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INTRODUCTION 
 

Senescence is a term given to a set of related terminal 

cell fates; in which tumour suppressor mechanisms 

arrest proliferation following cellular insult to protect 

against malignant transformation [1]. The senescence 

programme is executed by cyclin-dependent kinase 

inhibitor (CDKi) signalling axes, most notably p53-p21 

and p16, which act to prevent the phosphorylation of 

retinoblastoma (Rb) family members and consequently 

inhibit the production of E2F transcription factor 

targets, thus arresting cell cycle progression [2]. These 

tumour suppressors present a potent barrier to cancer 

development and, as such, are some of the most 

frequent mutations found in cancer cells [3]. This is 

reflected in the designation of senescence, and 

particularly its failure, as an emerging hallmark of 
cancer [4]. Therefore, the targeted activation of the 

senescence programme (so called pro-senescence) is an 

attractive therapeutic strategy in cancer. 
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ABSTRACT 
 

Background: Senescence identification is rendered challenging due to a lack of universally available biomarkers. 
This represents a bottleneck in efforts to develop pro-senescence therapeutics – agents designed to induce the 
arrest of cellular proliferation associated with a senescence response in cancer cells for therapeutic gain. This is 
particularly true in contexts such as basal-like breast cancer (BLBC), which often express high levels of widely 
reported senescence hallmarks, which has led to the designation of these subtypes as senescence marker 
positive (Sen-Mark+). Unfortunately, these are often cancers with the most limited treatment options, where 
novel pro-senescence compounds would be of potential clinical utility. 
Results: To address these challenges, we have developed SAMP-Score, a machine learning classification tool for 
identifying senescence induction in Sen-Mark+ cancers. This technique builds upon our previous observation 
that senescent cells develop distinct senescence-associated morphological profiles (SAMPs), which can be 
assessed readily in traditionally challenging contexts for senescence identification, including high-throughput 
screens. 
Conclusions: Through application of SAMP-Score, we have identified QM5928, a novel pro-senescence 
compound, that is able to induce senescence in a variety of Sen-Mark+ cancers and has potential utility as a tool 
molecule to explore the mechanisms and pathways through which senescence induction occurs in these cells. 
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Paradoxically, many cancers present with high 

expression of senescence markers, including the CDKi 

p16 [5]. Importantly, these subtypes are often associated 

with aggressive forms of the disease leading to poor 

prognoses and clinical outcomes [6]. A notable example 

of this is basal-like breast cancer (BLBC), a subtype 

with significant (>90%) overlap with triple-negative 

histological classification [7]. These tumours stain 

positive for p16 so frequently, that it has been proposed 

as a surrogate subtype marker [8]. Crucially, this is a 

disease area with a profound unmet clinical need, with 

the triple negative status limiting the use of targeted 

treatment options [7]. Furthermore, modern pro-

senescence therapeutic approaches, which act to mimic 

perturbed cell senescence pathways, including 

compounds such as the CDK4/6 inhibitor and p16 

mimetic palbociclib, have been demonstrated to lack 

efficacy in cancers with high levels of p16 [9]. 

Therefore, there is an outstanding challenge within the 

field to identify both pathways and compounds that can 

engage a senescence programme in these cancer 

subtypes – which we refer to as Sen-Mark+ cancers 

(senescence-marker positive cancers) [10]. 

 

A major obstacle to such endeavours is the reliable 

classification of a pro-senescence response in cancer 

subtypes already positive for a principal senescence 

marker. As standard, senescence classification requires 

the use of multiple complimentary hallmarks, as no 

single marker is universal [11]. Identifying senescence 

in cancer provides a particular challenge, as reliable 

markers such as initiation of a DNA damage response 

(DDR) or positive senescence-associated beta galacto-

sidase (SA-ß-Gal) staining are often already observed  

in proliferating cancer cells [1, 12]. Furthermore, loss  

of proliferation (a fundamental distinction between 

senescence and cancer) is insufficient alone to 

confidently classify a senescence phenotype, with 

experimental readouts such as reduced cell count 

attributable to other outcomes such as toxicity or 

slowed, rather than arrested, cell division [13, 14]. 

These issues are further exacerbated in contexts such as 

screening, which do not readily lend themselves to 

complex classification readouts with multiple marker 

stains, both practically and financially [13, 15]. 

Therefore, there is a need for the development of 

scalable methods of senescence identification, 

particularly in Sen-Mark+ cancer subtypes [1, 16]. 

 

Previously, we utilised multiparameter assessment of 

high content microscopy images to demonstrate that 

senescent cells acquire distinctive senescence-associated 

morphological profiles (SAMPs) [17]. These can be 

visualised through simple nuclear and cell dyes (DAPI 

and Cell Mask) making such analysis readily applicable 

to high throughput contexts [18]. However, our previous 

use of SAMPs has focused on characterisation and 

subpopulation assessment of senescence models, as 

opposed to classification or identification per se. 

Recently, several tools have been developed, which 

successfully utilise machine learning (ML) algorithms to 

assess of cell morphologies for senescence classification 

[19–21]. However, it remains unclear how generalisable 

these methods are, for instance in contexts such as p16 

positive cancer cells [22]. Furthermore, model 

development to date has relied on establishing ground 

truth through canonical senescence markers, to 

quantitate model performance [19, 22]. Given the 

established limitations of senescence markers 

(particularly in Sen-Mark+ cancers), this represents a 

potential barrier to identifying novel senescence pheno-

types where conventional markers prove insufficient to 

establish ground truth. This underpins the discovery 

challenge facing the identification of pro-senescence 

approaches in p16 positive cancers. 

 

Here, we build upon our previous observation that 

senescent cells are associated with distinct SAMPs [17]. 

By utilising unsupervised cluster analysis to assess the 

morphological profiles of a genome-wide siRNA screen 

in HeLa cells (p16-positive cervical cancer) we 

developed a stacked meta-model classification tool 

incorporating prediction scores from multiple individual 

ML models which we term SAMP-Score. To 

demonstrate the potential application of SAMP-Score in 

p16 positive cancer therapeutic discovery, we assessed a 

diversity screen of 10,000 novel chemical entities in 

MB-468 cells (p16 positive BLBC). Pro-senescence 

compound hits were identified through SAMP-Score 

classification and the effect of increasing concentration 

on senescence scoring was then assessed through a 

second dose response screen. SAMP-Score classification 

was then used to select a compound for validation of 

pro-senescence induction - QM0005928/DDD01293078 

(QM5928), which was demonstrated to produce a 

senescence response in multiple Sen-Mark+ cancer lines. 

Collectively, SAMP-Score represents a versatile tool for 

therapeutic discovery and senescence classification 

across p16 positive cancers and has identified a 

promising novel compound in BLBC. 

 

RESULTS 
 

Genome-wide siRNA screening for senescence 

labelling – classical screening criteria 

 

Sen-Mark+ cancer cells represent a particular challenge 

for developing ML classification tools for the 

identification of senescence. This is because the 

labelling of an initial training dataset generally requires 

a known “ground truth”, where observations are placed 

into the categories to allow the model to be both 



www.aging-us.com 3 AGING 

constructed and its effectiveness assessed [22]. For Sen-

Mark+ cancers, confidence in the labelling of any 

particular observation as either senescent or not is 

hindered by the lack of available biomarkers within the 

context of these cells, which, circularly, is the very 

reason such classification tools are needed [10]. 

Furthermore, restricting the labelling of training data to 

be based upon a small set of hallmarks with known 

limitations also has the potential to miss uncommon, 

idiosyncratic, or novel phenotypes, potentially limiting 

the application of such tools, particularly for identifying 

new senescence contexts. 

 

Therefore, where traditional ML model development 

would first identify conditions of senescence, before 

measuring their morphologies, for our approach we 

worked in reverse. First, we generated and assessed as 

diverse a range of potential cell morphologies as 

possible before exploring different approaches to 

labelling those which resembled our previously 

observed senescence-associated morphological profiles 

(SAMPs) as senescent. This allowed us to capture the 

breadth of potential senescent cell morphologies, with 

the ultimate goal of serving as a training dataset for 

development of a flexible tool to identify senescence in 

the context of Sen-Mark+ cancers. 

 

We performed a genome-wide siRNA screen in p16 

positive cervical cancer cells (HeLa – Supplementary 

Figure 1A). This screen consisted of 63 384-well plates, 

with a pool of 3 siRNA per well per target, giving a 

total of 21,658 treatments (excluding controls), 

representing a comprehensive perturbation of cellular 

pathways. To assess the morphology of these cells, we 

refined our previous SAMP methodology to limit the 

influence of co-linearity, aiding computing time and 

interpretability (Supplementary Figure 1D, 1E). This 

was achieved by taking the morphology profiles from 

all individual siGLO control cells (~1.16 M cells) and 

removing redundant features, as identified by Pearson 

correlation assessment. This resulted in a parsimonious 

set of 36 features, which were then assessed for all 

siRNAs and control conditions (Figure 1A). As 

expected, a broad range of profiles were generated, with 

most siRNAs producing little to no change compared to 

the siGLO control profile (which would appear as an 

entirely black heatmap). However, a heterogenous set of 

altered morphologies was also produced by many 

treatments, which appeared similar to the SAMPs we 

have previously observed in senescence. We then 

explored several options for establishing senescence 

“hits”. First, we assessed the magnitude to which 

treatments produced a combined reduction in cell count 
and increase in cell area, which have previously been 

employed as readouts in senescence screens [23]. We 

filtered the profiles according to several thresholds in 

these two features, which served as high (≥3 Z-score 

change), medium (≥1.92 Z-score change) and low (≥1 

Z-score change) stringency criteria (Supplementary 

Figure 2A–2C). We observed that the potency of 

morphology changes followed the stringency of the 

senescence thresholding, suggesting that the altered 

profiles were associated with conditions that produce a 

reduction in cell count and general increase in cell area. 

Importantly, we also demonstrated no correlation 

between the overall cell number and the cell area, 

suggesting that morphological changes are not tied to a 

simple confounding influence such as confluency, and 

emphasising the limitation of relying on cell counts as a 

senescence readout alone (Supplementary Figure 2D, 

2E). These canonical screening thresholds were a useful 

starting point for suggesting altered morphology 

profiles are associated with conditions that would 

traditionally have considered senescent and corroborate 

our previous reports [23]. However, we previously 

observed significant heterogeneity in the composition of 

SAMP profiles between different senescence models. 

Given this, we sought to explore other methods for 

classifying profiles as senescent, in order to broaden the 

range of profiles within this class and potentially 

capture less conventional phenotypes. 

 

The advent of large-scale profiling techniques, such as 

RNA sequencing, has provided greater depth into our 

understanding of the pathways that are altered in 

senescence. Of pertinence to this work, the SENCAN 

classifier and SENESCopedia database, provide an insight 

into directionality of target expression in senescent cancer 

cells [24]. We explored whether siRNAs against targets 

which are downregulated in SENCAN/SENESCopedia 

would lead to the generation of distinctive senescence 

phenotypes (Supplementary Figure 3A, 3B). We also 

performed this process for targets which fall within the 

KEGG gene ontology pathways “Cell Cycle” and 

“Senescence” (Supplementary Figure 3C, 3D). In general, 

we found this produced a far more mixed set of profiles 

than those we had generated with our previous 

thresholding strategy, with most profiles appearing 

unchanged compared to the control, suggesting they were 

not SAMPs. This may be due to factors such as variability 

between cancer types (which was strongly observed by 

the SENCAN authors) or that the downregulation of many 

of the targets may be a consequence but not a driver of 

senescence induction. Therefore, we concluded that a 

biased, pathway driven approach was inadequate for 

identifying profiles that could be labelled as senescent. 

 

Genome-wide siRNA screening for senescence 

labelling – unsupervised ML criteria 

 

Next, we utilised several methods of unsupervised ML, 

in order to group profiles based on similarity, rather 
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Figure 1. Genome-wide siRNA HeLa screen and cluster-based senescence labelling. (A) Heatmap representing high content 

analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen. Treatments (siRNAs; x-axis) were grouped into three through 
hierarchical clustering. (B–D) Heatmap of individual hierarchical clusters. (E) UMAP plot showing 36 feature profiles of every treatment 
within the screen, labelled with K-means clustering groups. (F) Heatmap profiles of K-means clusters. (G) Nuclei counts for treatments in 
each K-means cluster. (H) Venn diagram showing overlap between hierarchical and k-means clustering. (I) Heatmap profiles of treatments 
labelled as either Non-Senescence or Senescence. (J) Heatmap profile showing cell area and nuclear count Z-Scores of all senescence 
conditions. In all heatmaps, purple indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from siGLO 
control. Black indicates a Z-score between –1.96 and 1.96. 
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than through rigid screening thresholds. We then 

inspected these algorithm generated groups, to 

determine whether any resembled SAMP profiles. The 

first method used was unsupervised hierarchical 

clustering (HC). This algorithm groups together profiles 

based on pairwise distances and is represented by the 

dendrogram on the x-axis of the heatmap (Figure 1A). 

Whilst the clustering itself is unsupervised, the decision 

of where to cut the tree to determine the size of 

groupings is provided by the user. This could range 

from 1 cluster containing all siRNAs to 21,658 clusters 

of 1 siRNA per group. We chose to break the screen 

into 3 clusters, which were the clearest from the 

dendrogram and which also appeared to have the 

longest branches, signifying the greatest difference 

between groups. When these clusters were visualised 

separately, their distinctions became obvious. HC1 

(Figure 1B) and HC3 (Figure 1D) contained 5,329  

and 172 siRNA respectively, and represented clear 

morphological changes from the siGLO control, 

reminiscent of SAMP profiles, with HC3 appearing to 

contain more potent profiles than those in HC1. HC2 

(Figure 1C) in contrast, contained 16,157 siRNA 

profiles, which demonstrate comparatively little 

change from the siGLO control. Together, this 

suggested that the unsupervised hierarchical clustering 

had successfully split the siRNAs into those that change 

the morphology of the HeLa cells, and those that do not. 

 

Next, to further explore the range of potential 

morphologies as well as additional subgroupings, we 

then plotted the profiles via UMAP dimensionality 

reduction, where each point on the chart represents the 

36-feature profile from a single treatment (Figure 1E). 

We also employed an alternative K-means clustering 

(KMC) algorithm, to explore the effect of using 

different clustering methods on profile groupings. The 

UMAP allowed us to identify a small group of siRNAs 

that produced a phenotype which was distinct from the 

other profiles. However, isolating this group within its 

own cluster required increasing the total number of 

groups to four (K = 4). The heatmap profiles (Figure 

1F) show the 64 siRNAs in this group, KMC3, 

generated a potent phenotype. The large reductions in 

cell count for treatments in this cluster, generally below 

the level of seeding, made it evident that these 

treatments had induced toxicity in the cells as opposed 

to senescence (Figure 1G). By contrast, KMC4 

contained 749 profiles that had clear morphological 

changes reminiscent of the SAMPs we have described 

previously, whilst KMC1 contained a much larger range 

of 6,527 profiles that were variable in potency. The 

intensity of profile changes observed between these 
clusters also mirrored the relative reduction in their 

respective cell counts. As before, a large cluster, 

KMC2, contained 14,318 profiles that differed little 

from the control, indicating most treatments do not alter 

morphology. Interestingly when looking at a Venn 

diagram of how the two clustering algorithms overlap, 

we see that through KMC we have been able to split the 

172 potent profiles from HC3 into 64 toxic profiles 

(pink box KMC3 - Figure 1H) and 108 strong senescent 

(dark green box KMC4 - Figure 1H). We can also see a 

large overlap between the HC1 and KM1 (blue box - 

Figure 1H) which represents the profiles with more 

modest change, but also with KM4 (light green box - 

Figure 1H) accounting for the more potent profiles 

observed in HC1. For the purposes of labelling our 

cluster-based training data, we took the entirety of 

KMC4, as well as those treatments that overlapped 

between HC1 and KMC1 (light green, dark green and 

blue boxes – 4,989) and labelled these as senescent. 

This strategy was deliberately designed to be inclusive 

in order to capture as many potential phenotypes as 

possible (Figure 1I). The trade-off with this approach 

was that any model developed based on this data may 

have been more prone to generating false positives, 

which was later accounted for and minimised through 

application of a stringent decision boundary (see 

below). 

 

Next, we sought to understand how the clustering-based 

strategy for senescence labelling would compare the 

“traditional” approach based on rigid thresholds for 

nuclei count and cell area. 88.5% of those siRNAs which 

would have been considered hits according to the classic 

criteria of reduced count and increased area (using the 

medium stringency threshold of 1.92 Z-Score change) 

were contained within the senescence grouping 

(Supplementary HTML Walkthrough 2 – Section 17). 

This suggests that the unsupervised methodology does 

not miss many hits that would previously have been 

identified. Of the 11.5% of siRNAs not included, the 

vast majority (53/60) were confined to KMC3, 

representing toxic conditions and supporting the concept 

that a clustering approach to data labelling has allowed 

these to be separated from senescence. Interestingly for 

our goal of identifying novel senescence morphologies, 

only 9.3% of the clustering approach labelled senescent 

conditions satisfy the Z-Score criteria for change in  

both reduced cell count and increased cell area 

(Supplementary HTML Walkthrough 2 – Section 16). 

This means that as a screening criterion, the 

unsupervised clustering has expanded the list of 

potential senescence hits and thus broadened the range 

of phenotypes we are considering beyond those that are 

simply “large”. This is clear when the cell counts and 

areas of the senescence treatments are visualised (Figure 

1J), with most satisfying the reduction in count 
fundamental to senescence but being lost as hits due to a 

failure to achieve the increased area threshold. 

Therefore, applying the additional sophistication of 
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unsupervised morphological assessment to the hit 

detection process captures a greater number of potential 

senescence phenotypes, and allows distinction from both 

toxicity and proliferation. Validation of this is made 

difficult, by the nature of the problem we are trying to 

solve, the Sen-Mark+ status of the cells, which limits the 

utility of senescence markers. Given that our goal was to 

identify novel phenotypes that may not satisfy 

conventional markers anyway, we instead decided to 

explore the practical implications of our expanded 

definition and moved to develop classification tools 

based on this approach to identifying senescence. 

 

Developing an ML method for detecting senescence 

in Sen-Mark+ cancer cells 

 

By establishing thresholds within the HeLa screen for 

what we consider senescence (SEN) or non-senescence 

(NonSen), we can utilise the data as a training set for 

developing ML classification tools. These have 

previously been developed through labelling according 

to canonical senescence markers in a range of contexts 

successfully [19–21]. Here, we did so using the 

unsupervised clustering approach to data labelling. The 

details of this are outlined in (Figure 2) and methods 

above, but briefly: the labelled HeLa screening data was 

partitioned into 80% training and 20% testing. Due to 

heavy class imbalance in favour of the NonSen 

condition, this data was then randomly undersampled to 

achieve classes of a similar size. The excluded training 

data (which comprised only NonSen siRNAs) was then 

recycled into the testing data set. The undersampled 

training data was then split in half, with 50% dedicated 

to training individual ML models and 50% for testing. 

The prediction coefficients from the latter were then 

used to train an ensemble meta model. The individual 

models which comprised this covered a range of  

ML types including Logistic regression, Lasso 

regularisation, Elastic Nets, Support Vector Machines 

(SVM), Random Forrest (RF), Multiple Discriminant 

Analysis (MDA) and Neural Networks (NN). The meta 

model takes the predictions from each of these models 

and forms a consensus prediction (model stacking). 

Each model is individually used to assess the initially 

removed (20% + recycled) testing data and its 

performance assessed. The combined predictions are 

then evaluated with the meta model to determine a final 

prediction, the accuracy of which can be compared to 

each model individually. This approach was selected to 

be as comprehensive as possible, when assessing the 

applicability of different ML approaches to identifying 

senescent cells. 

 
Interestingly, we did observe high model accuracy in 

most cases (>90% accuracy in all individual models), 

which aligns with similarly high model performances 

previously reported [21]. Of the individual models, the 

SVM performed best, but by stacking the predictions 

from all models we were able to increase performance 

as seen in the meta model metrics (Figure 3A, 3B). 

However, each of the models is hindered by a high ratio 

of false positive (FP) to true positive (TP). This is 

recorded in the positive prediction value (PPV), which 

is the proportion of positive classifications that are TP – 

i.e., how good are the hits? These metrics suggest the 

models are somewhat “reckless” as whilst in general 

they will not miss many TPs, they do seem to “over 

predict” and pick up a high number of FPs. In a 

screening context this would equate to a high rate of 

false hits. It might be that in the context of senescence 

screening (where many more cases of NonSen are 

predicted) we can accept a lower PPV, because the class 

imbalance means that the ratio of TP vs. FP is likely to 

always be low, given that there are many more negative 

cases to potentially misclassify than positive ones to 

classify. Importantly, the low rate of false negatives 

(FN), means that the models are generally not missing 

hits, and the very low ratio between TN and FP means 

that the FP rate is in fact very low, which contributes to 

the high accuracies observed. However, achieving as 

low a ratio of FP to TP as possible (high PPV) would 

limit the identification of false hits, and the model 

stacking approach appears to improve this slightly from 

56% in the best performing individual model (SVM) to 

58.7% in the meta model. This can be further improved 

by adjusting the decision boundary, a stringency 

measure that determines how confident the model must 

be to classify something as senescent (Figure 3C). For 

the individual models this was set at the oft-used value 

of 0.5 but we see that increasing this value to a 

maximum of 0.95 improves both the accuracy (94.8% to 

97.4%) and PPV (58.7% to 81.5%). This comes from 

fewer FP classifications but at the expense of losing 

some TPs. To add further nuance, it is important to 

consider the process through which initial class 

labelling was performed. In our unbiased set up, we 

were inclusive with respect to senescence classification 

and thus consider it is more likely that there were 

instances of mislabelling siRNAs as senescent than 

missing those that should have been. This might mean 

the model has been misled at the training stage to label 

weak profiles as senescent, which would be anticipated 

to give rise to a greater raw number of FPs. Therefore, 

we think it is reasonable to accept a measure of TP loss 

in order to limit the number of FPs, thus leaving us with 

only the most confident predictions and avoiding low 

quality hits in any screening applications. As such we 

took a stringent decision boundary threshold of 0.9 

when setting the final model. 
 

The construction of the meta model relies on each of the 

composite models. These have a literally infinite 
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number of hyperparameter combinations that could be 

changed, tweaked or optimised in each case (including 

the decision boundary), and the question of when to 

stop refining the models is one that is often debated in 

ML. Here, we have taken a heuristic approach, which is 

defined by a model only needing to be good enough to 

perform its intended task adequately, rather than the 

perfect version of what it could be. We have also 

included some insight into the decision-making process 

that was performed by a few of the models. The Lasso 

regularisation coefficients (Figure 3F) demonstrate the 

magnitude and directionality of individual features to 

the model performance, whilst the Random Forrest 

variable importance (Figure 3G) provides a measure of 

the contribution of each feature within the decision tree. 

This is an advantage of feature-based analysis over 

black-box approaches such as CNNs, aiding inter-

pretability and leaving the potential to further refine 

 

 
 

Figure 2. Overview of SAMP-Score model development. Each model was assessed according to a range of criteria, which are 

visualised in the model metrics (Figure 3A) and confusion matrix heatmaps (Figure 3B), as well as neural network map (Figure 3D) and ROC 
curves (Figure 3E; Supplementary Figure 4). The model metrics are nuanced and can be misleading when viewed in isolation. For instance, 
accuracy is a measure of correct predictions and is often relied upon as a single readout of model performance. But in a hypothetical 
example where there are 99 majority cases (e.g., NonSen) and 1 minority case (e.g., Sen) then a model may be 99% accurate by simply 
always predicting NonSen; but this would not be a useful tool. Therefore, particularly in senescence research where instances are likely to 
be imbalanced, particular care in assessing model performance must be taken. 
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Figure 3. SAMP-Score model development and metric assessment. (A, B) Machine learning (ML) model assessment metrics and 

confusion matrix for all individual ML models and stacked meta-model (SAMP-Score). Abbreviations: NPV: Negative Prediction Value; AUC: 
Area under curve; PPV: Positive Prediction Value; TP: True Positive; TN: True Negative; FN: False Negative; FP: False Positive. (C) Effect of 
altering decision boundary position on model metrics and confusion matrix. (D) Neural network model. Features are input nodes and lead 
to a prediction of Senescence or Non-Senescence. (E) Receiver operating characteristic (ROC) curve for stacked meta model. (F, G) Model 
feature contributions to Lasso and Random Forest models. 



www.aging-us.com 9 AGING 

model complexity [22]. Ultimately, we have developed 

a model that appears to perform well at its intended task 

of identifying senescent cells (as labelled by the 

unbiased approach). Individual model performance 

varies but is improved by stacking into an ensemble 

meta model. Whether the marginal gains in performance 

justify the significant additional complexity in 

construction will depend on the specific task to which 

the model is applied, but we chose to continue with the 

most sophisticated version of our ML classifiers (the 

meta model), which from here on is referred to as 

SAMP-Score – given that this produces a prediction 

value of senescence for any given treatment. 

 

Using SAMP score to identify novel pro-senescence 

compounds 

 

The ultimate litmus test of any ML model is not 

whether it generates high performance metrics when 

applied to a testing dataset, but rather whether it is 

generalisable enough to serve the intended real-world 

function on unseen data sources. We set out to develop 

a model which would have utility as a screening tool to 

aid the identification of compounds that induce a 

senescence response in Sen-Mark+ cancer cells. As one 

of the most widely used cell lines, HeLa cells were used 

to construct SAMP-Score, in order to serve as a robust 

starting point, which would enable more straightforward 

adoption within the field. However, to assess the utility 

of SAMP-Score across different p16 positive cancer 

lines, we made use of screening data that had previously 

been generated in an MB-468 BLBC cell line, a disease 

area with profound unmet clinical need. This also 

allowed us to assess another advantage of SAMP-Score 

– the ability to re-mine and categorise archival image 

stacks. 

 

The first of these screens was a diversity library of 

10,000 novel chemical entities, which were screened at 

two doses (10 µM and 50 µM – Supplementary Figure 

1B). As before, 36 feature HCA morphology profiles 

were generated for every compound and dose (Figure 

4A). These profiles were then assessed using the 

SAMP-Score algorithm to classify the senescence state 

of each condition. In order to compare the SAMP-Score 

classifications to those that would have been generated 

through classical screening thresholds, we compared 

nuclear count and cell area for all conditions, whilst 

overlaying the SAMP-Score class predictions. It 

became clear that SAMP-Score avoids detecting 

proliferating conditions that would not have met a 

classic threshold for reduced nuclear count or increased 

cell area (Figure 4B). However, SAMP-Score is also 
able to make more nuanced classifications and appears 

to detect conditions that reduce nuclear count and 

increase cell area, but in the latter case not by the 

magnitude required by traditional screening cutoffs. 

Furthermore, SAMP-Score also avoids classifying 

conditions with extreme reductions in cell count and 

increases in cell area respectively, which likely 

represent conditions producing cytotoxicity rather than 

pro-senescence. To emphasise this further, we 

reproduced the SAMP-Score model as before but using 

classical screening thresholds to label our ground truth, 

rather than the unbiased clustering method 

(Supplementary Figure 5A–5C). When this model was 

applied to the compound screen, we see a very clear cut 

off in phenotype that aligns with the nuclear count and 

cell area screening thresholds used in the training data 

(Figure 4C). It is important to emphasise that we have 

not applied these thresholds here, but the model has 

learned to essentially replicate them. Additionally,  

we are able to see the particularly strong influence  

of cell area in the Lasso and Random Forrest feature 

assessments (Supplementary Figure 5D, 5E), high-

lighting the advantage of feature-based analysis for the 

purposes of interpretability over so-called black box 

techniques such as CNNs [15, 19, 22]. Most crucially, 

we see that even if traditional screening thresholds are 

used to train a ML model rather than being rigidly 

applied, we do not see the exclusion of conditions that 

produce extreme phenotypes from being placed in the 

senescence class. This emphasises the value of our 

unbiased cluster-based labelling of senescence ground 

truth during model development, as it allows for far 

more nuanced classifications, distinguishing both 

toxicity and proliferation from senescence. This can be 

appreciated further if the morphology profiles are 

assessed according to senescence condition and dose. At 

the low dose (10 µM), the NonSen condition comprises 

mostly very weak profiles comparable to the vehicle 

control (Figure 4D). However, at the high dose (50 µM) 

the NonSen condition now also contains a large number 

of very potent profiles, reminiscent of the HeLa 

clustering in KM3 (Figure 4F). These are toxic 

conditions. Furthermore, we see the potency of profile 

in the senescence classifications increase with dose 

(Figure 4E, 4G), aligning with the principle that the 

cellular perturbations elicited by the compounds are 

enhanced with increased concentration. 

 

To further explore the influence of compound dose on 

SAMP-Score classification we next assessed a second 

compound screen comprising 10-point dose responses 

(DR) from 447 compounds that comprised a subset of 

the diversity screen (Supplementary Figure 1C). Whilst 

the compounds comprising this screen were selected 

before the establishment of the SAMP-Score metho-

dology, it nevertheless represents a useful dataset, with 
50% of compounds in the DR screen having been 

classified as senescent at either of the doses in the 

diversity screen according to SAMP-Score. Assessing 
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Figure 4. Diversity library compound screen. (A) Heatmap representing high content analysis feature (HCA; y-axis) profiles of a 

compound diversity library screen (Compounds; x-axis) performed in MB-468 cells. (B, C) Scatter plots showing Z-scores of nuclear count 
and cell area (log10) for all compound treatments. Points are coloured Non-Senescent (red) or Senescent (blue) according to SAMP-Score 
classification based on models constructed with either cluster based or traditional threshold-based data labelling. (D–G) Heatmap profiles 
for treatments classified as either Non-Senescent (NonSen) or Senescent (Sen) by SAMP-Score at both low (10 µM) and high screening 
doses (50 µM). In all heatmaps, purple indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from 
DMSO vehicle control. Black indicates no change. 
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morphology profiles by dose, we see a very clear 

increase in profile potency as dose increases (Figure 

5A). As before, the association between nuclear count, 

cell area and SAMP-Score prediction demonstrates that 

only profiles that represent moderate change from the 

vehicle control are classed as senescent, with SAMP-

Score once again avoiding detection of both 

proliferating and toxic doses (Figure 5B). This can be 

seen more clearly when SAMP-Score is visualised by 

dose, with a clear pattern for most compounds of 

moving from NonSen classification at low doses, 

through increased likelihood of being labelled as 

senescent and then back to NonSen as the concentration 

reaches toxicity (Figure 5C). This clearly supports our 

earlier observation, that SAMP-Score provides a means 

of separating senescence from both proliferation and 

toxicity, something not achievable with the application 

of standard screening thresholds. Therefore, we 

concluded that SAMP-Score was a tool readily 

applicable for pro-senescence screening and is able to 

identify compounds that elicit a phenotype comparable 

to that which we labelled as senescent ground truth in 

the HeLa cells. 

 

SAMP-Score as a tool for pro-senescence therapeutic 

discovery 

 

Through the application of SAMP-Score to the diversity 

screen, we were able to generate a list of compounds 

that produced a senescence response at one or both 

 

 
 

Figure 5. Dose response compound screen. (A) Heatmap representing high content analysis feature (HCA; y-axis) profiles of a dose 
response compound screen (Compounds; x-axis) performed in MB-468 cells. In all heatmaps, purple indicates positive modulation and 
yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no change. (B) Scatter plot showing Z-
scores of nuclear count and cell area (log10) for all compound treatments. Points are coloured Non-Senescent (red) or Senescent (blue) 
according to SAMP-Score classification. (C) Heatmap showing SAMP-Score prediction co-efficient for all compounds (y-axis) and doses (x-
axis). Black indicates score of <0.9 which is scored as non-senescence. 
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doses screened. In the DR screen we were also able to 

see that typically compounds which induce senescence 

do so in a dose dependent manner, before tipping over 

into cytotoxicity. To explore this response more 

thoroughly, we selected an individual compound  

for further evaluation. QM0005928/DDD01293078 

(QM5928) was chosen for this purpose for several 

reasons (Figure 6A). Firstly, the SAMP-Score dose 

profile followed this typical proliferation-senescence-

toxicity trajectory (Figure 6B, 6C), being classed as 

senescent in both screens at 10 uM but neither at 50 uM, 

providing a range of phenotypes to explore. Secondly, 

the 10 uM dose produced a final cell number very close 

to the seeding number, whilst the following dose strayed 

just below this threshold (Figure 6D). This provided two 

conditions that are very similar in cell number, but 

which SAMP-Score has been able to distinguish, as 

senescence and toxicity. This sensitivity despite minimal 

signal to noise in terms of cell count would address a 

major challenge in senescence screening [14]. Thirdly, 

the compound at several doses was classed by SAMP-

Score and nuclear count as senescent but failed to meet 

the cell area Z-score threshold (Figure 6E, 6F). This 

provided an opportunity to explore a compound 

producing senescence phenotypes that our cluster-

based labelling identified, which move beyond the 

classically reported “large cells”. Finally, the 

compound itself had a series of appealing properties 

including a low IC50, high solubility, favourable 

physiochemistry, low toxicity (HepG2) and a high 

lipophilic efficiency (Supplementary Figure 6A). In 

summary, it represented a versatile chemical tool for 

exploring pro-senescence in Sen-Mark+ cancer. 

 

As described above, validation of a senescence response 

in Sen-Mark+ cells is extremely challenging and was of 

course the motivation for our decision to take an 

unsupervised approach to senescence labelling when 

training SAMP-Score [10]. Indeed, as well as the 

characteristic expression of p16 in BLBC (Figure 6G) 

we also observed high levels of other canonical 

senescence hallmarks including high levels of SA-β-

Gal, p21 and p53 (Supplementary Figure 6B–6E), 

emphasising the classification challenge and the 

limitations of these markers more broadly [1]. 

Therefore, rather than characterising a wide range of 

senescence hallmarks, we sought to explore the efficacy 

of QM5928 in other Sen-Mark+ cancer lines (Figure 

6H, 6I). We demonstrated that in both BT-549 (p16 

positive BLBC) and HeLa cells, QM5928 reduced 

cellular proliferation, in a dose dependent manner 

similar to the MB-468s, indicating this compound has 

potential utility across a range of Sen-Mark+ contexts. 
 

To further reinforce that the response being predicted by 

SAMP-Score is indeed senescence, we explored the 

SAMP-Score classification of BLBC cancer lines 

treated with compounds whose efficacy in senescence 

induction (or lack thereof) is well established. The 

CDK4/6 inhibitor palbociclib, has been previously 

demonstrated to be ineffective in cell lines already 

positive for p16 (whose effect the compound aims to 

mimic). This was observed in both p16 positive MB-

468 and BT549 with no reduction in proliferation and a 

negative SAMP-Score classification (Supplementary 

Figure 7B–7D). However, the p16-null MB-231 line 

(Supplementary Figure 7A) did respond canonically to 

palbociclib, with cell proliferation inhibited 

(Supplementary Figure 7E). Importantly, this treatment 

was classified as senescent by SAMP-Score, with a 

clear SAMP profile produced, that was not seen in the 

other lines (Supplementary Figure 7F, 7G). This 

emphasises the utility of the model across a range of 

cancer cell contexts and supports the principle that the 

phenotype being predicted is indeed senescence, 

demonstrating that SAMP-Score is a versatile tool for 

identifying senescence in cancer cells. 

 

Next, we utilised a technique that has previously been 

demonstrated to provide insight into potential 

mechanisms of actions of novel compounds by 

comparing the phenotypes elicited to a reference data 

set [18]. This is known as phenocopying and is based on 

the principle that perturbations in the same pathway by 

different methods will establish similar phenotypes. 

Here, we compared the morphology profile of QM5928 

in the DR screen to the original siRNA screen. Utilising 

hierarchical clustering once more, we were able to 

identify the siRNAs that produced phenotypes 

comparable to that of QM5928 (Figure 6J). KEGG 

pathway analysis showed that QM5928 phenocopied 

pathways whose inhibition has been previously 

established to lead to senescence in cancer cells 

including the Ribosome [25, 26], RNA Polymerase [27] 

and Proteasome [28, 29] (Figure 6K). Whilst this does 

not mean QM5928 acts via these mechanisms 

specifically, it does suggest that the response the 

compound is eliciting can be considered senescence and 

could also be an indication that targeting these pathways 

might be of therapeutic benefit in Sen-Mark+ cancers. 

 

Finally, to explore the interplay between QM5928 and 

p16, we performed immunofluorescence staining for 

two separate p16 antibodies (Figure 7A). In DMSO 

treated MB-468 cells, p16 is predominantly cyto-

plasmic, with clear exclusion from the nucleus (Figure 

7B). However, upon induction of senescence via 

QM5928, p16 translocates to the nucleus, quantitated 

via an increased nuclear/cytoplasmic staining intensity 
ratio with two different p16 antibodies (Figure 7C, 7D). 

We have previously reported a similar response in Sen-

Mark+ cancers induced to senescence via inhibition 
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Figure 6. Validation of QM0005928 (QM5928). (A) QM0005928 chemical structure. (B) Heatmap representing high content analysis 

feature (HCA; y-axis) profiles of a dose response of QM5928 (x-axis). (C) Line plot showing change in SAMP score with increasing doses of 
QM5928. (D) Raw cell counts of increasing doses of QM5928 (Red = NonSen and Blue = Sen SAMP-Score Classification). (E, F) Z-scores for 
cell count and cell area increasing doses of QM5928. (Red = NonSen and Blue = Sen SAMP-Score Classification). (G) Western plot showing 
p16 expression in MB-468, BT549 and HeLa Sen-Mark+ cancer lines. (H, I) Cell counts for MB-468, BT549 and HeLa Sen-Mark+ cancer lines 
in response to QM5928. N = 3. Scale bar = 100 µm. (J) Heatmap representing high content analysis feature (HCA; y-axis) profiles of HeLa 
screen treatments that phenocopy QM5928 by hierarchical clustering. (K) KEGG pathways analysis of HeLa screen treatments that 
phenocopy QM5928 by hierarchical clustering. The data for MB-468s in Figures 6 and 7 are derived from the same experimental dataset, 
presented in different formats to emphasise distinct aspects of the findings. 
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Figure 7. Interplay between p16 localisation and QM5928. (A) Immunofluorescence staining of MB-468s treated with either DMSO 

or QM5928 for DAPI, p16 (Santa Cruz - FITC), p16 (Protein Tech - Cy3) and Cell Mask. Secondary only controls (2nd) did not receive primary 
p16 antibodies. (B) Digital zoom of white boxed areas in A, for p16 (Protein Tech - Cy3). Scale bars = 100 µm. (C, D) Scaled probability 
density estimate quantitation of nuclear/cytoplasmic intensity ratios for MB-468s stained with p16 in the FITC and Cy3 channels. A higher 
value indicates increased nuclear staining. Area under the curve is equal to 100% of the population. N = 3. (E, F) Cell counts for MB-468 
(p16 positive - blue) and MB-231 (p16-null - red) cancer lines in response to QM5928 at day 6 or day 10. N = 3. The data for MB-468s in 
Figures 6 and 7 are derived from the same experimental dataset, presented in different formats to emphasise distinct aspects of the 
findings. 
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of ribosomal components [25]. Given that p16 

canonically performs its role as a CDKi within the 

nucleus, we next investigated the importance of p16 to 

the efficacy of QM5928, by comparing its effect 

between the MB-468s and the p16-null MB-231s 

(Figure 7E). We observed a clear differential response 

between the two cancer lines, with the MB-231s only 

inhibiting proliferation at doses which produce toxicity 

in the MB-468s (MB-468 IC50: 8.621 µM; MB-231 

IC50: 16.09 µM). Furthermore, extending the assay to 

day 10 following a single treatment of QM5928, saw 

the MB-231 cell number recover to a far greater extent 

than the MB-468s, suggesting a partial recovery from a 

toxic response, as opposed to the senescence induced in 

the MB-468s (Figure 7F). Whilst this timepoint is 

limited by over confluence of the DMSO control, as 

well as potential outgrowth in any doses where 

senescence induction was not performed with 100% 

efficiency, it demonstrates a differential impairment of 

proliferation with QM5928 depending on the p16 status 

of the cancer line. Whilst the two lines are not isogenic, 

these results suggest that p16 is crucial to the 

mechanism of QM5928 in the MB-468s. Combined 

with the immunofluorescence data, it also suggests 

that localisation of senescent markers may be an 

important nuance in understanding the mechanisms of 

senescence induction in Sen-Mark+ cancers, for which 

SAMP-Score will prove a valuable tool for future 

investigations. 

 

DISCUSSION 
 

Sen-Mark+ cancer cells represent a particular 

challenge to identify the establishment of a senescence 

response, due to their intrinsically high levels of the 

most common hallmarks of senescence [10]. These 

cancers are often associated with particularly 

aggressive forms of the disease, where unmet clinical 

need is greatest, as in the case of BLBC. The tumour 

suppressive role of senescence makes re-instatement of 

a senescence programme (pro-senescence) in these 

Sen-Mark+ cells an attractive therapeutic strategy, but 

the challenge of identification has limited the 

application of standard screening approaches [1]. More 

broadly, it is becoming increasingly appreciated that 

senescence exists in contexts which do not conform to 

many established hallmarks, making the need for novel 

tools for senescence classification ever more important 

[16]. 

 

Here, we utilised multiple ML approaches to develop 

SAMP-Score, a model that is able to readily identify 

induction of a senescence response in multiple Sen-

Mark+ cancer cell lines and conditions. By utilising 

unbiased clustering algorithms, we have been able to 

establish a breadth of senescence morphology profiles 

by building on our previous observation of senescence-

associated morphology profiles (SAMPs). Utilising 

these, we have developed a model that is able to 

distinguish senescence from two opposing ends of the 

cell fate spectrum – proliferation and cytotoxicity. This 

represents an advantage over traditional screening 

readouts, which typically rely on more rigid cutoffs to 

identify hits. By applying SAMP-Score to both diversity 

library and dose response screening data, we have been 

able to demonstrate its utility as a drug discovery tool 

through identification of QM5928, a novel pro-

senescence compound in Sen-Mark+ cancer cells. This 

compound is effective at inducing senescence in a range 

of BLBC lines and phenocopies pathways previously 

linked to senescence induction. Future work will focus 

on understanding the mechanisms through which 

QM5928 is able to exert its pro-senescence effects, as 

well as how Sen-Mark+ cancer cells are able to enter a 

senescence state more broadly, with a view to forming 

the “first-punch” of a paired pro-senescence-senolytic 

therapeutic approach. We provide SAMP-Score as a 

versatile tool for senescence identification, which will 

be a crucial step of these future investigations. 

 

CONCLUSIONS 
 

Overall, this study further demonstrates the utility of 

high-content morphological analysis as a tool for the 

identification of senescent cells. This is particularly 

powerful when paired with modern ML approaches, 

expanding the possible contexts into which pro-

senescence drug discovery can be performed. 

 

MATERIALS AND METHODS 
 

Code and model availability 

 

All scripts, workflows, packages and models used to 

develop SAMP-Score are available at https:// 

github.com/Phenotypic-Screening-QMUL/SAMP-Score. 

These are broken up into sequential steps and can be run 

from the R Markdown files, constituting ~8,500 lines of 

code. To contextualise this code and the generated 

outputs, HTML guides have also been included 

(Supplementary Data 1) – these are provided as a line-by-

line walkthrough of the workflow. Due to the large size 

of the single target high-content analysis screening  

data, this is available on reasonable request from the 

corresponding author. All data analysis was performed in 

R version 4.2.1 using an x86_64-apple-darwin17.0  

(64-bit) platform unless otherwise stated. 

 

Cell culture and reagents 

 

Unless specified, all reagents were from Sigma, UK. 

HeLa (CRUK), MDA-MB-468 (ATCC, HTB-132; 
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referred to as MB-468s) BT549 (ATCC, HTB-122) 

and MDA-MB-231 (ATCC, HTB-26; referred to as 

MB-231s) cells were cultured in high-glucose DMEM 

(Life Technologies, UK). HeLa medium was 

supplemented with 5% FBS (Labtech.com, UK), 1 mM 

sodium pyruvate, and 2 mM L-glutamine (Life 

Technologies, UK), while MB-468, BT549 and MB-

231 medium contained 10% FBS, 1 mM sodium 

pyruvate, and 2 mM L-glutamine. Cells were 

maintained at 37°C/5% CO₂ without antibiotics. 

Immunoblotting/immunofluorescence was performed 

as previously described using antibodies against p16 

(Santa Cruz, sc-56330; 1:100 or Protein Tech 10883-1-

AP; 1:1,000), p21 (Cell Signalling, 12D1; 1:2,000), 

p53 (Cell Signalling, 2527S; 1:1,000), ß-tubulin 

(EnoGene, E1C601-1; 1:20,000) and GAPDH (Abcam, 

ab9485; 1:5,000) [30]. All compounds were solubilised 

in 0.5% DMSO. 

 

Screening 

 

An overview schematic of each of the three high 

content screens performed in this work is presented in 

(Supplementary Figure 1A–1E). 

 

Automation and liquid handling 

Cell culture conditions (cell seeding, media changes 

etc.) were adapted for use with a CyBio Vario liquid 

handing robotics system, utilising a 384-tip set-up. 

This system was also used to perform fixation, 

permeabilization and staining procedures described 

below. 

 

Genome wide siRNA screen 

HeLa cells were seeded in 384-well plates at 5,000 

cells/cm2. Reverse transfection at 30 nM was performed 

using a genome-wide siRNA library containing 1:1:1 

ratio pools of 3 siRNAs (Ambion) using HiPerFect 

transfection reagent. Media was changed after 48 hrs 

and cell fixation performed following another 72 hrs. 

Negative control wells containing an siRNA targeting 

cyclophilin B (siGLO, D-001610-01, Dharmacon) were 

also included. These are found on each plate in wells 

A23, B23, C23 and D23. In total 21,658 siRNA 

conditions were tested (excluding controls) across 63 

384-well plates which were screened in 3 batches. 

 

Compound diversity library screen 

 

A 10,000-compound diversity screening library was 

supplied for hit identification by the Dundee Drug 

Discovery Unit (DDU). The compounds represent 

novel chemical entities with no established target or 
mechanism of action and are identified by their 

QMCode designation (An alternative DDU 

designation may be found in the Supplementary Table 

1). These compounds were solubilised in 0.5% DMSO 

vehicle, which also served as a negative control 

(located in columns 11, 12, 23 and 24). Compounds 

were screened at two doses – 10 µM and 50 µM. 10 µl 

of each compound dilution was prepared per 384-well 

plate well and MB-468 cells seeded on top at 1,320 

cells/well in 60 µl of medium. Media was changed 

after 48 hrs and cells fixed following a further 72 hrs. 

In total, 60 384-well plates were screened in 

4 batches. 

 

Compound dose response screen 

A second compound screen containing 447 compounds 

in 10-point dose response curves was supplied by DDU. 

These compounds represent a subset of the original 

diversity screen but were not selected based on the 

current SAMP-Score methodology, but through 

stringent (≥3) Z-Score thresholds for nuclear count and 

cell area. Conditions, procedures and data processing 

were identical to the first screen with compounds being 

screened at the following doses: 49.80 µM, 33.10 µM, 

22.00 µM, 14.60 µM, 9.95 µM, 6.40 µM, 4.26 µM, 

2.84 µM, 1.78 µM, 1.42 µM. The screen was performed 

in two identical batches representing two technical 

replicates for each compound/dose combination. 

 

Immunofluorescence staining and high content 

imaging 

 

Immunofluorescence staining and high content analysis 

(HCA) microscopy has been described previously 

[17, 30]. Briefly, fixation was carried out using 3.7% 

paraformaldehyde + 5% sucrose, with subsequent 

permeabilization using 0.1% Triton X-100. Nuclei and 

whole cells were stained for 2 hours at room with 

diamidino-2 phenylindole (DAPI) (Sigma UK, D8417, 

1:1,000) and HCS Cell Mask Deep Red (Thermo-

Fisher UK, H32721, 1:100,000), with secondary 

antibodies where required (donkey anti-mouse-Alexa 

Fluro 488 (Thermo‐Fisher, UK; 1:500); goat 

anti‐rabbit‐Alexa Fluor 546 (Thermo‐Fisher, UK; 

1:500)). High throughput automated imaging was then 

performed using an INCell Analyser 2200. For SA-β-

Galactosidase activity assay, CellEvent Senescence 

Green Detection Kit (Thermo-Fisher, UK; C10850) 

was used for 2 hr at 37°C without CO2. Quantitation of 

cell positivity was set at the 95th-percentile threshold 

in the unstained control. 

 

High-content analysis (HCA) and feature selection 

 

InCarta high-content image analysis software 

(Molecular Devices) was used to assess nuclear and 
cellular features; with object masks generated from 

DAPI and Cell Mask staining. Bespoke detection 

protocols were developed for all cell lines, but the same 
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set of curated morphological features were assessed in 

each case (Supplementary Figure 1D, 1E). This set of 

features consisted of a refined list based on our previous 

work; with the removal of those that were determined to 

be highly correlated according to a Pearson correlation 

index threshold of >0.9 [17]. The input data into the 

correlation calculation was the morphological profiles 

from all individual siGLO control cells (~1.16 M cells) 

within the HeLa screen. The decision of which of the 

highly correlated features to retain was determined by 

the average overall correlation of both features to all 

other features within the dataset; with the feature with 

the highest score (and thus producing least variance on 

average) discarded. 

 

Z-Score data processing 

 

Z-score data scaling was performed for all high-content 

imaging features (Supplementary Figure 1) as 

previously reported [17]. This allows for both 

normalisation to a batch control condition (siGLO or 

DMSO) and data scaling across features. Z-Scores were 

calculated according to the following equation: 

 

• Z-Score = value of experimental condition (siRNA 

or Compound) – mean value of control condition/ 

Standard Deviation (SD) of control condition 

 

Z-Scores for all high-content features were displayed as 

heatmaps; where black represented no-change relative 

to the control condition. Z-score changes of greater than 

1.96 from the control condition (95% confidence level) 

in either positive or negative direction were visualised 

as purple or yellow respectively. For a condition where 

no change was observed relative to the control, an 

entirely black profile would be produced. 

 

Unsupervised machine learning - HeLa screen 

cluster analysis for senescence labelling 

 

Morphological Z-Score profiles from all siRNAs were 

assessed via unsupervised hierarchical clustering; with 

distance matrices constructed using Euclidean distances 

via the dist() function and clustering via the ward.D2 

method argument within the hclust() function from the 

“stats” package. The number of clusters was determined 

through visual inspection of the dendrogram and 

heatmap generated via the heatmap.2 function within 

the “gplots” package. K-means clustering was 

performed using the kmeans() function from base R, 

with the number of centres iteratively altered upon data 

inspection. Clusters were overlaid on individual 

treatment morphological profiles, which in turn were 

visualised via uniform manifold approximation and 

projection (UMAP) dimensionality reduction from the 

“umap” package. Manual cluster labelling was then 

performed through assessment of heatmap profiles and 

cluster membership comparisons between the two 

methods made via Venn diagrams. 

 

Supervised machine learning – SAMP-score 

classification model development 

 

Data organisation 

Data labelling of the HeLa screen siRNA treatments 

(Senescent vs. Non-Senescent) was performed 

according to the unsupervised cluster-based approach. 

Data partitioning was then performed with 80% being 

allocated to the training dataset and 20% to the testing. 

To account for the large class imbalance between the 

Senescent (Sen) and Non-Senescent (NonSen) classes, 

the NonSen class was then randomly undersampled to 

produce an equal number of observations in each class. 

Those NonSen conditions that were removed were 

“recycled” into the testing dataset. Crucially, these data 

were never used for model training, preventing data 

leakage. The training data was then further split 50:50 

into two separate training datasets. One set was used to 

train individual ML models and the other for “testing”, 

to produce prediction coefficients. These prediction 

values then became the training data variables for the 

SAMP-Score ensemble meta model. Each individual 

ML model was then used to assess the testing data 

(original 20% plus recycled) and individual model 

performance assessed. The prediction coefficients from 

these models were then combined into a testing dataset 

for the meta model to determine a final prediction. For 

the alternative model constructed using traditional 

screening thresholds (+/− 1.96 Z-score changing in 

nuclear count and cell area) the only change was at the 

data labelling stage. 

 

Model development 

All models were constructed in R using the following 

packages: glmnet (logistic regression, Lasso 

regularisation and elastic nets); randomForest (random 

forest); e1071 (support vector machine; SVM); mda 

(multiple discriminant analysis; MDA); neuralnet 

(neural network; NN). The stacked meta model is a 

Lasso regularisation model which takes the prediction 

coefficients from all seven models as input data. For the 

individual models, default hyperparameters were 

selected unless otherwise indicated and a decision 

threshold of 0.5 was applied. Further details of model 

parameters are found in the html guides (Supporting 

Data Set 2). Model performance was assessed via the 

generation of receiver operating characteristic (ROC) 

curves and assessment of model accuracy (proportion of 

correct predictions), Negative Predictive Value (NPV; 
proportion of true negatives out of all negative 

predictions), recall (proportion of true positives out of 

all positives), F1 score (harmonic mean of PPV and 
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recall), AUC (Area Under ROC Curve) and positive 

prediction value (PPV; proportion of true positives 

among positive predictions). Prediction rates were 

recorded as confusion matrices. 

 

Phenocopying 

Z-Score morphology profiles from the HeLa screen were 

combined with that of QM5928 from the dose response 

screen. The dose selected for QM5928 was the highest 

that scored as a senescence hit according to SAMP-

Score (9.95 µM), in order to explore the most well-

established phenotype. Hierarchical clustering was then 

performed with the data partitioned into 50 clusters, in 

order to refine the number of treatments within 

individual clusters. Targets of the 77 siRNA treatments 

that produced phenotypes that clustered alongside 

QM5928 (Supplementary Data 2) were then assessed by 

KEGG pathway analysis using ShinyGO 0.81 [31]. 

 

Statistical analysis 

 

Statistical analysis was performed using GraphPad 

Prism 7. An unpaired Student’s t‐test was used to 

compare the means of two groups unless specified. Data 

≥2 independent experiments unless otherwise stated. 

Error bars represent SD. 

 

Availability of data and materials 

 

All packages and versions used in this code are available 

at the following URL: https://github.com/Phenotypic-

Screening-QMUL/SAMP-Score. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. High content screening overview and feature selection. (A–C) Overview of high three high content 

screens ((A) genome-wide siRNA screen in HeLa cells to establish ground truth for model development; (B) compound diversity screen for 
senescent hit identification; (C) dose profiling of senescent hits). (D) Feature dimensionality reduction strategy via Pearson correlation 
assessment. (E) List of final features which comprise SAMP profiles. 
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Supplementary Figure 2. Genome-wide siRNA HeLa screen – traditional screening readouts. (A–C) Heatmaps representing high 

content analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen treatments (siRNAs; x-axis) that reduce nuclear count and 
increase nuclear area by high, medium and low stringency thresholds. (D) Heatmap profile showing cell area and nuclear count Z-scores for 
all treatments. (E) Scatter plot showing nuclear count vs cell area Z-scores. In all heatmaps, purple indicates positive modulation and yellow 
negative modulation of greater than 1.96 Z-scores from siGLO control. Black indicates no change. 
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Supplementary Figure 3. Genome-wide siRNA HeLa screen – biased pathway labelling. (A–D) Heatmaps representing high 

content analysis feature (HCA; y-axis) profiles of a genome-wide siRNA screen treatments (siRNAs; x-axis) selected through identification as 
downregulated in SENCAN and SENESCopedia database or Senescence/Cell Cycle KEGG pathway analysis terms. In all heatmaps, purple 
indicates positive modulation and yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no 
change. 
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Supplementary Figure 4. Receiver operating characteristic (ROC) curves for all composite models of SAMP-Score. 
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Supplementary Figure 5. Model Development and Metric Assessment using traditional threshold-based senescence labelling 
of training data. (A, B) Machine learning (ML) model assessment metrics and confusion matrix for all individual ML models and stacked 
meta-model (SAMP-Score). Abbreviations: NPV: Negative Prediction Value; AUC: Area under curve; PPV: Positive Prediction Value; TP: True 
Positive; TN: True Negative; FN: False Negative; FP: False Positive. (C) Receiver operating characteristic (ROC) curve for stacked meta model. 
(D, E) Model feature contributions to Lasso and Random Forest models. 
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Supplementary Figure 6. QM0005928 physicochemical properties and SenMark+ cancer cell senescence markers. (A) Standard 
chemical assessment panel for QM5928. (B, C) Senescence-associated beta galactosidase staining of MB-468 cells. N = 1 with 2 technical 
replicates. (D, E) Immunoblotting of MB-468 cells for p21 and p53. N = 3. 
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Supplementary Figure 7. SAMP-Score assessment of BLBC response to CDK Inhibition. (A) Immunoblotting of MB-231 cells for 
p16. N-3. (B–E) Response to 1 uM palbociclib treatment or vehicle control (DMSO) in MB-468, BT549 and MB-231 BLBC lines. (F) SAMP-Score 
classification coefficient for MB-468, BT549 and MB-231 BLBC lines treated with palbociclib. (G) Heatmap representing high content analysis 
feature (HCA; y-axis) profiles of MB-468, BT549 and MB-231 BLBC lines treated with palbociclib (x-axis). In all heatmaps, purple indicates 
positive modulation and yellow negative modulation of greater than 1.96 Z-scores from DMSO vehicle control. Black indicates no change. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Compound designation list. 
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Supplementary Data 
 

Please browse Full Text version to see the data of Supplementary Data 1 and 2. 

 

Supplementary Data 1. HTML code walkthrough guides. 
 

Supplementary Data 2. Phenocopied siRNA list. 


