walkthrough 2 — Section 17).
This suggests that the unsupervised methodology does
not miss many hits that would previously have been
identified. Of the 11.5% of siRNAs not included, the
vast majority (53/60) were confined to KMC3,
representing toxic conditions and supporting the concept
that a clustering approach to data labelling has allowed
these to be separated from senescence. Interestingly for
our goal of identifying novel senescence morphologies,
only 9.3% of the clustering approach labelled senescent
conditions satisfy the Z-Score criteria for change in
both reduced cell count and increased cell area
(Supplementary HTML Walkthrough 2 — Section 16).
This means that as a screening criterion, the
unsupervised clustering has expanded the list of
potential senescence hits and thus broadened the range
of phenotypes we are considering beyond those that are
simply “large”. This is clear when the cell counts and
areas of the senescence treatments are visualised (Figure
1J), with most satisfying the reduction in count
fundamental to senescence but being lost as hits due to a
failure to achieve the increased area threshold.
Therefore, applying the additional sophistication of
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unsupervised morphological assessment to the hit
detection process captures a greater number of potential
senescence phenotypes, and allows distinction from both
toxicity and proliferation. Validation of this is made
difficult, by the nature of the problem we are trying to
solve, the Sen-Mark+ status of the cells, which limits the
utility of senescence markers. Given that our goal was to
identify novel phenotypes that may not satisfy
conventional markers anyway, we instead decided to
explore the practical implications of our expanded
definition and moved to develop classification tools
based on this approach to identifying senescence.

Developing an ML method for detecting senescence
in Sen-Mark+ cancer cells

By establishing thresholds within the HeLa screen for
what we consider senescence (SEN) or non-senescence
(NonSen), we can utilise the data as a training set for
developing ML classification tools. These have
previously been developed through labelling according
to canonical senescence markers in a range of contexts
successfully [19-21]. Here, we did so using the
unsupervised clustering approach to data labelling. The
details of this are outlined in (Figure 2) and methods
above, but briefly: the labelled HeLa screening data was
partitioned into 80% training and 20% testing. Due to
heavy class imbalance in favour of the NonSen
condition, this data was then randomly undersampled to
achieve classes of a similar size. The excluded training
data (which comprised only NonSen siRNAs) was then
recycled into the testing data set. The undersampled
training data was then split in half, with 50% dedicated
to training individual ML models and 50% for testing.
The prediction coefficients from the latter were then
used to train an ensemble meta model. The individual
models which comprised this covered a range of
ML types including Logistic regression, Lasso
regularisation, Elastic Nets, Support Vector Machines
(SVM), Random Forrest (RF), Multiple Discriminant
Analysis (MDA) and Neural Networks (NN). The meta
model takes the predictions from each of these models
and forms a consensus prediction (model stacking).
Each model is individually used to assess the initially
removed (20% + recycled) testing data and its
performance assessed. The combined predictions are
then evaluated with the meta model to determine a final
prediction, the accuracy of which can be compared to
each model individually. This approach was selected to
be as comprehensive as possible, when assessing the
applicability of different ML approaches to identifying
senescent cells.

Interestingly, we did observe high model accuracy in
most cases (>90% accuracy in all individual models),
which aligns with similarly high model performances

previously reported [21]. Of the individual models, the
SVM performed best, but by stacking the predictions
from all models we were able to increase performance
as seen in the meta model metrics (Figure 3A, 3B).
However, each of the models is hindered by a high ratio
of false positive (FP) to true positive (TP). This is
recorded in the positive prediction value (PPV), which
is the proportion of positive classifications that are TP —
i.e., how good are the hits? These metrics suggest the
models are somewhat “reckless” as whilst in general
they will not miss many TPs, they do seem to “over
predict” and pick up a high number of FPs. In a
screening context this would equate to a high rate of
false hits. It might be that in the context of senescence
screening (where many more cases of NonSen are
predicted) we can accept a lower PPV, because the class
imbalance means that the ratio of TP vs. FP is likely to
always be low, given that there are many more negative
cases to potentially misclassify than positive ones to
classify. Importantly, the low rate of false negatives
(FN), means that the models are generally not missing
hits, and the very low ratio between TN and FP means
that the FP rate is in fact very low, which contributes to
the high accuracies observed. However, achieving as
low a ratio of FP to TP as possible (high PPV) would
limit the identification of false hits, and the model
stacking approach appears to improve this slightly from
56% in the best performing individual model (SVM) to
58.7% in the meta model. This can be further improved
by adjusting the decision boundary, a stringency
measure that determines how confident the model must
be to classify something as senescent (Figure 3C). For
the individual models this was set at the oft-used value
of 0.5 but we see that increasing this value to a
maximum of 0.95 improves both the accuracy (94.8% to
97.4%) and PPV (58.7% to 81.5%). This comes from
fewer FP classifications but at the expense of losing
some TPs. To add further nuance, it is important to
consider the process through which initial class
labelling was performed. In our unbiased set up, we
were inclusive with respect to senescence classification
and thus consider it is more likely that there were
instances of mislabelling siRNAs as senescent than
missing those that should have been. This might mean
the model has been misled at the training stage to label
weak profiles as senescent, which would be anticipated
to give rise to a greater raw number of FPs. Therefore,
we think it is reasonable to accept a measure of TP loss
in order to limit the number of FPs, thus leaving us with
only the most confident predictions and avoiding low
quality hits in any screening applications. As such we
took a stringent decision boundary threshold of 0.9
when setting the final model.

The construction of the meta model relies on each of the
composite models. These have a literally infinite
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number of hyperparameter combinations that could be
changed, tweaked or optimised in each case (including
the decision boundary), and the question of when to
stop refining the models is one that is often debated in
ML. Here, we have taken a heuristic approach, which is
defined by a model only needing to be good enough to
perform its intended task adequately, rather than the
perfect version of what it could be. We have also
included some insight into the decision-making process
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variable importance (Figure 3G) provides a measure of
the contribution of each feature within the decision tree.
This is an advantage of feature-based analysis over
black-box approaches such as CNNs, aiding inter-
pretability and leaving the potential to further refine
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Figure 2. Overview of SAMP-Score model development. Each model was assessed according to a range of criteria, which are
visualised in the model metrics (Figure 3A) and confusion matrix heatmaps (Figure 3B), as well as neural network map (Figure 3D) and ROC
curves (Figure 3E; Supplementary Figure 4). The model metrics are nuanced and can be misleading when viewed in isolation. For instance,
accuracy is a measure of correct predictions and is often relied upon as a single readout of model performance. But in a hypothetical
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model complexity [22]. Ultimately, we have developed
a model that appears to perform well at its intended task
of identifying senescent cells (as labelled by the
unbiased approach). Individual model performance
varies but is improved by stacking into an ensemble
meta model. Whether the marginal gains in performance
justify the significant additional complexity in
construction will depend on the specific task to which
the model is applied, but we chose to continue with the
most sophisticated version of our ML classifiers (the
meta model), which from here on is referred to as
SAMP-Score — given that this produces a prediction
value of senescence for any given treatment.

Using SAMP score to identify novel pro-senescence
compounds

The ultimate litmus test of any ML model is not
whether it generates high performance metrics when
applied to a testing dataset, but rather whether it is
generalisable enough to serve the intended real-world
function on unseen data sources. We set out to develop
a model which would have utility as a screening tool to
aid the identification of compounds that induce a
senescence response in Sen-Mark+ cancer cells. As one
of the most widely used cell lines, HeLa cells were used
to construct SAMP-Score, in order to serve as a robust
starting point, which would enable more straightforward
adoption within the field. However, to assess the utility
of SAMP-Score across different pl6 positive cancer
lines, we made use of screening data that had previously
been generated in an MB-468 BLBC cell line, a disease
area with profound unmet clinical need. This also
allowed us to assess another advantage of SAMP-Score
— the ability to re-mine and categorise archival image
stacks.

The first of these screens was a diversity library of
10,000 novel chemical entities, which were screened at
two doses (10 pM and 50 uM — Supplementary Figure
1B). As before, 36 feature HCA morphology profiles
were generated for every compound and dose (Figure
4A). These profiles were then assessed using the
SAMP-Score algorithm to classify the senescence state
of each condition. In order to compare the SAMP-Score
classifications to those that would have been generated
through classical screening thresholds, we compared
nuclear count and cell area for all conditions, whilst
overlaying the SAMP-Score class predictions. It
became clear that SAMP-Score avoids detecting
proliferating conditions that would not have met a
classic threshold for reduced nuclear count or increased
cell area (Figure 4B). However, SAMP-Score is also
able to make more nuanced classifications and appears
to detect conditions that reduce nuclear count and
increase cell area, but in the latter case not by the

magnitude required by traditional screening cutoffs.
Furthermore, SAMP-Score also avoids classifying
conditions with extreme reductions in cell count and
increases in cell area respectively, which likely
represent conditions producing cytotoxicity rather than
pro-senescence. To emphasise this further, we
reproduced the SAMP-Score model as before but using
classical screening thresholds to label our ground truth,
rather than the unbiased clustering method
(Supplementary Figure SA—5C). When this model was
applied to the compound screen, we see a very clear cut
off in phenotype that aligns with the nuclear count and
cell area screening thresholds used in the training data
(Figure 4C). It is important to emphasise that we have
not applied these thresholds here, but the model has
learned to essentially replicate them. Additionally,
we are able to see the particularly strong influence
of cell area in the Lasso and Random Forrest feature
assessments (Supplementary Figure 5D, 5E), high-
lighting the advantage of feature-based analysis for the
purposes of interpretability over so-called black box
techniques such as CNNs [15, 19, 22]. Most crucially,
we see that even if traditional screening thresholds are
used to train a ML model rather than being rigidly
applied, we do not see the exclusion of conditions that
produce extreme phenotypes from being placed in the
senescence class. This emphasises the value of our
unbiased cluster-based labelling of senescence ground
truth during model development, as it allows for far
more nuanced classifications, distinguishing both
toxicity and proliferation from senescence. This can be
appreciated further if the morphology profiles are
assessed according to senescence condition and dose. At
the low dose (10 uM), the NonSen condition comprises
mostly very weak profiles comparable to the vehicle
control (Figure 4D). However, at the high dose (50 uM)
the NonSen condition now also contains a large number
of very potent profiles, reminiscent of the HeLa
clustering in KM3 (Figure 4F). These are toxic
conditions. Furthermore, we see the potency of profile
in the senescence classifications increase with dose
(Figure 4E, 4G), aligning with the principle that the
cellular perturbations elicited by the compounds are
enhanced with increased concentration.

To further explore the influence of compound dose on
SAMP-Score classification we next assessed a second
compound screen comprising 10-point dose responses
(DR) from 447 compounds that comprised a subset of
the diversity screen (Supplementary Figure 1C). Whilst
the compounds comprising this screen were selected
before the establishment of the SAMP-Score metho-
dology, it nevertheless represents a useful dataset, with
50% of compounds in the DR screen having been
classified as senescent at either of the doses in the
diversity screen according to SAMP-Score. Assessing
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Figure 4. Diversity library compound screen. (A) Heatmap representing high content analysis feature (HCA; y-axis) profiles of a
compound diversity library screen (Compounds; x-axis) performed in MB-468 cells. (B, C) Scatter plots showing Z-scores of nuclear count
and cell area (log10) for all compound treatments. Points are coloured Non-Senescent (red) or Senescent (blue) according to SAMP-Score
classification based on models constructed with either cluster based or traditional threshold-based data labelling. (D—G) Heatmap profiles
for treatments classified as either Non-Senescent (NonSen) or Senescent (Sen) by SAMP-Score at both low (10 uM) and high screening
doses (50 uM). In all heatmaps, purple indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from
DMSO vehicle control. Black indicates no change.
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morphology profiles by dose, we see a very clear
increase in profile potency as dose increases (Figure
5A). As before, the association between nuclear count,
cell area and SAMP-Score prediction demonstrates that
only profiles that represent moderate change from the
vehicle control are classed as senescent, with SAMP-
Score once again avoiding detection of Dboth
proliferating and toxic doses (Figure 5B). This can be
seen more clearly when SAMP-Score is visualised by
dose, with a clear pattern for most compounds of
moving from NonSen classification at low doses,
through increased likelihood of being labelled as
senescent and then back to NonSen as the concentration
reaches toxicity (Figure 5C). This clearly supports our
earlier observation, that SAMP-Score provides a means

A 1.42uM 1.78uM

NonSen
Sen

Celis Area (Log10 Z Score)

Nuclei Count (Z Score)

Senescence Prediction

of separating senescence from both proliferation and
toxicity, something not achievable with the application
of standard screening thresholds. Therefore, we
concluded that SAMP-Score was a tool readily
applicable for pro-senescence screening and is able to
identify compounds that elicit a phenotype comparable
to that which we labelled as senescent ground truth in
the HeLa cells.

SAMP-Score as a tool for pro-senescence therapeutic
discovery

Through the application of SAMP-Score to the diversity
screen, we were able to generate a list of compounds
that produced a senescence response at one or both

2.84uM 4.26uM 6.4uM

Figure 5. Dose response compound screen. (A) Heatmap representing high content analysis feature (HCA; y-axis) profiles of a dose
response compound screen (Compounds; x-axis) performed in MB-468 cells. In all heatmaps, purple indicates positive modulation and
yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no change. (B) Scatter plot showing Z-
scores of nuclear count and cell area (log10) for all compound treatments. Points are coloured Non-Senescent (red) or Senescent (blue)
according to SAMP-Score classification. (C) Heatmap showing SAMP-Score prediction co-efficient for all compounds (y-axis) and doses (x-

axis). Black indicates score of <0.9 which is scored as non-senescence.
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doses screened. In the DR screen we were also able to
see that typically compounds which induce senescence
do so in a dose dependent manner, before tipping over
into cytotoxicity. To explore this response more
thoroughly, we selected an individual compound
for further evaluation. QMO0005928/DDD01293078
(QM5928) was chosen for this purpose for several
reasons (Figure 6A). Firstly, the SAMP-Score dose
profile followed this typical proliferation-senescence-
toxicity trajectory (Figure 6B, 6C), being classed as
senescent in both screens at 10 uM but neither at 50 uM,
providing a range of phenotypes to explore. Secondly,
the 10 uM dose produced a final cell number very close
to the seeding number, whilst the following dose strayed
just below this threshold (Figure 6D). This provided two
conditions that are very similar in cell number, but
which SAMP-Score has been able to distinguish, as
senescence and toxicity. This sensitivity despite minimal
signal to noise in terms of cell count would address a
major challenge in senescence screening [14]. Thirdly,
the compound at several doses was classed by SAMP-
Score and nuclear count as senescent but failed to meet
the cell area Z-score threshold (Figure 6E, 6F). This
provided an opportunity to explore a compound
producing senescence phenotypes that our cluster-
based labelling identified, which move beyond the
classically reported “large cells”. Finally, the
compound itself had a series of appealing properties
including a low IC50, high solubility, favourable
physiochemistry, low toxicity (HepG2) and a high
lipophilic efficiency (Supplementary Figure 6A). In
summary, it represented a versatile chemical tool for
exploring pro-senescence in Sen-Mark+ cancer.

As described above, validation of a senescence response
in Sen-Mark+ cells is extremely challenging and was of
course the motivation for our decision to take an
unsupervised approach to senescence labelling when
training SAMP-Score [10]. Indeed, as well as the
characteristic expression of pl6 in BLBC (Figure 6G)
we also observed high levels of other canonical
senescence hallmarks including high levels of SA-B-
Gal, p21 and p53 (Supplementary Figure 6B-6E),
emphasising the classification challenge and the
limitations of these markers more broadly [1].
Therefore, rather than characterising a wide range of
senescence hallmarks, we sought to explore the efficacy
of QM5928 in other Sen-Mark+ cancer lines (Figure
6H, 61). We demonstrated that in both BT-549 (p16
positive BLBC) and HeLa cells, QM5928 reduced
cellular proliferation, in a dose dependent manner
similar to the MB-468s, indicating this compound has
potential utility across a range of Sen-Mark+ contexts.

To further reinforce that the response being predicted by
SAMP-Score is indeed senescence, we explored the

SAMP-Score classification of BLBC cancer lines
treated with compounds whose efficacy in senescence
induction (or lack thereof) is well established. The
CDKA4/6 inhibitor palbociclib, has been previously
demonstrated to be ineffective in cell lines already
positive for pl6 (whose effect the compound aims to
mimic). This was observed in both pl6 positive MB-
468 and BT549 with no reduction in proliferation and a
negative SAMP-Score classification (Supplementary
Figure 7B-7D). However, the pl16-null MB-231 line
(Supplementary Figure 7A) did respond canonically to
palbociclib, ~with cell proliferation  inhibited
(Supplementary Figure 7E). Importantly, this treatment
was classified as senescent by SAMP-Score, with a
clear SAMP profile produced, that was not seen in the
other lines (Supplementary Figure 7F, 7G). This
emphasises the utility of the model across a range of
cancer cell contexts and supports the principle that the
phenotype being predicted is indeed senescence,
demonstrating that SAMP-Score is a versatile tool for
identifying senescence in cancer cells.

Next, we utilised a technique that has previously been
demonstrated to provide insight into potential
mechanisms of actions of novel compounds by
comparing the phenotypes elicited to a reference data
set [18]. This is known as phenocopying and is based on
the principle that perturbations in the same pathway by
different methods will establish similar phenotypes.
Here, we compared the morphology profile of QM5928
in the DR screen to the original siRNA screen. Utilising
hierarchical clustering once more, we were able to
identify the siRNAs that produced phenotypes
comparable to that of QMS5928 (Figure 6J). KEGG
pathway analysis showed that QM5928 phenocopied
pathways whose inhibition has been previously
established to lead to senescence in cancer cells
including the Ribosome [25, 26], RNA Polymerase [27]
and Proteasome [28, 29] (Figure 6K). Whilst this does
not mean QMS5928 acts via these mechanisms
specifically, it does suggest that the response the
compound is eliciting can be considered senescence and
could also be an indication that targeting these pathways
might be of therapeutic benefit in Sen-Mark+ cancers.

Finally, to explore the interplay between QM5928 and
pl6, we performed immunofluorescence staining for
two separate pl6 antibodies (Figure 7A). In DMSO
treated MB-468 cells, pl6 is predominantly cyto-
plasmic, with clear exclusion from the nucleus (Figure
7B). However, upon induction of senescence via
QMS5928, pl6 translocates to the nucleus, quantitated
via an increased nuclear/cytoplasmic staining intensity
ratio with two different p16 antibodies (Figure 7C, 7D).
We have previously reported a similar response in Sen-
Mark+ cancers induced to senescence via inhibition
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Figure 6. Validation of QM0005928 (QM5928). (A) QM0005928 chemical structure. (B) Heatmap representing high content analysis
feature (HCA; y-axis) profiles of a dose response of QM5928 (x-axis). (C) Line plot showing change in SAMP score with increasing doses of
QM5928. (D) Raw cell counts of increasing doses of QM5928 (Red = NonSen and Blue = Sen SAMP-Score Classification). (E, F) Z-scores for
cell count and cell area increasing doses of QM5928. (Red = NonSen and Blue = Sen SAMP-Score Classification). (G) Western plot showing
p16 expression in MB-468, BT549 and Hela Sen-Mark+ cancer lines. (H, 1) Cell counts for MB-468, BT549 and Hela Sen-Mark+ cancer lines
in response to QM5928. N = 3. Scale bar = 100 um. (J) Heatmap representing high content analysis feature (HCA; y-axis) profiles of Hela
screen treatments that phenocopy QM5928 by hierarchical clustering. (K) KEGG pathways analysis of Hela screen treatments that
phenocopy QM5928 by hierarchical clustering. The data for MB-468s in Figures 6 and 7 are derived from the same experimental dataset,
presented in different formats to emphasise distinct aspects of the findings.
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of ribosomal components [25]. Given that pl6
canonically performs its role as a CDKi within the
nucleus, we next investigated the importance of p16 to
the efficacy of QMS5928, by comparing its effect
between the MB-468s and the pl6-null MB-231s
(Figure 7E). We observed a clear differential response
between the two cancer lines, with the MB-231s only
inhibiting proliferation at doses which produce toxicity
in the MB-468s (MB-468 1C50: 8.621 uM; MB-231
IC50: 16.09 uM). Furthermore, extending the assay to
day 10 following a single treatment of QMS5928, saw
the MB-231 cell number recover to a far greater extent
than the MB-468s, suggesting a partial recovery from a
toxic response, as opposed to the senescence induced in
the MB-468s (Figure 7F). Whilst this timepoint is
limited by over confluence of the DMSO control, as
well as potential outgrowth in any doses where
senescence induction was not performed with 100%
efficiency, it demonstrates a differential impairment of
proliferation with QM5928 depending on the p16 status
of the cancer line. Whilst the two lines are not isogenic,
these results suggest that pl6 is crucial to the
mechanism of QM5928 in the MB-468s. Combined
with the immunofluorescence data, it also suggests
that localisation of senescent markers may be an
important nuance in understanding the mechanisms of
senescence induction in Sen-Mark+ cancers, for which
SAMP-Score will prove a valuable tool for future
investigations.

DISCUSSION

Sen-Mark+ cancer cells represent a particular
challenge to identify the establishment of a senescence
response, due to their intrinsically high levels of the
most common hallmarks of senescence [10]. These
cancers are often associated with particularly
aggressive forms of the disease, where unmet clinical
need is greatest, as in the case of BLBC. The tumour
suppressive role of senescence makes re-instatement of
a senescence programme (pro-senescence) in these
Sen-Mark+ cells an attractive therapeutic strategy, but
the challenge of identification has limited the
application of standard screening approaches [1]. More
broadly, it is becoming increasingly appreciated that
senescence exists in contexts which do not conform to
many established hallmarks, making the need for novel
tools for senescence classification ever more important
[16].

Here, we utilised multiple ML approaches to develop
SAMP-Score, a model that is able to readily identify
induction of a senescence response in multiple Sen-
Mark+ cancer cell lines and conditions. By utilising
unbiased clustering algorithms, we have been able to
establish a breadth of senescence morphology profiles

by building on our previous observation of senescence-
associated morphology profiles (SAMPs). Utilising
these, we have developed a model that is able to
distinguish senescence from two opposing ends of the
cell fate spectrum — proliferation and cytotoxicity. This
represents an advantage over traditional screening
readouts, which typically rely on more rigid cutoffs to
identify hits. By applying SAMP-Score to both diversity
library and dose response screening data, we have been
able to demonstrate its utility as a drug discovery tool
through identification of QMS5928, a novel pro-
senescence compound in Sen-Mark+ cancer cells. This
compound is effective at inducing senescence in a range
of BLBC lines and phenocopies pathways previously
linked to senescence induction. Future work will focus
on understanding the mechanisms through which
QM5928 is able to exert its pro-senescence effects, as
well as how Sen-Mark+ cancer cells are able to enter a
senescence state more broadly, with a view to forming
the “first-punch” of a paired pro-senescence-senolytic
therapeutic approach. We provide SAMP-Score as a
versatile tool for senescence identification, which will
be a crucial step of these future investigations.

CONCLUSIONS

Overall, this study further demonstrates the utility of
high-content morphological analysis as a tool for the
identification of senescent cells. This is particularly
powerful when paired with modern ML approaches,
expanding the possible contexts into which pro-
senescence drug discovery can be performed.

MATERIALS AND METHODS
Code and model availability

All scripts, workflows, packages and models used to
develop SAMP-Score are available at https:/
github.com/Phenotypic-Screening-QMUL/SAMP-Score.
These are broken up into sequential steps and can be run
from the R Markdown files, constituting ~8,500 lines of
code. To contextualise this code and the generated
outputs, HTML guides have also been included
(Supplementary Data 1) — these are provided as a line-by-
line walkthrough of the workflow. Due to the large size
of the single target high-content analysis screening
data, this is available on reasonable request from the
corresponding author. All data analysis was performed in
R wversion 4.2.1 using an x86 64-apple-darwinl7.0
(64-bit) platform unless otherwise stated.

Cell culture and reagents

Unless specified, all reagents were from Sigma, UK.
HeLa (CRUK), MDA-MB-468 (ATCC, HTB-132;
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referred to as MB-468s) BT549 (ATCC, HTB-122)
and MDA-MB-231 (ATCC, HTB-26; referred to as
MB-231s) cells were cultured in high-glucose DMEM
(Life Technologies, UK). HelLa medium was
supplemented with 5% FBS (Labtech.com, UK), 1 mM
sodium pyruvate, and 2 mM L-glutamine (Life
Technologies, UK), while MB-468, BT549 and MB-
231 medium contained 10% FBS, 1 mM sodium
pyruvate, and 2 mM L-glutamine. Cells were
maintained at 37°C/5% CO. without antibiotics.
Immunoblotting/immunofluorescence was performed
as previously described using antibodies against pl16
(Santa Cruz, sc-56330; 1:100 or Protein Tech 10883-1-
AP; 1:1,000), p21 (Cell Signalling, 12D1; 1:2,000),
p53 (Cell Signalling, 2527S; 1:1,000), B-tubulin
(EnoGene, E1C601-1; 1:20,000) and GAPDH (Abcam,
ab9485; 1:5,000) [30]. All compounds were solubilised
in 0.5% DMSO.

Screening

An overview schematic of each of the three high
content screens performed in this work is presented in
(Supplementary Figure 1A—1E).

Automation and liquid handling

Cell culture conditions (cell seeding, media changes
etc.) were adapted for use with a CyBio Vario liquid
handing robotics system, utilising a 384-tip set-up.
This system was also used to perform fixation,
permeabilization and staining procedures described
below.

Genome wide siRNA screen

HeLa cells were seeded in 384-well plates at 5,000
cells/cm?. Reverse transfection at 30 nM was performed
using a genome-wide siRNA library containing 1:1:1
ratio pools of 3 siRNAs (Ambion) using HiPerFect
transfection reagent. Media was changed after 48 hrs
and cell fixation performed following another 72 hrs.
Negative control wells containing an siRNA targeting
cyclophilin B (siGLO, D-001610-01, Dharmacon) were
also included. These are found on each plate in wells
A23, B23, C23 and D23. In total 21,658 siRNA
conditions were tested (excluding controls) across 63
384-well plates which were screened in 3 batches.

Compound diversity library screen

A 10,000-compound diversity screening library was
supplied for hit identification by the Dundee Drug
Discovery Unit (DDU). The compounds represent
novel chemical entities with no established target or
mechanism of action and are identified by their
QMCode  designation (An alternative = DDU
designation may be found in the Supplementary Table

1). These compounds were solubilised in 0.5% DMSO
vehicle, which also served as a negative control
(located in columns 11, 12, 23 and 24). Compounds
were screened at two doses — 10 uM and 50 uM. 10 pul
of each compound dilution was prepared per 384-well
plate well and MB-468 cells seeded on top at 1,320
cells/well in 60 pl of medium. Media was changed
after 48 hrs and cells fixed following a further 72 hrs.
In total, 60 384-well plates were screened in
4 batches.

Compound dose response screen

A second compound screen containing 447 compounds
in 10-point dose response curves was supplied by DDU.
These compounds represent a subset of the original
diversity screen but were not selected based on the
current SAMP-Score methodology, but through
stringent (=3) Z-Score thresholds for nuclear count and
cell area. Conditions, procedures and data processing
were identical to the first screen with compounds being
screened at the following doses: 49.80 uM, 33.10 pM,
22.00 uM, 14.60 pM, 9.95 uM, 6.40 uM, 4.26 uM,
2.84 uM, 1.78 uM, 1.42 uM. The screen was performed
in two identical batches representing two technical
replicates for each compound/dose combination.

Immunofluorescence staining and high content
imaging

Immunofluorescence staining and high content analysis
(HCA) microscopy has been described previously
[17, 30]. Briefly, fixation was carried out using 3.7%
paraformaldehyde + 5% sucrose, with subsequent
permeabilization using 0.1% Triton X-100. Nuclei and
whole cells were stained for 2 hours at room with
diamidino-2 phenylindole (DAPI) (Sigma UK, D8417,
1:1,000) and HCS Cell Mask Deep Red (Thermo-
Fisher UK, H32721, 1:100,000), with secondary
antibodies where required (donkey anti-mouse-Alexa
Fluro 488 (Thermo-Fisher, UK; 1:500); goat
anti-rabbit-Alexa Fluor 546 (Thermo-Fisher, UK;
1:500)). High throughput automated imaging was then
performed using an INCell Analyser 2200. For SA-B-
Galactosidase activity assay, CellEvent Senescence
Green Detection Kit (Thermo-Fisher, UK; C10850)
was used for 2 hr at 37°C without CO». Quantitation of
cell positivity was set at the 95th-percentile threshold
in the unstained control.

High-content analysis (HCA) and feature selection

InCarta  high-content image analysis software
(Molecular Devices) was used to assess nuclear and
cellular features; with object masks generated from
DAPI and Cell Mask staining. Bespoke detection
protocols were developed for all cell lines, but the same
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set of curated morphological features were assessed in
each case (Supplementary Figure 1D, 1E). This set of
features consisted of a refined list based on our previous
work; with the removal of those that were determined to
be highly correlated according to a Pearson correlation
index threshold of >0.9 [17]. The input data into the
correlation calculation was the morphological profiles
from all individual siGLO control cells (~1.16 M cells)
within the HeLa screen. The decision of which of the
highly correlated features to retain was determined by
the average overall correlation of both features to all
other features within the dataset; with the feature with
the highest score (and thus producing least variance on
average) discarded.

Z-Score data processing

Z-score data scaling was performed for all high-content
imaging features (Supplementary Figure 1) as
previously reported [17]. This allows for both
normalisation to a batch control condition (siGLO or
DMSO) and data scaling across features. Z-Scores were
calculated according to the following equation:

e Z-Score = value of experimental condition (siRNA
or Compound) — mean value of control condition/
Standard Deviation (SD) of control condition

Z-Scores for all high-content features were displayed as
heatmaps; where black represented no-change relative
to the control condition. Z-score changes of greater than
1.96 from the control condition (95% confidence level)
in either positive or negative direction were visualised
as purple or yellow respectively. For a condition where
no change was observed relative to the control, an
entirely black profile would be produced.

Unsupervised machine learning - HeLa screen
cluster analysis for senescence labelling

Morphological Z-Score profiles from all siRNAs were
assessed via unsupervised hierarchical clustering; with
distance matrices constructed using Euclidean distances
via the dist() function and clustering via the ward.D2
method argument within the hclust() function from the
“stats” package. The number of clusters was determined
through visual inspection of the dendrogram and
heatmap generated via the heatmap.2 function within
the “gplots” package. K-means clustering was
performed using the kmeans() function from base R,
with the number of centres iteratively altered upon data
inspection. Clusters were overlaid on individual
treatment morphological profiles, which in turn were
visualised via uniform manifold approximation and
projection (UMAP) dimensionality reduction from the
“umap” package. Manual cluster labelling was then

performed through assessment of heatmap profiles and
cluster membership comparisons between the two
methods made via Venn diagrams.
Supervised machine learning - SAMP-score
classification model development

Data organisation

Data labelling of the HeLa screen siRNA treatments
(Senescent vs. Non-Senescent) was performed
according to the unsupervised cluster-based approach.
Data partitioning was then performed with 80% being
allocated to the training dataset and 20% to the testing.
To account for the large class imbalance between the
Senescent (Sen) and Non-Senescent (NonSen) classes,
the NonSen class was then randomly undersampled to
produce an equal number of observations in each class.
Those NonSen conditions that were removed were
“recycled” into the testing dataset. Crucially, these data
were never used for model training, preventing data
leakage. The training data was then further split 50:50
into two separate training datasets. One set was used to
train individual ML models and the other for “testing”,
to produce prediction coefficients. These prediction
values then became the training data variables for the
SAMP-Score ensemble meta model. Each individual
ML model was then used to assess the testing data
(original 20% plus recycled) and individual model
performance assessed. The prediction coefficients from
these models were then combined into a testing dataset
for the meta model to determine a final prediction. For
the alternative model constructed using traditional
screening thresholds (+/— 1.96 Z-score changing in
nuclear count and cell area) the only change was at the
data labelling stage.

Model development
All models were constructed in R using the following
packages: glmnet (logistic  regression, Lasso

regularisation and elastic nets); randomForest (random
forest); 1071 (support vector machine; SVM); mda
(multiple discriminant analysis; MDA); neuralnet
(neural network; NN). The stacked meta model is a
Lasso regularisation model which takes the prediction
coefficients from all seven models as input data. For the
individual models, default hyperparameters were
selected unless otherwise indicated and a decision
threshold of 0.5 was applied. Further details of model
parameters are found in the html guides (Supporting
Data Set 2). Model performance was assessed via the
generation of receiver operating characteristic (ROC)
curves and assessment of model accuracy (proportion of
correct predictions), Negative Predictive Value (NPV;
proportion of true negatives out of all negative
predictions), recall (proportion of true positives out of
all positives), F1 score (harmonic mean of PPV and
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recall), AUC (Area Under ROC Curve) and positive
prediction value (PPV; proportion of true positives
among positive predictions). Prediction rates were
recorded as confusion matrices.

Phenocopying

Z-Score morphology profiles from the HeLa screen were
combined with that of QM5928 from the dose response
screen. The dose selected for QM5928 was the highest
that scored as a senescence hit according to SAMP-
Score (9.95 uM), in order to explore the most well-
established phenotype. Hierarchical clustering was then
performed with the data partitioned into 50 clusters, in
order to refine the number of treatments within
individual clusters. Targets of the 77 siRNA treatments
that produced phenotypes that clustered alongside
QM5928 (Supplementary Data 2) were then assessed by
KEGG pathway analysis using ShinyGO 0.81 [31].

Statistical analysis

Statistical analysis was performed using GraphPad
Prism 7. An unpaired Student’s t-test was used to
compare the means of two groups unless specified. Data
>2 independent experiments unless otherwise stated.
Error bars represent SD.

Availability of data and materials
All packages and versions used in this code are available

at the following URL: https:/github.com/Phenotypic-
Screening-QMUL/SAMP-Score.
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Supplementary Figure 1. High content screening overview and feature selection. (A—C) Overview of high three high content
screens ((A) genome-wide siRNA screen in Hela cells to establish ground truth for model development; (B) compound diversity screen for
senescent hit identification; (C) dose profiling of senescent hits). (D) Feature dimensionality reduction strategy via Pearson correlation
assessment. (E) List of final features which comprise SAMP profiles.
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Supplementary Figure 2. Genome-wide siRNA Hela screen - traditional screening readouts. (A—C) Heatmaps representing high
content analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen treatments (siRNAs; x-axis) that reduce nuclear count and
increase nuclear area by high, medium and low stringency thresholds. (D) Heatmap profile showing cell area and nuclear count Z-scores for
all treatments. (E) Scatter plot showing nuclear count vs cell area Z-scores. In all heatmaps, purple indicates positive modulation and yellow
negative modulation of greater than 1.96 Z-scores from siGLO control. Black indicates no change.
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Supplementary Figure 3. Genome-wide siRNA Hela screen — biased pathway labelling. (A-D) Heatmaps representing high
content analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen treatments (siRNAs; x-axis) selected through identification as
downregulated in SENCAN and SENESCopedia database or Senescence/Cell Cycle KEGG pathway analysis terms. In all heatmaps, purple

indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no
change.
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Supplementary Figure 4. Receiver operating characteristic (ROC) curves for all composite models of SAMP-Score.
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Supplementary Figure 5. Model Development and Metric Assessment using traditional threshold-based senescence labelling
of training data. (A, B) Machine learning (ML) model assessment metrics and confusion matrix for all individual ML models and stacked
meta-model (SAMP-Score). Abbreviations: NPV: Negative Prediction Value; AUC: Area under curve; PPV: Positive Prediction Value; TP: True
Positive; TN: True Negative; FN: False Negative; FP: False Positive. (C) Receiver operating characteristic (ROC) curve for stacked meta model.
(D, E) Model feature contributions to Lasso and Random Forest models.
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Supplementary Figure 6. QM0005928 physicochemical properties and SenMark+ cancer cell senescence markers. (A) Standard
chemical assessment panel for QM5928. (B, C) Senescence-associated beta galactosidase staining of MB-468 cells. N = 1 with 2 technical
replicates. (D, E) Immunoblotting of MB-468 cells for p21 and p53. N = 3.
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Supplementary Figure 7. SAMP-Score assessment of BLBC response to CDK Inhibition. (A) Immunoblotting of MB-231 cells for
p16. N-3. (B—E) Response to 1 uM palbociclib treatment or vehicle control (DMSO) in MB-468, BT549 and MB-231 BLBC lines. (F) SAMP-Score
classification coefficient for MB-468, BT549 and MB-231 BLBC lines treated with palbociclib. (G) Heatmap representing high content analysis
feature (HCA; y-axis) profiles of MB-468, BT549 and MB-231 BLBC lines treated with palbociclib (x-axis). In all heatmaps, purple indicates
positive modulation and yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no change.
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Compound designation list.
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Supplementary Data
Please browse Full Text version to see the data of Supplementary Data 1 and 2.
Supplementary Data 1. HTML code walkthrough guides.

Supplementary Data 2. Phenocopied siRNA list.
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