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ABSTRACT 
 

Theobromine, a commonly consumed dietary alkaloid derived from cocoa, has been linked to extended 
lifespan in model organisms and to health benefits in humans. We examined associations between 
circulating levels of theobromine intake, measured using serum metabolomics, and blood-based epigenetic 
markers of biological ageing in two European human population-based cohorts. Serum theobromine levels 
were significantly associated with reduced epigenetic age acceleration, as measured by GrimAge (p < 2e-7) 
and DNAmTL (p < 0.001) in 509 individuals from the TwinsUK cohort, and both signals replicated in 1,160 
individuals from the KORA cohort (p = 7.2e-08 and p = 0.007, respectively). Sensitivity analyses including 
covariates of other cocoa and coffee metabolites suggest that the effect is specific to theobromine. Our 
findings indicate that the reported beneficial links between theobromine intake on health and ageing 
extend to the molecular epigenetic level in humans. 
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INTRODUCTION 
 

Dietary phytochemicals are compounds found in plants 

that have been reported to benefit human health. They 

include polyphenols, alkaloids, terpines, flavonoids, and 

others [1]. Evidence from both epidemiological and 

human intervention trials have identified beneficial 

effects of various phytochemicals on health and ageing, 

including on biomarkers of cholesterol transport [2], 

inflammation [3], and cellular senescence [4]. 

 

Alkaloids in plants form a large component of dietary 

phytochemicals, as they are both abundant and highly 

bioactive [5]. This bioactivity is a function of their purpose 

as protective chemicals and, therefore, alkaloids have 

wide-ranging in vivo actions, along with narrow 

therapeutic indices. Specifically, alkaloids have been 

studied for their relevance to age-related diseases, 

including cancers [6], type 2 diabetes [7] and inflammation 

[8]. Notable examples of pharmacologically active 

alkaloids include indole [9], indolizidine [10], as well as 

specific subtypes such as berberine [11], morphine, 

strychnine, quinine, and others [5]. 

Coffee and cocoa are widely consumed foods, associated 

with reduced cardiovascular disease (CVD) and mortality 

[12, 13]. Cocoa and coffee share several important 

alkaloids including the methylxanthines theobromine 

(TB), caffeine (CAF), theophylline (TP), paraxanthine 

(PX) and 7-methylxanthine (MX) [14] (Figure 1A). The 

coffee-associated methylxanthines (CAF, TP and PX) are 

found in lower concentrations in cocoa [8]. TB and MX, 

are partial metabolites of CAF, though both are also 

found in much higher concentrations in cocoa as primary 

unprocessed metabolites [15]. TB has previously been 

linked to multiple aspects of health and ageing. For 

example, studies in model organisms have identified 

links between TB and extended lifespan [16]. 

Furthermore, multiple observational human cohort 

studies have reported clear links between TB intake and 

various aspects of improved health [17]. Despite this, the 

exact impacts of TB on health and ageing are still not 

fully understood, and the molecular pathways that 

underlie these effects are largely unknown. 

 

Multiple biological mechanisms can mediate the 

effects of dietary phytochemicals on human health and 

 

 
 

Figure 1. Major dietary sources of methylxanthines and their correlations in the TwinsUK sample. (A) Schematic presenting key 

methylxanthines, their respective dietary sources and their derivation as secondary metabolites. (B) Correlation heatmap of coffee-related 
metabolites in the TwinsUK sample. (C) Bar plot representation of the Elastic-net Regression coefficients with 10-fold cross-validation of 
variables against GrimAgeAccel in the TwinsUK sample. 
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ageing, and one of these is the epigenetic regulation of 

gene expression. Alkaloids can influence epigenetic 

processes, for example, through inhibition of histone 

deacetylases or DNA methyltransferases (DNMTs) 

[18]. Cocoa and coffee consumption have been linked 

to multiple DNA methylation changes in humans, where 

extracts from cocoa can affect global leukocyte DNA 

methylation levels potentially though inhibition of 

DNMTs [19], and distinct blood DNA methylation 

signals have been associated with coffee consumption 

[20]. Therefore, alkaloids, such as those found in cocoa, 

may exert their beneficial effects on health and ageing 

potentially through changing the human epigenome. 

 

Epigenetic deregulation is a key hallmark of ageing. 

The effects of ageing on genome-wide methylation have 

been widely documented, including reduction of global 

DNA methylation [21], global increase in Shannon 

entropy of methylation patterns [22], and site-specific 

changes in differential and variable DNA methylation 

levels [23–25]. Hence, multiple studies have developed 

epigenetic clocks towards predicting different age-

related features, such as chronological age [26], time  

to death [27], pace of ageing [28], as well as other 

molecular biomarkers of ageing including telomere 

length [29]. As such, epigenetic clocks may act as 

useful tools for assessing whether specific dietary 

phytochemicals are associated not only with epigenetic 

modifications, but also with the rate of ageing, as 

measured by these clocks. 

 

Several recent studies have investigated the association 

of nutrients and metabolites to epigenetic ageing. Some 

studies have focused on diet questionnaire data, 

identifying associations between vitamins B and C 

intakes with epigenetic ageing [30]. Smaller-scale 

intervention trials have also explored the impact of 

dietary changes on epigenetic age. For example, an 8-

week randomised controlled trial intervention in six 

post-menopausal women found that an increase in 

dietary polyphenols resulted in significant deceleration 

of epigenetic aging, as measured by the Horvath clock 

[31]. Moreover, dietary interventions such as calorie 

restriction can also influence epigenetic aging, as 

identified from the CALERIE trial using the 

DunedinPACE epigenetic clock [32]. However, results 

were not consistent across different epigenetic clocks, 

highlighting potential variability in how they capture 

ageing processes. 

 

In this study, including two independent human 

population-based cohorts, we investigated whether 

individual bioactive alkaloids in coffee and cocoa are 
associated with reduced epigenetic ageing, and may 

therefore potentially contribute towards extension of 

human healthspan. 

RESULTS 
 

We initially tested for the association between six 

metabolites found in coffee and cocoa, and epigenetic 

measures of ageing in blood samples from 509 healthy 

females from the TwinsUK cohort (median age = 59.8, 

IQR = 12.81, BMI = 25.35). The six metabolites 

included the methylxanthines CAF, TP, TB, MX and 

PX and theanine, and biological ageing analyses 

focused on GrimAgeAccel. TB was significantly 

associated with reduced epigenetic ageing as captured 

by GrimAgeAccel (B = ‒1.576, standard error = 0.3,  

p = 3.99e-6) (Figure 2, Supplementary Table 1). This 

was significant at Bonferroni Correction (p < 0.0083). 

Extending analyses to test for association between TB 

and three other measures of biological ageing, 

including methylation markers of telomere length, 

PhenoAge and DunedinPACE, we identified another 

significant association with DNAmTL (B = 0.03, 

standard error = 0.0124, p = 0.0029) (Figure 2, 

Supplementary Table 1). This was significant at 

Bonferroni correction (p < 0.0125). 

 

As both cocoa and coffee include TB, we carried out 

further analyses to dissect the correlations between 

methylxanthines and food component intakes within the 

TwinsUK sample. Correlation coefficients support the 

expected patterns of close correlation among coffee-

associated methylxanthines (CAF, TP, PX) and close 

correlation among the cocoa-associated methylxanthines 

(TB and MX) (Figure 1B), demonstrating consistency 

with the undertaken metabolomic analysis. 

 

Specifically, we observed that coffee-associated 

methylxanthines CAF and TP were strongly correlated 

to each other (R = 0.89), and that cocoa-associated 

methylxanthines TB and MX were also strongly 

correlated to each other (R = 0.78). In contrast, TB and 

CAF showed only moderate correlation (R = 0.46) 

(Figure 1B). The weaker correlation between TB and 

CAF in our cohort reflects the expected low metabolism 

of CAF to TB, and the likely differential food sources 

of these metabolites in vivo [33]. Indeed, TB was 

previously associated with chocolate consumption in a 

larger sample from the same TwinsUK population 

cohort (B = 0.024, p = 1.34e-11) [34]. In the current 

sample (509 twins), we confirm a positive, but weaker 

correlation between the consumption of ‘chocolate’ (as 

reported by food frequency questionnaires) and TB 

levels (R = 0.136). TB consumption was not strongly 

associated to diet quality (AHEI, R = −0.0293). 

 

Several sensitivity analyses were undertaken to mitigate 

the effects of potential dietary intake confounders. First, 

we re-examined the association between TB and 

GrimAge acceleration, but now including CAF, TP, PX, 
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and MX as additional covariates. We then carried out 

similar analyses, also including TP, PX, and MX as 

additional covariates because they are metabolite 

derivatives of CAF [14] (Figure 1A). The associations 

between TB and slower epigenetic ageing remained 

significant in these extended models with additional 

covariates (n = 509, B = −0.823, SE = 0.268,  

p = 0.00219; (Supplementary Figure 1A, 1B; 

Supplementary Table 1), suggesting that effects are 

specific to TB and not an alternative xanthine 

derivative. Furthermore, we re-analysed the data to 

assess the effect of time latency between date of DNA 

methylation and metabolomic sample collection. 

Samples were subset by window of latency periods, 

including 2 years (n = 420, B = −0.724, p = 1.03e-5),  

1 year (n = 276, B = −0.75, p = 0.00015) and

 

 
 

Figure 2. The association between TB and epigenetic age in the TwinsUK and KORA cohort samples. Scatter plots of the 

GrimAge acceleration residuals (top left, primary analysis B = −1.576, p = 3.99 × 10−6) and epigenetic estimate of telomere length, DNAmTL 
(top right, primary analysis B = 0.036, p = 0.003), in the discovery TwinsUK sample of 509 females. Bottom row plots show results for the 
KORA sample of 1,160 individuals for GrimAge acceleration residuals (bottom left, primary analysis B = −1.06, p = 7.2 × 10−6) and DNAmTL 
(bottom right, primary analysis B = 0.022, p = 0.007). 
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contemporaneous (same-day) sampling (n = 121, B = 

−1.576, p = 3.99e-6). The strength of the association 

increased with shorter latency periods (Supplementary 

Figure 1C; Supplementary Table 1). 

 

Targeted replication of the TB and epigenetic ageing 

rate associations was sought in a larger sample of 1,160 

individuals from the KORA cohort [35], where serum 

metabolomic and DNA methylation profiles were 

obtained from the same time-point. We replicated the 

association between reduced GrimAgeAccel and TB in 

a model including all technical and biological covariates 

of our study (CAF, TP, PX, MX; coefficient = −1.06, 

standard error = 0.195, p = 7.177E-08) (Figure 2). We 

also observed a significant association with GrimAge in 

the subset of females alone in the KORA sample  

(n = 592, B = −0.79, p = 0.0022). We also replicated the 

association of TB with DNAmTL (coefficient = 0.022, 

standard error = 0.008, p = 0.007) (Figure 2). 

 

As a further follow-up analysis, we also stratified the 

TwinsUK sample by smoking status. The reduced 

epigenetic ageing acceleration signal was most 

significant in previous and current smokers (B = 

−2.687, p = <2.2e-16, n = 53), compared to never 

smokers (Supplementary Figure 1A, 1B). Nicotine 

likely induces the breakdown of TB by enzyme 

induction [36] and may influence the pharmacodynamic 

clearance or bioavailability of TB and its byproducts. 

 

A final set of follow-up analyses explored feature 

selection using LASSO and elastic net regression to 

assess which metabolites most strongly relate to the 

epigenetic measures of biological ageing. LASSO 

Regression is a penalisation technique, using shrinkage, 

to reduce the impact of variables with high collinearity. 

LASSO regression with GrimAgeAccel as the 

dependent variable and all technical covariates and 

metabolites as independent variables identified TB as a 

significant predictor for GrimAgeAccel (coefficient = 

−0.231; RMSE = 3.644), with similar results using 10-

fold cross-validation (coefficient = −0.186; RMSE = 

3.834). We utilised Elastic-net regression, to adjust for 

potential over-penalisation of collinearity that can occur 

with LASSO (Elastic-net regression utilises a spectrum 

of penalisation between absolute sums, LASSO, alpha = 

0.1, to squared sums, ridge penalisation, alpha = 1). 

Elastic-net regression with 10- fold cross-validation 

(best alpha: 0.2, best lambda: 0.419) showed consistent 

results (GrimAgeAccel TB coefficient = −0.277; RMSE 

= 3.8) (Figure 1C).  

 

DISCUSSION 
 

Here we report a significant association between 

circulating levels of theobromine (TB) with slower 

epigenetic ageing in two independent population-based 

cohorts. TB is a relatively unexplored dietary phyto-

nutrient that has recently been linked to beneficial 

health effects and extended lifespan in model organisms 

[16]. However, there have been limited studies of the 

role of TB in human cohorts. 

 

The association of TB and biological ageing measures is 

most pronounced by the GrimAge epigenetic clock 

acceleration measures, which strongly predicts time to 

death. The pattern was also captured by DNAmTL, 

which estimates telomere length. The two epigenetic 

ageing measures, DNAmTL and GrimAge acceleration 

residuals are weakly correlated (R = 0.29) in the 

TwinsUK sample, and this supports previous reports in 

the literature that telomere length and genome-wide 

epigenetic ageing are independently associated with 

ageing [37]. Previous work has explored how epigenetic 

clocks may capture different mechanisms underpinning 

hallmarks of ageing, such as telomere attrition and 

epigenetic ageing [38]. We therefore considered the two 

measures to capture separate aspects of the ageing 

process, that do not necessarily overlap.  

 

Methylxanthines are found across various food groups 

in different proportions, with CAF being the most 

prominent in coffee, and TB being the most prominent 

in cocoa [39]. Exact proportions can vary across foods 

and also depend on food quality, processing methods 

(such as decaffeination), or inter-individual variability 

(such as genetic variation in monooxygenase function 

or presence of exogenous P450 enzyme inducers or 

inhibitors [40]). Our sensitivity analyses support the 

conclusion that the association effect is specific to TB 

and is likely not attributed to CAF, TP, PX or MX. This 

conclusion stems from results based on accounting for 

multiple metabolites as covariates in the linear 

association models, and results from 10-fold cross-

validation LASSO and elastic-net regression. This 

suggests that TB may affect a common biological 

pathway relevant to ageing. 

 

Several studies predominantly in model organisms have 

identified links between TB and improved aspects of 

health and ageing. Importantly, TB has been reported to 

extend lifespan in ROS-sensitive strains of C. elegans 

[16]. It has also been noted to have differential 

psychotropic actions to caffeine [41]. In mice, modest 

supplementation of 0.05% TB results in significant 

increases in the neurotrophic factors CREB and BDNF, 

which are relevant to reward and learning [42], but 

higher doses of TB were associated with better lipid 

profiles and lower blood pressure in a retrospective 
cross-sectional study [43]. Although some methyl-

xanthines are used in clinical practice [44], TB has not 

been explored in depth for its medical utility, but it has 
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been suspected to be of importance to human health 

[45]. TB has also been previously associated with the 

enrichment of beneficial microbiota with SFCA-

producing abilities [46]. Future studies should explore if 

the gut microbiome composition may mediate the effect 

of TB on human health and ageing.  

 

While we found replication of our signals across both 

cohorts, it is interesting to note the differences between 

them. The female-specific TwinsUK cohort replication 

with the mixed KORA cohort suggests that a sex-

specific effect is not a key factor in the association. 

Indeed, when the KORA cohort was subsequently 

subsetted to only females, we found a reduction in 

effect size for GrimAge (n = 592, B = −0.79, p = 

0.0022); suggesting that the results are not sex-specific. 

Future replication in diverse cohorts is warranted to 

investigate any cohort-specific effects further.  

 

The differential effects observed for smoking status are 

also compelling and suggest that the effects of TB could 

be more pronounced in smokers. It is of note that, in 

addition to smoking status being a key variable in the 

development of GrimAge, many of the differential 

DNA methylation changes associated with smoking  

can be responsive to cessation [47]. Further research, 

including experimental work, is needed to confirm and 

dissect further these differential effects. 

 

One important limitation in the discovery cohort is the 

latency between metabolomic and epigenetic sample 

acquisition, which may be a source of bias. Our latency-

stratified analysis and the contemporaneous samples 

acquired in the Replication cohort, however, suggest 

that latency-associated bias is not a key confounder of 

the observed association. 

 

One possible explanation for the correlation between TB 

and epigenetic age is whether it may be a biomarker for 

a collinear confounder. For instance, TB may signify 

flavan-3-ol consumption, as these (poly)phenols are 

abundant in cocoa but were not available in the 

metabolomic data. Methylxanthines, including theo-

bromine, have been shown to enhance the vascular 

effects of flavan-3-ols by improving endothelial function 

and increasing nitric oxide bioavailability; however, 

when administered alone, they did not elicit any effect 

[48] and the cardiometabolic and healthy aging benefits 

of flavan-3-ols are well established [13, 49]. 

 

On the other hand, the sensitivity analysis using elastic-

net regression supports the conclusion that the effect is 

specific to TB and no other collinear methylxanthines, 
making the possibility of a hidden confounding variable 

less likely. Further research is needed to disentangle the 

potential mechanisms by which TB is associated with 

reduced epigenetic ageing and exclude any potential 

confounders not assessed by our study or reverse-

causality.  

 

In conclusion, our study identifies an association 

between TB and measures of epigenetic ageing, 

suggesting that TB is relevant to human ageing. Further 

exploration of TB and age-related health markers may 

identify key epigenetic mechanisms transducing this 

effect and reveal a potential use of TB towards 

extending the human healthspan. 

 

MATERIALS AND METHODS 
 

Discovery cohort data 

 

The discovery sample in this study included 509 

monozygotic and dizygotic twin female participants 

from the TwinsUK cohort [50]. This constituted the 

total number of samples with relevant data acquired 

from the TwinsUK cohort (14,838 twins). Median age 

was 58.9 years with a standard deviation of 8.79 years, 

showing an approximately Normal distribution with a 

slight right skew (Shapiro Wilk Normality = 0.993,  

p = 0.0283, adjusted Fisher-Pearson skew = +0.091). 

Altogether, 228 samples were from never-smokers. 

 

Metabolomic data in these participants were generated 

in fasting serum samples using the Metabolon Inc mass 

spectrometry platform (Metabolon, Inc., Durham, NC). 

Metabolite concentrations were measured at fasting 

from serum, samples by Metabolon Inc. (Durham, 

USA) using an untargeted Liquid chromatography–

mass spectrometry (LC-MS) platform as previously 

described [51]. Metabolites with more than 20% 

missingness and metabolite data outliers (±3SD from 

mean) were excluded. The remaining metabolites were 

day median-normalised, imputed to the day minimum, 

and inverse-normalised. Six metabolites associated with 

coffee or cocoa consumption were analysed in this 

study, including theobromine (TB), caffeine (CAF), 

theophylline (TP), paraxanthine (PX), 7-methylxanthine 

(MX) and theanine, an amino acid prevalent in tea.  

 

Dietary intakes in the TwinsUK sample were estimated 

using a modified version of the European Prospective 

Investigation into Cancer and Nutrition (EPIC) food 

frequency questionnaire (FFQ). This version 

incorporates food items from the EPIC Norfolk study 

[52]. FFQs were excluded if more than 10 food items 

were unanswered or if the total energy intake, derived 

from the FFQ and expressed as a ratio of the subject’s 

estimated basal metabolic rate (calculated using the 

Harris–Benedict equation), fell outside 2 standard 

deviations of the mean (below 0.52 or above 2.58), as 

previously described [53]. 
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Whole blood DNA methylation profiles were generated 

for the same 509 participants in the discovery TwinsUK 

sample using the Infinium HumanMethylation450 

BeadChip (Illumina). Epigenetic data generation and 

processing has previously been described [54, 55]. 

Briefly, minfi [56] was used to exclude samples with 

median methylated/unmethylated ratio <10.5, and 

ENmix [57] was used for background correction, dye 

bias correction and quantile normalisation of the data. 

Methylation beta-values were estimated for signals with 

detP <0.000001 and nbead > 3. Finally, probes and 

samples with >5% missingness were excluded, as were 

any outlier samples identified by Enmix [57]. 

Polymorphic or cross-reactive probes were removed. 

Mass spectrometry and DNA methylation data were not 

always obtained from the same clinical visit and 

samples were selected at a maximum of 5 years apart in 

either direction (median = 0.11 years, mean = −0.09 

years, SD = 1.45 years). Latency between samples was 

approximately normally distributed with a slight 

negative skew (Shapiro-Wilk Test, W = 0.96, p = 6.6e-

10, Adjusted Fisher-Pearson = −0.284). Blood cell 

proportions were estimated following the Houseman et al. 

method [58] and obtained from Horvath’s calculator 

(https://dnamage.clockfoundation.org) [26].  

 

Epigenetic clocks  

 

Epigenetic clocks in this study were estimated using 

Horvath’s 'New Methylation Age Calculator’. The 

analyses focused on epigenetic age acceleration 

estimated as the residuals of epigenetic age adjusted for 

chronological age as estimated in Horvath’s calculator. 

Analyses focused on two epigenetic clocks including 

GrimAge acceleration (GrimAgeAccel), selected due to 

its high predictive ability for time to death [27] and 

previous use in similar work related to diet quality [59]; 

and a DNA methylation-based estimator of telomere 

length (DNAmTL) [29]. Additional analyses extended 

to other epigenetic clocks including the Hannum clock 

[25], PhenoAge [60], and DunedinPACE [28]. 

 

Replication cohort data 

 

Replication was undertaken in 1,160 fasting serum 

samples (median age = 60, median BMI = 27) from the 

KORA (Cooperative Health Research in the Region of 

Augsburg) cohort. This was a mixed cohort of males 

and females (568 and 592 respectively), with 446 never-

smokers. 

 

The KORA (Kooperative Gesundheitsforschung in der 

Region Augsburg) F4 (2006–2008) is a follow-up 

study from the KORA S4 (n = 4,261) survey carried 

out 1999–2000 [35]. Fasting blood serum samples 

were collected from participants of the KORA study 

population and profiled using the Metabolon platform 

(Metabolon, Inc., Durham, NC, USA), as described 

previously [61]. Median-normalisation was achieved 

by multiplying each metabolite with overall median 

values and log-transformed.  

 

Whole blood DNAm profiles in the KORA cohort were 

generated using the HumanMethylation450 BeadChip, 

and processing of data has previously been described 

[62]. Estimation of epigenetic ageing clocks followed 

the methodology outlined for the discovery sample 

analysis. 

 

Statistical analysis 

 

Association analyses were carried out in RStudio 

(2023.09.1+494) using linear mixed-effects models 

(R package ‘lme4’). Epigenetic acceleration measures 

were the response variable and theobromine levels were 

the predictors. Models were adjusted for covariates 

including blood cell type proportions, age and body-

mass index (BMI) as fixed-effect variables, and for 

family relatedness as a random effect term.  

 

The primary analysis investigated associations between 

each metabolite and GrimAgeAccel and DNAmTL. 

Extended analyses also considered additional epigenetic 

clocks (Hannum clock, PhenoAge, and DunedinPACE).  

 

Sensitivity analyses included additional covariates CAF, 

TP, PX and MX to account for potential confounding 

across food components. As multicollinearity is a 

potential factor in these analyses, two additional 

sensitivity analyses were undertaken, 10-fold cross 

validated LASSO and elastic-net regression (R package 

‘glmnet’). LASSO regression penalises coefficients  

by shrinkage, reducing the number of variables to 

control for multicollinearity and the extent of over-

fitting. Elastic-net regression also uses penalisation to 

regularise results and reduce the influence of collinear 

metabolites, by using a composite of LASSO and Ridge 

regularisation methods to enable best fit. This approach 

has complementary strengths to LASSO by providing a 

more stable feature selection, especially in cases of 

multicollinearity.  

 

Abbreviations 
 

CAF: Caffeine; DNAm: DNA methylation; MX: 7-

methylxanthine; PX: Paraxanthine; TB: Theobromine; 

TP: Theophylline. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Sensitivity analyses exploring the specificity of the theobromine association with epigenetic 
ageing measures in the TwinsUK sample. (A, B) Theobromine and GrimAge association significance in never smokers and current/ 

ex-smokers. Covariates in the models included ‘N’ (BMI + Age + Cell Proportions), as well as ‘N’ and methylxathines CAF, TP, PX and MX, as 
labelled on the Figure. TB coefficient effect sizes are shown. (C) Magnitude of effect sizes of DNAmTL association with GrimAgeAccel. As the 
scales and direction differ (with negative GrimAgeAcel and positive DNAmTL both indicating a slower age) the regression coefficient values 
of GrimAgeAccel were converted to absolute values and maximum values of DNAmTL were scaled to GrimAgeAccel (scale factor: 43.43). 
Correlation lines between latency values are applied (linear model) and standard errors are shown. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Association results in TwinsUK cohort. 

Sample Latency is provided in years between methylation and metabolomic measurements. Covariates included in the linear 
model are ‘N’ (BMI + Age + Cell Proportions) and methylxathines CAF, TP, PX and MX as labelled. 
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