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INTRODUCTION 
 

Aging is a multifactorial process that alters several 

essential pathways, increasing the risk of death. Despite 

its general nature, the underlying mechanisms leading to 

the aging phenotypes still need to be well established. 

 

One pressing question in the field is whether common 
pathways are altered with age across different tissues. 

For instance, analyzing the methylation status of a small 

number of CpG sites (epigenetic clocks) allows for 

predicting an organism’s age with remarkable accuracy 

[1–5]. Notably, some of these epigenetic clocks are pan-

tissue, developed using data generated from multiple 

tissues and representing a pattern of methylation 

changes common across several tissues [1, 3]. 

 

However, despite the success in identifying conserved 

DNA methylation patterns across tissues, finding 

common patterns with gene expression data has proven 

more challenging. Several studies have compared  

age-related changes in gene expression across tissues  

in humans [6–11] and rodents [6, 11, 12], with 

inconclusive results. While some report no overlap in 
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ABSTRACT 
 

Although transcriptomic changes are known to occur with age, the extent to which these are conserved across 
tissues is unclear. Previous studies have identified little conservation in age-modulated genes in different 
tissues. Here, we sought to identify common transcriptional changes with age in humans (aged 20 to 70) across 
tissues using differential network analysis, assuming that differential expression analysis alone cannot detect 
all changes in the transcriptional landscape that occur in tissues with age. Our results demonstrate that 
differential connectivity analysis reveals significant transcriptional alterations that are not detected by 
differential expression analysis. Combining the two analyses, we identified gene sets modulated by age across 
all tissues that are highly enriched in terms related to “RNA splicing” and “RNA processing”. The identified 
genes are also highly interconnected in protein-protein interaction networks. Co-expression module analyses 
demonstrated that other genes that show tissue-specific variations with age are enriched in pathways that 
combat the accumulation of aberrant RNAs and proteins, likely caused by defective splicing. Additionally, with 
convergent connectivity patterns, most tissues significantly reorganized their gene connectivity with age. Our 
results identified genes and processes whose age-associated transcriptional changes are conserved across 
tissues, demonstrating a central role for RNA splicing and processing genes and highlighting the importance of 
differential network analysis for understanding the ageing transcriptome. 
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differentially expressed genes with age between tissues, 

others find subtle commonalities between a few tissues 

at a process level but not at the gene level. Therefore, 

whether tissues age differently or if common aging 

alterations are reflected in conserved tissue-independent 

transcriptomic changes is unclear. 

 

Gene expression profiles and biological outcomes result 

not only from variations in each gene’s specific 

expression levels but also from co-expression patterns. 

Gene co-expression is typically represented as a 

correlation that measures how coordinated the 

expression of any two genes is. Gene expression levels 

and gene co-expression patterns, however, do not have a 

direct relationship, and genes that vary in one 

measurement may not vary in the other since changes in 

mean expression do not translate to correlations. Given 

that previous works on gene expression and aging 

focused primarily on analyzing gene expression 

changes, it is relevant to ask whether genes that do not 

change expression levels with age may have altered co-

expression patterns, as not necessarily a gene must 

change its expression to change a biological process. 

 

Weighted co-expression networks, constructed with 

pairwise gene expression correlations, provide a robust 

framework for analyzing system-level changes between 

different conditions [13]. In these networks, genes are 

represented as nodes, and vertices indicate pairwise 

relationships between genes. These relationships – gene 

expression correlations – provide a weighted 

measurement of the strength of the interaction between 

two genes. Gene co-expression networks have been 

successfully used in analyzing biological data, including 

in the context [14–17] of aging. 

 

Moreover, calculating specific network structural 

measurements can serve as metrics for comparing 

networks. One such metric is network connectivity, 

representing each gene’s sum of the network adjacencies 

(nodes). Therefore, connectivity in a gene co-expression 

network measures each gene’s general correlation with 

all other genes in the network. Another helpful metric is 

eigenvector centrality, which scores nodes based on the 

centrality scores of the other nodes they are connected to, 

such that a node with a high eigenvector centrality will be 

associated with nodes with high scores. Together, these 

network features reflect distinct biological information 

than gene expression levels. 

 

Here, we analyzed changes in gene expression and co-

expression networks with age using RNA-Seq data from 

eight tissues from the Genotype-Tissue Expression 

(GTEx) project [18]. Our results demonstrate that 

changes in gene co-expression reveal alterations that 

cannot be revealed by analyzing changes in gene 

expression alone, and that when both gene expression 

and gene co-expression data are taken together a more 

robust understanding of the regulation of gene 

expression during aging arises, showing conserved 

genes and biological processes, tied to specific protein 

complexes, being modulated with age across different 

tissues in humans. 

 

MATERIALS AND METHODS 
 

Dataset 

 

Gene expression data (in TPM – transcripts per million) 

were obtained from the Genotype-Tissue Expression 

(GTEx) project. GTEx (v8 release) has postmortem 

RNA-seq data from 948 donors aged 20 to 70, collected 

from 54 tissues, totaling 17,382 samples. To increase 

the power of the analyses and allow the division of the 

dataset into age ranges, with an adequate number of 

samples in each age range, we selected only tissues with 

at least 800 samples (blood, brain, adipose tissue, 

muscle, blood vessel, heart, skin, and esophagus). 

Tissues were analyzed at the level defined by the SMTS 

sample attribute in the GTEx annotation files. 

 

Differential expression analysis with linear mixed 

model 

 

Let Yijk be the expression level (log2 normalized TPM + 

1) of gene j in sample i of individual k, Agei be the age 

of sample i, Sexi be the sex of sample i, Racei be the 

race of sample i, Ischemiai be the time of ischemia of 

sample i, Batchi be the experimental batch in which 

sample i’s gene expression was measured, Deathi be the 

type of death, in the Hardy scale, of the donor from 

which sample i was collected, and εijk be the error term 

(assumed to be normally and independently distributed 

with var(ε) = σ2I). Then, we identified differentially 

expressed genes for each tissue separately using the 

following linear mixed model: 
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Individuals are considered a block random effect, 

considering that some tissues have more than one 

sample for the same individual. Ischemic time was 

divided into 300-minute intervals to standardize the 

procedure with the removal of confounding factors, 

which was done in a later step. Random effects 

(Individualk) are assumed to be normally and 

independently distributed with var(Individual) = σind
2I. 
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Genes with no or slight variations in expression were 

filtered out of the analysis. Selected genes had 

expression higher than 0.1 TPM in at least 20% of the 

samples. Depending on the analysis, genes needed to 

satisfy an FDR (false discovery rate) [19] <0.1 or <0.25 

to be considered differentially expressed genes (DEGs) 

with age, considering BH multiple test corrections. The 

higher threshold of 0.25 was considered due to the 

rationale detailed in Results - Comparisons of altered 

genes across tissues. The significance of these higher 

threshold results is validated by the permutation tests 

described in Methods - Permutation tests for the 

intersection sets. The model was fit using the nlme 

package in R [20]. 

 

Removal of confounding factors 

 

For network analyses, expression was corrected for 

confounding factors using ComBat from the sva R 

package [21]. Since ComBat can only correct for one 

effect at a time, effects were removed iteratively, 

following the order of sex, race, experimental batch, 

ischemic time, and death type. Since ComBat does not 

accept continuous variables, ischemic time was divided 

into 300-minute intervals. 

 

Independence of connectivity and mean expression 

levels 

 

The connectivity of a gene in a co-expression network 

is defined as the sum of that gene’s co-expression 

values with every other gene in the network. In co-

expression networks, the co-expression between a pair 

of genes is defined as the correlation in their gene 

expression levels across samples (elevated to a soft-

thresholding power in the case of WGCNA). 

 

Let xi and yi be the expression levels of genes X and Y 

in sample i; x  and y  be the mean expression levels of 

genes X and Y across samples, and n be the total 

number of samples. Then, 
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are the standard deviations of X and Y. Finally, 

Pearson’s correlation coefficient (r) between a pair of 

gene expression vectors X and Y is defined as: 

,

( , )
=X Y

X Y

cov X Y
r

 
 

 

Consider a case in which gene Y is differentially 

expressed between two conditions, and a value of c 

increases its mean. If the increase of c is observed 

uniformly across all samples, the components in the 

formulas related to Y suffer the following transformation: 

 

( ) ( )
+

− → + − + = −
c

i i i
y y y c y c y y  

 
Therefore, if the increase in expression is uniform across 

all samples, the covariances and standard deviations are 

unaffected. This way, the correlation between X and Y 

can remain the same in two conditions, even if Y is 

differentially expressed between the two conditions. 

 

Similarly, correlations between X and Y can change, 

even if the mean expression values remain constant. 

Consider two extreme cases: 

 
1. Y = X, with c := =y x  all values of y in each 

sample i are identical to the values of x in the same 

samples, and means equal c; 

 
2. Y = c, c :=y  all Y values in each sample are 

identical and, consequently, equal to their mean c. 

 
In case 1, the values of Y in each sample are variable 

and have a mean of c. Since Y and X are identical, their 

correlation is one. In case 2, Y values are constant and 

equal to c in each sample. Since Y remains constant as 

X changes, their correlation is zero. Less extreme cases 

can be easily imagined. 

 

Therefore, gene expression correlations between pairs 

of genes can vary significantly between conditions, 

even if their mean expression values remain unchanged. 

 

Differential connectivity analysis 

 

The dataset was divided into nine 6-year age ranges, 

except for the last one, which had a 3-year range. This 

division ensures that the smallest sub-dataset has at least 

20 samples, the minimum recommended for WGCNA. 

Connectivity and eigenvector centrality for each gene 

were then calculated in each age range using the igraph 

R package [22]. For comparison between networks, the 

connectivities inside each age range were ranked, and a 

linear regression was applied to detect differences in 

ranked connectivities along the nine age ranges in the 

two metrics. Depending on the analysis, genes were 

considered differentially connected genes (DCGs) or 

differentially eigenconnected genes (DECGs) with 
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FDR<0.1 or FDR<0.25. The higher threshold of 0.25 

was considered due to the rationale detailed in Results - 

Comparisons of altered genes across tissues. The 

significance of these higher threshold results is 

validated by the permutation tests described in Methods 

- Permutation tests for the intersection sets. 

 

Permutation tests for the intersection sets 

 

Intersection sets were tested for significance using 

permutation tests. 

 

Consider Gijk as the number of significantly altered 

genes in tissue i according to regression j (differential 

expression, differential connectivity, or differential 

eigenconnectivity) using an FDR threshold k (0.1 or 

0.25). We constructed 100,000 permuted sets p (without 

replacement) of genes with the same size as each Gijk. 

 

For example, for brain, we sampled without 

replacement 100,000 sets of 530 genes (number of 

DEGs at FDR<0.1), 100,000 sets of 7,699 genes 

(number of DCGs at FDR<0.1), and 100,000 sets of 

9,421 genes (number of DECGs at FDR<0.1); with 

additional three sets for the cases with FDR<0.25. 

 

The same process was repeated for all eight tissues, 

generating 100,000 sets of genes for each tissue, each of 

the three regressions, and each FDR threshold (8 tissues 

x 3 regressions x 2 FDR thresholds x 100,000 

permutations). Therefore, each permutation p generated 

48 sets, equivalent to all Gijk. 

 

For each p, we calculated the intersections between 

tissues, considering all the scenarios analyzed. The 

proportion of permutations p with intersecting genes 

higher than the observed values was used to calculate a 

permutation p-value. 

 

The higher threshold of 0.25 was considered due to the 

rationale detailed in Results - Comparisons of altered 

genes across tissues. However, despite this higher FDR 

threshold chosen for filtering tissue-specific altered genes, 

all intersection sets chosen for downstream analyses were 

significant at FDR < 0.001 in the permutation tests. 

 

Co-expression network construction and consensus 

module identification with weighted gene co-

expression network analysis 

 

Gene expression data for each analyzed tissue and age 

range without the effects of known confounding factors 

were used as inputs for the WGCNA package in R [23]. 
WGCNA constructs weighted gene co-expression 

networks using a soft threshold and fitting the data into a 

scale-free model. For each tissue, we selected the  

soft-thresholding power that resulted in networks in all 

age ranges within that tissue achieving an approximate 

scale-free topology index of 0.8. The chosen soft-

thresholding powers for each tissue were: 6 (blood),  

6 (brain), 9 (adipose tissue), 12 (muscle), 8 (blood 

vessel), 12 (heart), 6 (skin), and 6 (esophagus). We used 

the consensusBlockwiseModules function for module 

detection, with networkType set as “unsigned”. All 

parameters were kept at their default values. Sub-

modules were defined by overlapping the positive and 

negative portions of the sets of genes of the three metrics 

(positive and negative DEGs, DCGs, and DECGs) with 

the modules defined by consensus modules analysis. 

 

Functional enrichment analysis 

 

All enrichment analyses were carried out with the topGO 

R package [24], using the classic Fisher algorithm. 

Annotations for each gene were retrieved from Ensemble 

110 [25]. Multiple test correction was performed using 

the BH method. Terms were considered enriched with 

FDR < 0.1. 

 

For the enrichment of intersection sets, when the 

number of terms was too large to display correctly in 

the chart, we filtered by only showing the Biological 

Process terms and, if necessary, removing the terms 

with fewer genes annotated. 

 

Cross-tissue analysis of connectivity changes 

 

To analyze how the same genes behave in different 

tissues regarding their connectivity, we only included 

the 14,489 protein-coding genes present in the analyses 

of the eight tissues (i.e., those that were not filtered out 

in any tissue during the initial data filtering stage).  

To facilitate cross-tissue comparison, we first reranked 

connectivities using only the protein-coding genes 

employed in this analysis (i.e., we removed all other 

genes and recalculated a new ranking in each tissue, 

including only the 14,489 genes analyzed here). 

 

Our initial ranking included non-protein-coding genes in 

the calculation to account for their contribution to the 

information. Common, unfiltered non-protein-coding 

genes across tissues could have been included in this new 

ranking. However, given that we are only interested in 

protein-coding genes, we excluded them from the new 

rankings because non-protein-coding genes represent 

around half of the genes available in the dataset, and their 

connectivities are generally small compared to those  

of protein-coding genes, being heavily concentrated in 

the first half of the connectivity rankings. This feature 
caused significant distortions in the histograms, making 

visualization and interpretation of the behavior of 

protein-coding genes (our primary interest) difficult. 
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We created reference histograms for each tissue, which 

are histograms of the connectivity ranks of the DCGs 

for that tissue (referred to as the reference tissue). Given 

an x-axis representing all the connectivity ranks in bins 

of 100 ranks, the reference histograms show the 

connectivity distribution of all genes analyzed. Four 

reference histograms were constructed for each tissue: 

positive and negative DCGs in age range one and 

positive and negative DCGs in age range nine. 

 

After constructing the reference histograms, other 

histograms were constructed. For each gene considered a 

DCG in a reference tissue, the connectivity ranks of these 

genes in different tissues (referred to as target tissues) are 

presented, regardless of whether they are also DCGs in 

these other tissues. In cases where DCGs are present in 

both the reference tissue and the target tissue, the regions 

representing them in the histograms are colored (red for 

positive DCGs and blue for negative DCGs). 

 

Changes in correlations were tested for significance using 

the cocor R package [26], with the cocor.indep.groups 

function, using Fisher’s z. 

 

Comparison of enriched terms across sub-modules 

 

To compare the results of the enrichment analyses 

between different sub-modules, we listed all enriched 

terms with FDR < 0.1 in any sub-module. We 

constructed a binary matrix with enriched terms in the 

rows and sub-modules in the columns. Entries had a 

value of 1 in the matrix if a term was enriched in the 

respective submodule. The terms were then filtered. 

First, terms found in fewer than four tissues were 

removed to focus on processes common across tissues, 

resulting in a final list of 2,310 terms. Secondly, terms 

found in the first four and last six levels of the ontology 

tree from the Biological Process Gene Ontology tree 

were removed, with the rationale that this strategy 

removed terms that were too general or too specific to 

yield relevant biological information. Finally, we 

removed all the columns (sub-modules) that displayed 

no entries after the previous filtering. After filtering, 

1,956 terms were included in the matrix. These steps 

ensure that: i) our matrix of terms per sub-module is 

less sparse (with a higher density of 1 values), making it 

easier to cluster, interpret, and present (due to its 

smaller size); and ii) reduce the number of terms to a 

smaller value that is within the limit of the tool we used 

for the analysis of semantic similarity (Revigo [27]), 

which accepts at most 2,000 terms as input. 

 

This binary matrix was then clustered into 8 clusters 

using the hclust function from the stats package in R 

[28], using the Ward.D clustering algorithm [29]. The 

results were presented as a heatmap using the 

heatmap.2 function from the gplots package in R. The 

same list of enriched terms that comprise the heatmap 

rows was then summarized using the online tool Revigo 

[27]. Revigo summarizes lists of Gene Ontology terms 

based on their semantic similarities and creates a chart 

where the distances between points represent their 

semantic distances. Next to the terms, we included the 

number of tissues each term is enriched in (considering 

any sub-module in that tissue). Our list of terms was 

summarized using the following parameters in Revigo: 

SimRel semantic similarity algorithm, “Small” option 

for the size of the final list, “Yes” for removing obsolete 

terms, “Homo sapiens” for the species, and “Higher 

value is better” for the interpretation of the additional 

value (in our case, the number of tissues in which the 

enriched term is present). The R code for reproducing 

the chart was then downloaded, and, within R, a 

variable containing the ID of the cluster in which the 

hclust function clustered that term was added. The final 

chart was plotted using the number of tissues as a 

variable to define the size of the points and the cluster 

variable to define the coloring of the points. 

 

Protein-protein interaction (PPI) network analysis 

with STRING 

 

The PPI networks were analyzed using STRING [30], 

which utilizes the STRING extension for Cytoscape 

[31]. For constructing our networks, we used scores of 

at least 0.7, which are considered high in STRING. We 

queried genes in the 427 set and the 134 set not already 

included in the 427 set (these sets represent the sets of 

genes that change in common across 7 and 8 tissues, 

and how they were selected is described in Results – 

Comparison of altered genes across tissues), for a total 

of 506 genes, of which 505 were identified in the 

STRING database. 

 

Gene overlaps 

 

Gene overlaps and overlap significance statistics were 

calculated using the GeneOverlap R package [32]. 

 

Data availability 

 

The raw data used in this study’s analyses are available 

through the Genotype-Tissue Expression (GTEx) 

project at gtexportal.org/home. 

 

RESULTS 
 

Detection of tissue-specific differentially expressed 

and connected genes 

 

For this study, we used data from the GTEx project 

(version 8), which has whole transcriptome data for up to 
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54 tissues from 948 postmortem donors. To maximize 

statistical power, we aggregated sub-tissues and selected 

only tissues with at least 800 samples each. We then 

analyzed the blood, brain, adipose tissue, muscle, blood 

vessels, heart, skin, and esophagus data. The data was 

processed as described in Methods. Figure 1A shows a 

general schematic of data processing and analysis. 

 

The differential expression and connectivity analyses 

were then carried out as described in the Methods section. 

For the differential connectivity analyses, the dataset was 

divided into nine age ranges (Supplementary Figure 1), 

and networks were constructed using WGCNA [23] 

(Methods). All results obtained from the three regressions 

are presented in Supplementary Data 1. For all metrics, 

genes were considered altered with FDR < 0.1. 

 

The number of differentially expressed genes (DEGs), 

differentially connected genes (DCGs), and differentially 

eigenconnected genes (DECGs) varied considerably by 

 

 
 

Figure 1. Altered genes per tissue. (A) Schematics of the differential expression and differential connectivity/eigenconnectivity analyses. 

(B) DEGs, DCGs, and DECGs per tissue. The red and blue bars represent genes with positive and negative slopes, respectively. All metrics 
considered FDR < 0.1. (C) Overlaps between DEGs, DCGs, and DECGs in each tissue. 
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tissue (Figure 1B). Notably, many tissues demonstrated 

relative stability in either the differential expression 

analysis or one of the connectivity analyses. Blood, brain, 

muscle, and blood vessels all clearly fall into this 

category, having many DEGs or DCGs/DECGs, but not 

both simultaneously. Adipose tissue had many significant 

genes in all analyses, but a clear tendency towards having 

more DEGs than DCGs can be seen. Only the heart, skin, 

and esophagus had relatively similar numbers of DEGs 

and DCGs/DECGs (though very few in the heart). 

 

Only a small proportion of genes were simultaneously 

DEGs and DCGs/DECGs (Figure 1C). The p-value 

distribution of the expression and connectivity 

regressions against one another shows a significant 

discordance between the metrics (Supplementary Figure 

2A). A similar behavior is seen when comparing  

the expression regression with the eigenconnectivity 

regression (Supplementary Figure 2B). On the other 

hand, the connectivity and eigenconnectivity regressions 

show remarkable concordance (Supplementary Figure 

2B), suggesting these metrics measure similar biological 

effects. 

 

These results demonstrate that even in tissues with a 

high number of significant genes across all metrics—

such as adipose tissue, skin, and the esophagus—there 

is a clear tendency for the genes that alter gene 

expression levels to remain unchanged in one of the 

connectivity metrics, and vice versa. 

 

Comparisons of altered genes across tissues 

 

To compare the genes found in each tissue, we counted 

the number of tissues in which each gene was changed in 

each metric. We define sets of genes changing in 

common across different tissues as intersection sets. The 

results for DEGs and DCGs are shown in Figure 2A. 

 

 
 

Figure 2. Intersect count. (A) DEGs, DCGs, and their combination, detected in sets of 1 up to 8 tissues. (B) DEGs, DCGs, and their 

combination, detected in sets of 1 up to 8 tissues. The charts display the number of genes in the set and their significance in a 
permutation test. Significance levels: FDR<0.1 (*), FDR<0.01 (**), FDR<0.001 (***). (C) Venn diagram of selected intersection sets. 
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Most intersection sets are significant considering 

permutation tests (see Methods). Non-significant sets 

are either in very few tissues (DEGs in 1 and 2 tissues 

and DCGs in 1 tissue) or in tiny sets in many tissues 

(DCGs in 5 and 6 tissues). Results, including DECGs, 

are similar (Supplementary Figure 3). 

 

The non-significance for the sets in one tissue is 

expected, as they are not true intersections and only 

indicate that most genes are altered in at least one 

tissue, demonstrating the heterogeneous component of 

tissue aging. 

 

Given the discordant nature of the differential 

expression and differential connectivity regressions 

(Supplementary Figure 2A), we asked whether genes 

that are DEGs in some tissues might be DCGs or 

DECGs in other tissues. This is relevant because both 

analyses detect changes in transcriptomic behavior, 

even if the changes are different and independent (see 

Methods section for a demonstration of the 

independence between the two metrics). We then 

considered four scenarios: 

 

1. Whether the gene changed in any metric 

(DEG/DCG/DECG); 

 

2. Whether the gene is a DEG and/or a DCG; 

 

3. Whether the gene is a DCG and/or a DECG or 

 

4. Whether the gene is a DEG and/or a DECG. 

 

The results show that although most genes changing 

with age are tissue-specific or shared between a few 

tissues, when intersections between tissues are 

considered using different metrics to assess 

transcriptomic behavior, a core of common genes 

changes across tissues (Figures 2A and Supplementary 

Figure 3). 

 

Interestingly, gene sets in scenarios including DEGs and 

one of the connectivity metrics (DCGs or DECGs) in 

many tissues were significant, including in eight tissues. 

Sets that include DCGs and DECGs simultaneously, 

however, were insignificant. This can be understood 

considering that DCGs and DECGs overlapped 

significantly (Supplementary Figure 2B), which makes 

considering both partially redundant, while permuted 

sets would be more significant (see Methods). 

 

The small intersection set in eight tissues is caused by 

the heart. Interestingly, the distribution of raw p-values 
in the heart does not match what would be expected if 

the null hypothesis were true for all genes (i.e., none are 

changing) (Supplementary Figure 4), as can be observed 

for blood in the differential expression regression 

(Supplementary Figure 4). 

 

While a typical scenario of FDR correction with so 

many tests when there are close to no significant genes 

can be observed in the FDR density histogram for blood 

in the differential expression regression, the same 

density histogram in the heart displays a very different 

pattern, with most FDRs clustering around 0.20-0.25. 

Additionally, when we plot the FDR distribution of 

genes belonging to the three sets encompassing more 

tissues using FDR < 0.1, they cluster around the 0.20-

0.25 range in the heart (Supplementary Figure 5). This 

pattern strongly suggests a non-random distribution of 

p-values and raises the question of whether the genes 

that cluster around 0.20-0.25 FDR in the heart are 

meaningful. 

 

To analyze this, we considered two additional scenarios 

for the intersection analysis, where we raised the FDR 

threshold to 0.25: 

 

(i) Considering genes significant at FDR < 0.25 only 

for the heart and 

 

(ii) Considering FDR < 0.25 for all tissues. 

 

It is essential to note that while increasing the FDR 

threshold increases the probability of including tissue-

specific false positives, this shortcoming is mitigated in 

the next step of the analysis, where we assess the 

significance of the intersection sets. Essentially, an 

actual false positive would be a completely random 

gene that was below the FDR threshold due to chance 

alone. However, if the same gene was below the FDR 

threshold (0.10 or 0.25) in 7 or 8 tissues, then it is 

extremely unlikely that we are observing a false 

positive. In other words, true randomness would cause 

random genes to cross the threshold in different tissues, 

resulting in very low cross-tissue intersections. So, if a 

sufficiently large number of genes are crossing the 

threshold in 7 or 8 tissues, then they are extremely 

unlikely to be random false positives. 

 

To put it in a slightly different way, any gene that was 

a false positive in one tissue due to a higher FDR 

threshold would likely not end up in the final 

intersection sets, especially in those intersection sets in 

7 or 8 tissues, since it would have to coincidentally 

also be a false positive in all of these other tissues. In 

essence, the intersection sets in a high number of 

tissues ultimately exclude false positives. This means 

that our goal here should be to test whether the number 
of genes in the intersection sets is large enough to rule 

out the probability of them being coincidentally false 

positives. 
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Indeed, both additional scenarios yielded significant sets 

in 5, 6, 7, and 8 tissues (Figure 2A); of particular interest 

are the sets in 8 tissues for both scenarios, with 49 and 

427 genes, which represent conserved sets of genes that 

display transcriptomic alterations across all tested tissues 

during aging. Both were significant at FDR < 0.001 in the 

permutation tests, indicating that despite using a higher 

FDR threshold (0.25) to filter tissue-specific results, the 

resulting cross-tissue sets are highly significant. 

 

Since the results for the connectivity and eigen-

connectivity analyses were well correlated, we focus 

on DEGs and DCGs in most analyses. Henceforth, we 

will refer to the sets of genes presented in Figure 2A as 

“intersection sets,” the specific sets of interest (with the 

combination of DEGs and DCGs) will be called 3-set, 

49-set, 427-set, and 134-set. Figure 2B shows a Venn 

diagram overlapping these sets of interest. 

 

GO enrichment analysis of intersection sets 

 

We performed a GO enrichment analysis of the 

intersection sets using the topGO R package. Given that 

we are not interested in tissue-specific changes but 

rather in intersection sets across most tissues, we limit 

the results to intersection sets comprising fewer than 

5,000 genes, as shown in Figure 2A. Supplementary 

Data 2–4 contain enrichment results for all these sets. 

 

In Figure 3, we show the results for selected intersection 

sets. The sets shown are those with the most tissues for 

which enrichment results identified significant terms in 

the Biological Process ontology, accompanied by a 

reasonable number of essential genes annotated. 

 

While the DEGs chart displays immune system-related 

terms not found in the DCGs chart, they both contain 

terms related to RNA splicing and DNA damage 

response. Furthermore, while the set of DCGs in 4 

tissues was not chosen because of the previously 

mentioned criteria, its analysis shows enrichment in 

Cellular Component terms for the spliceosomal 

complex (Supplementary Data 2). This indicates that 

four tissues display good evidence for enriching 

intersecting DEGs and DCGs related to RNA splicing 

and DNA damage response. 

 

The selected intersection sets in seven or eight tissues 

show similar results, with enrichment in RNA splicing, 

RNA processing, and response to DNA damage. The 

FDR distribution of all RNA splicing and processing 

genes corroborates the tendency of these genes to be 

located in the areas of greatest significance in the charts 
of all tissues. It reinforces the tissue-specific discordant 

behavior of the genes in the two regressions 

(Supplementary Figure 6). 

It is important to note that the term “RNA splicing” is 

a direct child of the term “RNA processing” in the 

Biological Process ontology tree, meaning that RNA 

splicing genes are contained in the RNA processing 

set. 

 

DNA damage response is not found in the 49-set but is 

in the 427-set, along with terms related to protein 

catabolism, autophagy, and ribosome biogenesis. 

Supplementary Figure 7 displays the induced GO 

subgraph of the top 20 enriched terms in the 134-set. 

 

In most tissues, genes in these sets are predominantly 

upregulated in at least one of these two metrics 

(Supplementary Figure 8), except for blood vessels, 

which have a mixed profile, and the heart, in which 

most genes are negative DEGs. 

 

Furthermore, negative DEGs, including those in the 

427-set, tended to be highly expressed in younger 

samples (Supplementary Figures 9, 10). In fact, in blood 

vessels and the heart, where there was a higher 

proportion of negative DEGs, both overall and in the 

intersection sets, the negative DEGs remained highly 

expressed in older samples, even with the decreases, 

indicating that most negative DEGs remain necessary 

for cellular function. 

 

Changes in connectivity between young and old 

samples tended to be more dramatic, with DCGs in the 

427-set and the splicing genes tending to become more 

highly connected at older ages (Supplementary Figures 

9, 10). The most apparent exception seems to be skin, 

where most splicing and 427-set genes decrease their 

connectivities (Supplementary Figures 8, 9). The 134-

set and the 49-set show similar results (Supplementary 

Figure 10). 

 

 

Cross-tissue analysis of connectivity changes 

 

It is puzzling that some tissues tend to have more DEGs 

or DCGs but not both. Even in the skin and esophagus, 

where the number of DEGs and DCGs was more 

balanced, the genes changing in one metric did not 

change in the other. To explore this phenomenon, we 

analyzed the distribution of DCG connectivity ranks in 

each tissue against the connectivity ranks of the same 

genes in the other tissues (see Methods). 

 

The results indicate that positive DCGs in each tissue 

tend to be among the lowest or middle-ranked genes in 

their tissues in younger samples (Figure 4A). However, 
when we examine the connectivity rank histogram of 

these same genes in other tissues, we observe a 

contrasting scenario, with the same set of genes being 
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significantly more highly ranked in the different tissues. 

For example, positive DCGs in the blood are among the 

low and middle ranks regarding connectivity. However, 

the same genes that are positive DCGs in blood tend to 

be more highly ranked in other tissues. 

 

Negative DCGs show similar behavior with inverse 

logic. The only exception is skin, since its negative 

DCGs are highly ranked in many other tissues. 

In older samples, the DCGs changed their rankings as 

expected, such that the connectivity ranking pattern  

of these genes more closely resembles the pattern  

they already displayed in other tissues. This suggests 

that gene connectivity is reorganized in some  

tissues, and that in tissues where these genes are not 

changing their connectivities, it is likely because  

their connectivities were already roughly at the 

physiologically ideal level. 

 

 
 

Figure 3. GO enrichment analysis of intersection sets. Terms significant at FDR < 0.1. In cases where too many terms were enriched, 
only Biological Process terms are shown. When that still yielded too many results, further filtering was performed by removing terms with the 
least number of genes. 
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Figure 4. Cross-tissue analysis of DCGs. (A) DCGs in reference tissues projected on other tissues in younger and older samples. Colored 

portions of the histogram represent positive (red) or negative (blue) genes DCGs in the reference and target tissue. Grey portions represent 
genes that are DCGs in the reference tissues but not in the target tissue. (B) Comparison of changes in correlations of connectivity ranks 
between younger and older samples. Significance levels: FDR<0.1 (*), FDR<0.01 (**), FDR<0.001 (***). 
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This convergence of connectivity ranks is evident when 

comparing the correlations of connectivity ranks 

between pairs of tissues in the younger and older age 

ranges. Correlations are consistently significantly 

increased in all tissues, except correlations involving the 

skin, which are consistently considerably decreased 

(Figure 4B – first panel). 

 

A similar pattern can be seen when considering only the 

intersection sets or all RNA processing and RNA 

splicing genes (Figure 4B—second to fifth panels). In 

these cases, however, the reduced number of genes 

makes it more challenging to determine the significance 

of all comparisons, especially for the 49-set, even when 

the increase in correlation is significant (for example, 

see the comparison between brain and muscle in the 49-

set). 

 

Consensus network and GO enrichment analysis of 

age-related sub-modules 

 

While only a few common genes appear to be changing 

across 7 or 8 tissues, we inquired whether other genes 

changing in fewer tissues could exhibit similarities at 

the process level. 

 

We used WGCNA to build an unsigned consensus 

network for each tissue’s nine age ranges. This allowed 

us to identify conserved gene co-expression modules 

that were present in all nine datasets. After obtaining 

these modules, we overlapped them with DEGs, DCGs, 

and DECGs and divided them into positive and negative 

portions. This led to the definition of sub-modules, 

where each sub-module comprises the positive or 

negative DEGs, DCGs, or DECGs contained in that 

module. 

 

By dividing the DEGs, DCGs, and DECGs using the 

modular structure provided by WCGNA, we group 

them into sets likely to be related to the same biological 

processes and, therefore, identify them based on a 

functional enrichment analysis. 

 

Since enriching these sub-modules generated many 

lists of terms, we first summarized them in a heatmap 

format (Figure 5A and Supplementary Figure 11). 

Then, we used Revigo to display the results (Figure 

5B) (see Methods for a detailed description). Complete 

enrichment results per module can be found in 

Supplementary Data 5–7. 

 

The green rows/terms cluster contains sub-modules 

enriched in RNA splicing and processing, the same 
processes enriched in the intersection sets (Figure 5A 

and Supplementary Figure 11). Inspecting the heatmap 

and Revigo results (as well as Supplementary Figure 11 

and Supplementary Data 5–7) show that, in addition to 

the RNA splicing and processing terms, other processes 

were frequently enriched in the sub-modules in the 

same green cluster, such as proteolysis, protein 

catabolism, autophagy, and ribosomal biogenesis. 

 

Additionally, the grey cluster displayed a considerable 

overlap in sub-modules with the green cluster and 

contained terms related to DNA repair and DNA 

damage response. This suggests that these processes 

change in a coordinated fashion during aging, which 

was already indicated with the enrichment of the 427-

set (Figure 3). 

 

These terms’ sub-modules are grouped in the blue, lilac, 

and yellow columns/submodule clusters (Figure 5C). 

 

Subsequently, we counted the number of DEGs and 

DCGs in the intersection sets in each module in each 

tissue (Figure 5D). Most genes in the intersection sets 

are grouped in the first (and largest) modules, which 

contain sub-modules in Figure 5C. 

 

Only the heart and skin display different behaviors. This 

is expected in the case of heart since the sub-modules 

were defined using only DEGs and DCGs with FDR < 

0.1, which were very few. 

 

Only M7 submodules related to skin are found in the 

blue cluster (Figure 5C). Almost all M2 submodules, 

which concentrate more genes in the intersection sets, 

had no enriched terms (Supplementary Data 5–7), 

explaining why they were not clustered in Figure 5A. 

 

M1 and M5 skin submodules are present in Figure 5C 

but are contained in the yellow submodule cluster, 

which, although it has a pattern of terms similar to the 

blue submodule cluster, has a higher number of terms 

from the gray cluster, related to DNA repair and 

response to DNA damage. 

 

The M3 skin module has enriched terms in the 

submodules for positive DEGs, negative DCGs,  

and negative DECGs (Supplementary Data 5–7). 

However, they are more enriched in terms of 

ribosomal biogenesis, translation regulation, and RNA 

processing. Only in the submodule of negative DECGs 

do terms related to RNA splicing appear enriched at 

FDR < 0.1. 

 

These results show that although the genes in the 

intersection sets were the only ones changing across 

tissues, they associate with modules that contain other 
genes that are changing in a tissue-specific manner, 

related to similar processes, which act in a coordinated 

fashion with the genes in the intersection sets. 
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Figure 5. Consensus modules analysis. (A) Unlabeled heatmap of similarity between terms enriched in sub-modules. (B) Semantic 

similarity of the terms in the heatmap with Revigo. The size of the dots on the chart represents the number of tissues in which that term is 

2928



www.aging-us.com 14 AGING 

found, and the coloring of the dot represents the cluster of terms/rows in which that term is found. The size and coloring are based on the 
term chosen to represent the cluster. Terms contained in some points in different regions of the chart are highlighted and described in the 
text boxes. The numbers in parentheses next to the terms represent the number of tissues in which that term is enriched (which may or may 
not be equal to the value for the representative term of the same point). (C) Sub-modules enriched in terms contained in the green and gray 
terms/rows clusters. (D) Overlap between consensus modules and genes in the intersection sets. The red and blue portions of the bars 
represent positive and negative DEGs/DCGs. 

 

Protein-protein interaction prediction network 

analysis 

 

Co-expression relationships do not identify the molecular 

mechanisms through which biological interactions 

manifest. Therefore, to determine whether there are 

physical associations between the protein products of 

these genes, we constructed protein-protein interaction 

(PPI) networks using STRING. The STRING database 

has curated and predicted protein-protein interactions 

based on several inferences. 

 

Several proteins in the analysis have strong evidence  

of being part of physical complexes (Figure 6A, 6B). 

Many of them cluster into very well-defined physical 

complexes. As expected from our previous results, 

several interact in the spliceosome. 

 

Additionally, many ribosomal proteins (both cytosolic 

and mitochondrial) are present, along with translation 

initiation and elongation factors. Several proteins 

involved in transcription and chromatin remodeling, as 

well as proteins involved in ubiquitination and 

proteolysis, are clustered. The PP1 complex highlighted 

is also involved in regulating RNA splicing [33]. 

 

The complexes identified in this analysis delineate a 

continuous path, with the transcription of mRNAs being 

 

 
 

Figure 6. STRING PPI physical subnetwork. (A) Color coding for the nodes in the network indicating to which intersection set the 

corresponding genes belong. (B) Physical subnetwork. The network includes links with a confidence score of at least 0.7 in STRING. Singletons 
(unconnected nodes) are omitted. 
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followed by RNA splicing and processing and 

subsequent translation in the ribosomes, after which 

proteins are sent to the ER. During this process, 

damaged or misfolded mRNAs and proteins are 

degraded. The degradation of proteins is represented in 

the network by proteins that promote the ubiquitination 

of other proteins and tag them for degradation, as well 

as some protease-related proteins. In mitochondria, in 

addition to the mitochondrial ribosome, some proteins 

are components of the electron transport chain. 

Interestingly, only components of Complexes I (NADH 

dehydrogenase) and III (cytochrome c oxidase) seem to 

be altered. Similar results are seen in the whole network 

(Supplementary Figure 12). 

 

DISCUSSION 
 

Several studies have attempted to identify similarities in 

gene expression across tissues using different strategies 

[6–12, 34, 35], including employing WGCNA [14, 17]. 

Still, no common patterns were found at the gene level, 

and very few were found at the process level. 

 

Our work’s initial premise was that differential 

expression analysis alone cannot detect all alterations 

that occur in the transcriptome with age, and that a lot 

of information is lost when only changes in absolute 

expression levels are considered. This lost information 

may be able to explain why there has been so much 

difficulty in finding clear common patterns in 

transcriptomic changes with aging across tissues, 

especially in terms of individual genes. We 

hypothesized that part of this information may be 

contained in changes in co-expression (reflected in 

network topological metrics), under the assumption that 

some genes may not display differences in absolute 

gene expression levels with age but may change the 

patterns with which they co-express with others. This 

combined approach yielded very different results from a 

traditional differential expression analysis, revealing 

patterns of transcriptomic changes that cannot be seen 

by looking only at absolute gene expression values, as 

even tissues with very few DEGs displayed a 

considerable amount of DCGs and DECGs, and vice 

versa. 
 

Our results demonstrate that a core of genes is being 

altered across tissues, and this core is significantly 

enriched in RNA splicing and processing terms, in 

addition to being well-connected in PPI networks. 

However, these changes are captured by differential 

expression or differential connectivity analyses, but 

rarely in both. 

 

This demonstrates that looking only at differential 

expression may lead to an incomplete picture of the age-

related transcriptomic adjustments some tissues undergo. 

For instance, given the preponderance of DCGs in blood 

and brain, it is no surprise that no common set of DEGs 

would be found between them and other tissues. Any 

analysis comparing only DEGs using these two tissues 

would miss the reality that these tissues display 

transcriptomic changes with age reflected much more 

heavily in co-expression/connectivity-related changes 

than in absolute expression changes. Therefore, ignoring 

the differences in connectivities in some tissues may 

lead to a false notion that they do not display age-related 

transcriptomic changes in a common set of genes. 

 

Additionally, we believe that the results obtained by 

relaxing the FDR threshold to 0.25 in the first step of 

the analysis, and then verifying the significance of the 

intersection sets in the subsequent step with permutation 

tests using stricter thresholds, reinforces our results, 

since a pattern emerges regarding who is included in the 

intersection sets as the FDR threshold is increased. 

 

Making an analogy, one way to think of this is to 

imagine the entire biological network and picture an 

imaginary circle within it that contains a small cluster of 

well-connected genes that change in common across 

tissues according to a certain significance threshold, and 

which seems to be primarily enriched in RNA splicing. 

As the significance threshold is increased, this circle 

expands, encompassing genes that were neighbouring 

the initial small cluster, which includes (i) more RNA 

splicing and processing genes, (ii) more genes in 

processes immediately upstream and downstream to 

RNA splicing, and (iii) more genes whose protein 

products are well connected to the previous PPI 

network. This denotes a non-random pattern of 

inclusion, which has a clear biological meaning. 

 

The contrasting scenario would be if increasing the 

significance threshold led to other random circles 

popping up all around the biological network, indicating 

no clear pattern. This would be expected if the inclusion 

of genes in the analysis, due to the higher FDR threshold 

of 0.25, had resulted in false positives. It would require 

an extremely improbable data distribution to generate this 

clear pattern of inclusion if the significant genes at FDR 

0.25 were purely the result of chance. Therefore, this 

pattern of inclusion when increasing the FDR threshold 

reinforces the results. When this logic is considered, the 

question ceases to be whether there is a common set of 

genes related to specific enriched processes changing 

across tissues with aging, and a new question arises as to 

why these different tissues undergo transcriptomic 

changes in varying ways. 
 

At least for DCGs, differences can be explained mainly 

by the fact that the connectivities of genes in each tissue 
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are reorganizing so that their rankings converge with age, 

with skin being the only exception. This behavior could 

indicate that these changes reflect responses to a common 

stimulus. Supposing the burden of defective spliced 

RNAs and malformed proteins increases with age, it 

seems reasonable for all tissues to reorganize themselves 

to deal with this problem. However, given that different 

tissues will have different starting points regarding the 

connectivity of each gene, it makes sense that how many 

genes will change in a given tissue and the trajectory of 

these changes will be different according to tissue, even 

if the endpoint might be approximately the same. Some 

tissues might already have a specific configuration of 

connectivities of their genes at young ages that allow 

them to deal with higher burdens of aberrant splicing and 

malformed proteins. In contrast, others may be more 

susceptible to this alteration and may need to promote  

a more robust reorganization of their molecular network 

to deal with the increased burden of age-related  

protein malformation. Therefore, a standard stimulus  

may condition different tissues to converge to a similar 

adaptive state. 

 

One possibility for the different behavior observed in 

the skin might be that it is the only tissue analyzed that 

is directly exposed to the external environment, with a 

greater impact of exogenous factors than in other 

tissues, creating a different pattern of reorganization. 

Nonetheless, there is mostly upregulation of DEGs in 

the intersection sets for skin, indicating that the burden 

of defective spliced RNAs may indeed be greater. The 

fact that many negative DCGs in the skin are also 

positive DEGs (Supplementary Figure 8), including 

RNA processing and splicing genes, indicates that they 

require an increased activity of these processes with 

age. Furthermore, a significant subset of genes in the 

intersection sets and RNA splicing sets are positive 

DCGs, indicating, to some extent, a greater necessity 

for these genes. 

 

Alternative splicing is a fundamental process in 

eukaryotes that allows the same gene to encode multiple 

different transcripts, with approximately 95% of multi-

exon genes producing transcripts that undergo 

alternative splicing [36]. Therefore, it is intuitive  

that alterations in the splicing machinery would  

have systemic effects on the biological network. 

Additionally, alternative splicing is a crucial mechanism 

for determining tissue identity and homeostasis, 

enabling the same genes to express different isoforms in 

various tissues according to the specific tissue’s needs 

[37, 38]. This tissue-specific character of splicing 

means that common cross-tissue alterations in the 
splicing machinery can lead to different downstream 

effects in different tissues, possibly explaining tissue-

specific signatures of age-related gene expression. 

Indeed, aging appears to be accompanied by a high 

incidence of aberrant splicing and intron retentions in 

C. elegans, fruit flies, mice, and humans [39–44]. 

Additionally, differential expression of splicing factors 

has also been found to be associated with aging  

[39, 44–49]. Changes in alternative splicing are also 

observed in several age-related diseases [49]. 

Modulation of specific splicing factors has been shown 

to increase lifespan in model organisms [50, 51], and 

splicing appears to be modulated in model organisms 

during dietary restriction and mTOR inhibition  

[41, 42], two known lifespan-promoting interventions. 

Spliceosome activity also seems to have a role in the 

regulation of cellular senescence [52], a process that is 

associated with aging. Notably, Mariotti et al. (2022) 

[43] showed an increase in these events in the same 

GTEx dataset for several tissues. Most tissues they 

analyzed showed an increase in intron retention with 

age. This includes heart and blood vessels, for which 

we detected decreased RNA processing/splicing 

expression in the intersection sets. One possible 

explanation for the observation that these tissues have a 

higher aberrant splicing burden, but less expression of 

splicing genes, is that the changes in connectivity ranks 

are taking the lead in adapting these tissues to this 

alteration. Since both tissues display a convergent 

pattern of connectivity ranks, these changes may 

already be boosting the adaptation to aberrant splicing 

as much as the tissue can. Furthermore, the negative 

DEGs in the intersection sets do not result in a dramatic 

decrease in expression. 

 

Determining the cause of this increased incidence of 

aberrant splicing is currently impossible. One hint is the 

presence of genes associated with DNA repair and DNA 

damage response. The idea that DNA alterations cause 

aging is one of the most classic theories of aging  

[53, 54], and DNA damage is a hallmark of aging [55]. 

It is possible, therefore, that damage to DNA is leading 

to aberrant splicing. Indeed, there seems to be a 

connection between RNA splicing and DNA damage 

response [56], even at the transcriptional level. 

Furthermore, previous studies have shown that the 

expression of DNA repair genes is positively associated 

with species’ maximum lifespans [57–59], and that 

transcriptional signatures related to maximum lifespan 

seem to present similarities with those seen during 

aging in a tissue-specific manner [60]. 

 

The processes clustering with RNA processing/splicing 

in the same modules are interesting because they all 

coordinate during the protein production cycle. They 

can be easily interpreted in light of what we know 
about aging and the lifespan extension promoted by 

mTORC1 inhibition. Inhibition of mTORC1, through 

genetic or pharmacological means, is one of the most 
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studied methods of life span extension and works in 

several organisms, including mice [61–76]. mTORC1 

is a central regulator of autophagy [77]. Therefore, 

higher expression and relative connectivity of auto-

phagy and proteolysis/protein catabolism genes, as 

indicated in our enrichment results, demonstrates that 

these mTORC1-related processes are more prominent 

during aging (see Figure 5 and Supplementary Data  

5–7). Loss of proteostasis is also a hallmark of  

aging [55], and aberrant splicing is a cause of 

malformed proteins, which demand more protein 

degradation mechanisms to remove these malformed 

proteins. 

 

Lastly, ribosomal biogenesis has also been associated 

with aging [78]. The presence of these processes in  

the modules found here also suggests that they work  

in a coordinated fashion. Higher rates of splicing 

abnormalities may lead to more malformed proteins, 

which will demand more protein degradation machinery. 

Given the folding challenges, such aberrant mRNAs 

may create difficulties for the ribosomal machinery since 

they may take longer to translate. Therefore, we could 

speculate that this increased occupancy of ribosomes 

would end up signaling for the biogenesis of more 

ribosomes to decrease the amount of mRNA in line to be 

translated. 

 

From the results described here, it is reasonable to 

imagine a scenario in which the age-associated increase 

in aberrant mRNAs, proteins, and eventually organelles, 

which were negatively affected by malfunctioning 

proteins, may impose significantly on catabolic processes 

such as RNA catabolism, protein catabolism, and 

autophagy. Lifespan extension by mTOR inhibition may 

thus be working by inducing the clearance of these 

defective components. Since these clearance mechanisms 

seem upregulated with age, mTOR inhibition is 

enhancing a naturally occurring attempt at adaptation by 

the cells. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Dataset description. (A) Number of samples per tissue per age range; age ranges (shown below) account for 6 
years each, except for the last one, which accounts for 3 years. (B) Proportion of male and female samples in each tissue. 
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Supplementary Figure 2. Altered genes per tissue. (A) Distribution of raw p-values in each tissue only for differential expression and 

differential connectivity. (B) Distribution of raw p-values (upper right panels) and FDR adjusted p-values (bottom left panels) in each tissue for 
the three regressions. 
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Supplementary Figure 3. Intersect counts. Number of DEGs, DCGs, DECGs, and combinations of these metrics detected in sets of 1 up to 
8 tissues. The charts display the number of genes in the set and their significance in a permutation test. Significance levels: FDR<0.1 (*), 
FDR<0.01 (**), FDR<0.001 (***). 
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Supplementary Figure 4. Density histogram of p-values and adjusted p-values (FDRs) of the regression analyses in each 
tissue. (A) Distribution of p-values and adjusted p-values (FDRs) in the differential expression analysis. (B) Distribution of p-values and 

adjusted p-values (FDRs) in the differential connectivity analysis. (C) Distribution of p-values and adjusted p-values (FDRs) in the differential 
eigenconnectivity analysis. Dashed horizontal lines in the raw p-value density histograms represent what would be the expected distribution 
of p-values if the null hypothesis of no change was true for all genes. 
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Supplementary Figure 5. Scatterplots with FDR distributions in both regressions with intersecting genes highlighted. Green 

points represent the 900 DEGs/DCGs in at least 6 tissues, red points represent the 134 DEGs/DCGs in at least 7 tissues, and purple points 
represent the 3 DEGs/DCGs in 8 tissues. 
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Supplementary Figure 6. Distribution of genes annotated as “RNA processing” or “RNA splicing” in the FDR distribution 
charts. 
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Supplementary Figure 7. Induced GO subgraph of the 20 top enriched nodes in the 134 set. 
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Supplementary Figure 8. Slopes of DEGs and DCGs in the selected intersection sets. In the two upper heatmaps, red entries 

represent positive and blue entries represent negative slopes. In the bottom heatmap, red entries represent genes that are either a positive 
DEG, a positive DCG, or positive in both regressions; blue entries represent genes that are either a negative DEG, a negative DCG, or negative 
in both regressions; and green entries indicate genes significant in both regressions, but the slopes have opposite signals (either a positive 
DEG and negative DCG or a negative DEG and positive DCG). The most annotated terms were selected and displayed in the last panel. 
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Supplementary Figure 9. Connectivity ranks x average expression of different sets of genes in age ranges 1 or 9, with DEGs 
and DCGs highlighted. DEGs and DCGs highlighted considered FDR < 0.25, to emphasize the overall patterns of the trajectories. Results 

with FDR < 0.1 can be found in Supplementary Figure 6. 
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Supplementary Figure 10. Distribution of positive and negative slopes among DEGs and DCGs. (A) Connectivity ranks x average 

expression of different sets of genes in age ranges 1 or 9, with DEGs highlighted with FDR < 0.1. (B) Connectivity ranks x average expression of 
different sets of genes in age ranges 1 or 9, with DCGs highlighted with FDR < 0.1. (C) Connectivity ranks x average expression of the 49-set 
genes in age range 1 or 9, with DEGs and DCGs highlighted with FDR < 0.1 for all tissues except heart, with an FDR < 0.25. (C) only displays the 
charts for the 49-set as the charts for other tissues with FDR < 0.1 or FDR < 0.25 are shown in Figures S5, S5A and S5B. 
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Supplementary Figure 11. Consensus Modules Enrichment Heatmap. Larger version of the heatmap in Figure 5A, displaying all 

labels. 
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Supplementary Figure 12. STRING PPI full network. (A) Color coding for the nodes in the network indicating to which intersection set 

the corresponding genes belong. (B) Full interaction network, including only links with a confidence score of at least 0.7 in STRING; singletons 
(unconnected nodes) are omitted. The larger cluster in the middle represents ribosomal proteins, and the cluster below it, RNA splicing 
genes. 
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Supplementary Data 
 

Please browse Full Text version to see the data of Supplementary Data 1–7. 

 

Supplementary Data 1. Regression results. Slopes, p-values and FDR-adjusted p-values of all genes in each 
tissue for differential expression, differential connectivity and differential eigen connectivity analyses.  

 
Supplementary Data 2. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR < 
0.1 in all tissues. 

 
Supplementary Data 3. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR < 
0.1 in blood, brain, adipose tissue, muscle, blood vessels, skin and esophagus; and significant at FDR < 0.25 in 
heart. 

 
Supplementary Data 4. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR < 
0.25 in all tissues. 

 
Supplementary Data 5. GO enrichment analysis of consensus modules. DEGs submodules. 

 
Supplementary Data 6. GO enrichment analysis of consensus modules. DCGs submodules. 

 
Supplementary Data 7. GO enrichment analysis of consensus modules. DECGs submodules. 
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