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ABSTRACT

Although transcriptomic changes are known to occur with age, the extent to which these are conserved across
tissues is unclear. Previous studies have identified little conservation in age-modulated genes in different
tissues. Here, we sought to identify common transcriptional changes with age in humans (aged 20 to 70) across
tissues using differential network analysis, assuming that differential expression analysis alone cannot detect
all changes in the transcriptional landscape that occur in tissues with age. Our results demonstrate that
differential connectivity analysis reveals significant transcriptional alterations that are not detected by
differential expression analysis. Combining the two analyses, we identified gene sets modulated by age across
all tissues that are highly enriched in terms related to “RNA splicing” and “RNA processing”. The identified
genes are also highly interconnected in protein-protein interaction networks. Co-expression module analyses
demonstrated that other genes that show tissue-specific variations with age are enriched in pathways that
combat the accumulation of aberrant RNAs and proteins, likely caused by defective splicing. Additionally, with
convergent connectivity patterns, most tissues significantly reorganized their gene connectivity with age. Our
results identified genes and processes whose age-associated transcriptional changes are conserved across
tissues, demonstrating a central role for RNA splicing and processing genes and highlighting the importance of
differential network analysis for understanding the ageing transcriptome.

INTRODUCTION [1-5]. Notably, some of these epigenetic clocks are pan-
tissue, developed using data generated from multiple
Aging is a multifactorial process that alters several tissues and representing a pattern of methylation
essential pathways, increasing the risk of death. Despite changes common across several tissues [1, 3].
its general nature, the underlying mechanisms leading to
the aging phenotypes still need to be well established. However, despite the success in identifying conserved
DNA methylation patterns across tissues, finding
One pressing question in the field is whether common common patterns with gene expression data has proven
pathways are altered with age across different tissues. more challenging. Several studies have compared
For instance, analyzing the methylation status of a small age-related changes in gene expression across tissues
number of CpG sites (epigenetic clocks) allows for in humans [6-11] and rodents [6, 11, 12], with
predicting an organism’s age with remarkable accuracy inconclusive results. While some report no overlap in
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differentially expressed genes with age between tissues,
others find subtle commonalities between a few tissues
at a process level but not at the gene level. Therefore,
whether tissues age differently or if common aging
alterations are reflected in conserved tissue-independent
transcriptomic changes is unclear.

Gene expression profiles and biological outcomes result
not only from wvariations in each gene’s specific
expression levels but also from co-expression patterns.
Gene co-expression is typically represented as a
correlation that measures how coordinated the
expression of any two genes is. Gene expression levels
and gene co-expression patterns, however, do not have a
direct relationship, and genes that vary in one
measurement may not vary in the other since changes in
mean expression do not translate to correlations. Given
that previous works on gene expression and aging
focused primarily on analyzing gene expression
changes, it is relevant to ask whether genes that do not
change expression levels with age may have altered co-
expression patterns, as not necessarily a gene must
change its expression to change a biological process.

Weighted co-expression networks, constructed with
pairwise gene expression correlations, provide a robust
framework for analyzing system-level changes between
different conditions [13]. In these networks, genes are
represented as nodes, and vertices indicate pairwise
relationships between genes. These relationships — gene
expression correlations — provide a weighted
measurement of the strength of the interaction between
two genes. Gene co-expression networks have been
successfully used in analyzing biological data, including
in the context [14—17] of aging.

Moreover, calculating specific network structural
measurements can serve as metrics for comparing
networks. One such metric is network connectivity,
representing each gene’s sum of the network adjacencies
(nodes). Therefore, connectivity in a gene co-expression
network measures each gene’s general correlation with
all other genes in the network. Another helpful metric is
eigenvector centrality, which scores nodes based on the
centrality scores of the other nodes they are connected to,
such that a node with a high eigenvector centrality will be
associated with nodes with high scores. Together, these
network features reflect distinct biological information
than gene expression levels.

Here, we analyzed changes in gene expression and co-
expression networks with age using RNA-Seq data from
eight tissues from the Genotype-Tissue Expression
(GTEx) project [18]. Our results demonstrate that
changes in gene co-expression reveal alterations that
cannot be revealed by analyzing changes in gene

expression alone, and that when both gene expression
and gene co-expression data are taken together a more
robust understanding of the regulation of gene
expression during aging arises, showing conserved
genes and biological processes, tied to specific protein
complexes, being modulated with age across different
tissues in humans.

MATERIALS AND METHODS
Dataset

Gene expression data (in TPM — transcripts per million)
were obtained from the Genotype-Tissue Expression
(GTEx) project. GTEx (v8 release) has postmortem
RNA-seq data from 948 donors aged 20 to 70, collected
from 54 tissues, totaling 17,382 samples. To increase
the power of the analyses and allow the division of the
dataset into age ranges, with an adequate number of
samples in each age range, we selected only tissues with
at least 800 samples (blood, brain, adipose tissue,
muscle, blood vessel, heart, skin, and esophagus).
Tissues were analyzed at the level defined by the SMTS
sample attribute in the GTExX annotation files.

Differential expression analysis with linear mixed
model

Let Yijk be the expression level (log2 normalized TPM +
1) of gene j in sample i of individual &, Age; be the age
of sample i, Sex; be the sex of sample i, Race; be the
race of sample i, Ischemia; be the time of ischemia of
sample i, Batch; be the experimental batch in which
sample i’s gene expression was measured, Death; be the
type of death, in the Hardy scale, of the donor from
which sample i was collected, and ¢ be the error term
(assumed to be normally and independently distributed
with var(e) = o’I). Then, we identified differentially
expressed genes for each tissue separately using the
following linear mixed model:

Yy =Py + B Age; + B, Sex; + b Race,
+ B, Ischemia, + B Batch,
+ B, Death; + B, Individual,

+ Ei

Individuals are considered a block random effect,
considering that some tissues have more than one
sample for the same individual. Ischemic time was
divided into 300-minute intervals to standardize the
procedure with the removal of confounding factors,
which was done in a later step. Random effects
(Individualy) are assumed to be normally and
independently distributed with var(Individual) = cind’I.
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Genes with no or slight variations in expression were
filtered out of the analysis. Selected genes had
expression higher than 0.1 TPM in at least 20% of the
samples. Depending on the analysis, genes needed to
satisfy an FDR (false discovery rate) [19] <0.1 or <0.25
to be considered differentially expressed genes (DEGs)
with age, considering BH multiple test corrections. The
higher threshold of 0.25 was considered due to the
rationale detailed in Results - Comparisons of altered
genes across tissues. The significance of these higher
threshold results is validated by the permutation tests
described in Methods - Permutation tests for the
intersection sets. The model was fit using the nlme
package in R [20].

Removal of confounding factors

For network analyses, expression was corrected for
confounding factors using ComBat from the sva R
package [21]. Since ComBat can only correct for one
effect at a time, effects were removed iteratively,
following the order of sex, race, experimental batch,
ischemic time, and death type. Since ComBat does not
accept continuous variables, ischemic time was divided
into 300-minute intervals.

Independence of connectivity and mean expression
levels

The connectivity of a gene in a co-expression network
is defined as the sum of that gene’s co-expression
values with every other gene in the network. In co-
expression networks, the co-expression between a pair
of genes is defined as the correlation in their gene
expression levels across samples (elevated to a soft-
thresholding power in the case of WGCNA).

Let x; and y; be the expression levels of genes X and Y
in sample i; ¥ and 7 be the mean expression levels of

genes X and Y across samples, and n be the total
number of samples. Then,

(%=X - )

n-—1

cov(X,Y)=

is the covariance between X and Y, and

/Z;@—ﬂz /ng—wz
Oy ={—"——— and o, =77
n-1 n—1

are the standard deviations of X and Y. Finally,
Pearson’s correlation coefficient (r) between a pair of
gene expression vectors X and Y is defined as:

_cov(X,Y)

Xy
GXUY

Consider a case in which gene Y is differentially
expressed between two conditions, and a value of ¢
increases its mean. If the increase of ¢ is observed
uniformly across all samples, the components in the
formulas related to Y suffer the following transformation:

yi_y_)(yi+c)_(.)_/+c):yi_.)—}

Therefore, if the increase in expression is uniform across
all samples, the covariances and standard deviations are
unaffected. This way, the correlation between X and Y
can remain the same in two conditions, even if Y is
differentially expressed between the two conditions.

Similarly, correlations between X and Y can change,
even if the mean expression values remain constant.
Consider two extreme cases:

I. ' Y =X, with y=x=c: all values of y in each

sample i are identical to the values of x in the same
samples, and means equal c;

2. Y =c, y=c: all Y values in each sample are
identical and, consequently, equal to their mean c.

In case 1, the values of Y in each sample are variable
and have a mean of c¢. Since Y and X are identical, their
correlation is one. In case 2, Y values are constant and
equal to ¢ in each sample. Since Y remains constant as
X changes, their correlation is zero. Less extreme cases
can be easily imagined.

Therefore, gene expression correlations between pairs
of genes can vary significantly between conditions,
even if their mean expression values remain unchanged.

Differential connectivity analysis

The dataset was divided into nine 6-year age ranges,
except for the last one, which had a 3-year range. This
division ensures that the smallest sub-dataset has at least
20 samples, the minimum recommended for WGCNA.
Connectivity and eigenvector centrality for each gene
were then calculated in each age range using the igraph
R package [22]. For comparison between networks, the
connectivities inside each age range were ranked, and a
linear regression was applied to detect differences in
ranked connectivities along the nine age ranges in the
two metrics. Depending on the analysis, genes were
considered differentially connected genes (DCGs) or
differentially eigenconnected genes (DECGs) with
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FDR<0.1 or FDR<0.25. The higher threshold of 0.25
was considered due to the rationale detailed in Results -
Comparisons of altered genes across tissues. The
significance of these higher threshold results is
validated by the permutation tests described in Methods
- Permutation tests for the intersection sets.

Permutation tests for the intersection sets

Intersection sets were tested for significance using
permutation tests.

Consider Gijx as the number of significantly altered
genes in tissue i according to regression j (differential
expression, differential connectivity, or differential
eigenconnectivity) using an FDR threshold &£ (0.1 or
0.25). We constructed 100,000 permuted sets p (without
replacement) of genes with the same size as each Gijk.

For example, for brain, we sampled without
replacement 100,000 sets of 530 genes (number of
DEGs at FDR<0.1), 100,000 sets of 7,699 genes
(number of DCGs at FDR<0.1), and 100,000 sets of
9,421 genes (number of DECGs at FDR<O0.1); with
additional three sets for the cases with FDR<0.25.

The same process was repeated for all eight tissues,
generating 100,000 sets of genes for each tissue, each of
the three regressions, and each FDR threshold (8 tissues
x 3 regressions x 2 FDR thresholds x 100,000
permutations). Therefore, each permutation p generated
48 sets, equivalent to all Gijk.

For each p, we calculated the intersections between
tissues, considering all the scenarios analyzed. The
proportion of permutations p with intersecting genes
higher than the observed values was used to calculate a
permutation p-value.

The higher threshold of 0.25 was considered due to the
rationale detailed in Results - Comparisons of altered
genes across tissues. However, despite this higher FDR
threshold chosen for filtering tissue-specific altered genes,
all intersection sets chosen for downstream analyses were
significant at FDR < 0.001 in the permutation tests.

Co-expression network construction and consensus
module identification with weighted gene co-
expression network analysis

Gene expression data for each analyzed tissue and age
range without the effects of known confounding factors
were used as inputs for the WGCNA package in R [23].
WGCNA  constructs  weighted gene co-expression
networks using a soft threshold and fitting the data into a
scale-free model. For each tissue, we sclected the

soft-thresholding power that resulted in networks in all
age ranges within that tissue achieving an approximate
scale-free topology index of 0.8. The chosen soft-
thresholding powers for each tissue were: 6 (blood),
6 (brain), 9 (adipose tissue), 12 (muscle), 8 (blood
vessel), 12 (heart), 6 (skin), and 6 (esophagus). We used
the consensusBlockwiseModules function for module
detection, with networkType set as ‘“unsigned”. All
parameters were kept at their default values. Sub-
modules were defined by overlapping the positive and
negative portions of the sets of genes of the three metrics
(positive and negative DEGs, DCGs, and DECGs) with
the modules defined by consensus modules analysis.

Functional enrichment analysis

All enrichment analyses were carried out with the topGO
R package [24], using the classic Fisher algorithm.
Annotations for each gene were retrieved from Ensemble
110 [25]. Multiple test correction was performed using
the BH method. Terms were considered enriched with
FDR <0.1.

For the enrichment of intersection sets, when the
number of terms was too large to display correctly in
the chart, we filtered by only showing the Biological
Process terms and, if necessary, removing the terms
with fewer genes annotated.

Cross-tissue analysis of connectivity changes

To analyze how the same genes behave in different
tissues regarding their connectivity, we only included
the 14,489 protein-coding genes present in the analyses
of the eight tissues (i.e., those that were not filtered out
in any tissue during the initial data filtering stage).
To facilitate cross-tissue comparison, we first reranked
connectivities using only the protein-coding genes
employed in this analysis (i.e., we removed all other
genes and recalculated a new ranking in each tissue,
including only the 14,489 genes analyzed here).

Our initial ranking included non-protein-coding genes in
the calculation to account for their contribution to the
information. Common, unfiltered non-protein-coding
genes across tissues could have been included in this new
ranking. However, given that we are only interested in
protein-coding genes, we excluded them from the new
rankings because non-protein-coding genes represent
around half of the genes available in the dataset, and their
connectivities are generally small compared to those
of protein-coding genes, being heavily concentrated in
the first half of the connectivity rankings. This feature
caused significant distortions in the histograms, making
visualization and interpretation of the behavior of
protein-coding genes (our primary interest) difficult.
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We created reference histograms for each tissue, which
are histograms of the connectivity ranks of the DCGs
for that tissue (referred to as the reference tissue). Given
an x-axis representing all the connectivity ranks in bins
of 100 ranks, the reference histograms show the
connectivity distribution of all genes analyzed. Four
reference histograms were constructed for each tissue:
positive and negative DCGs in age range one and
positive and negative DCGs in age range nine.

After constructing the reference histograms, other
histograms were constructed. For each gene considered a
DCG in a reference tissue, the connectivity ranks of these
genes in different tissues (referred to as target tissues) are
presented, regardless of whether they are also DCGs in
these other tissues. In cases where DCGs are present in
both the reference tissue and the target tissue, the regions
representing them in the histograms are colored (red for
positive DCGs and blue for negative DCGs).

Changes in correlations were tested for significance using
the cocor R package [26], with the cocor.indep.groups
function, using Fisher’s z.

Comparison of enriched terms across sub-modules

To compare the results of the enrichment analyses
between different sub-modules, we listed all enriched
terms with FDR < 0.1 in any sub-module. We
constructed a binary matrix with enriched terms in the
rows and sub-modules in the columns. Entries had a
value of 1 in the matrix if a term was enriched in the
respective submodule. The terms were then filtered.
First, terms found in fewer than four tissues were
removed to focus on processes common across tissues,
resulting in a final list of 2,310 terms. Secondly, terms
found in the first four and last six levels of the ontology
tree from the Biological Process Gene Ontology tree
were removed, with the rationale that this strategy
removed terms that were too general or too specific to
yield relevant biological information. Finally, we
removed all the columns (sub-modules) that displayed
no entries after the previous filtering. After filtering,
1,956 terms were included in the matrix. These steps
ensure that: 1) our matrix of terms per sub-module is
less sparse (with a higher density of 1 values), making it
easier to cluster, interpret, and present (due to its
smaller size); and ii) reduce the number of terms to a
smaller value that is within the limit of the tool we used
for the analysis of semantic similarity (Revigo [27]),
which accepts at most 2,000 terms as input.

This binary matrix was then clustered into 8 clusters
using the hclust function from the stats package in R
[28], using the Ward.D clustering algorithm [29]. The
results were presented as a heatmap using the

heatmap.2 function from the gplots package in R. The
same list of enriched terms that comprise the heatmap
rows was then summarized using the online tool Revigo
[27]. Revigo summarizes lists of Gene Ontology terms
based on their semantic similarities and creates a chart
where the distances between points represent their
semantic distances. Next to the terms, we included the
number of tissues each term is enriched in (considering
any sub-module in that tissue). Our list of terms was
summarized using the following parameters in Revigo:
SimRel semantic similarity algorithm, “Small” option
for the size of the final list, “Yes” for removing obsolete
terms, “Homo sapiens” for the species, and “Higher
value is better” for the interpretation of the additional
value (in our case, the number of tissues in which the
enriched term is present). The R code for reproducing
the chart was then downloaded, and, within R, a
variable containing the ID of the cluster in which the
hclust function clustered that term was added. The final
chart was plotted using the number of tissues as a
variable to define the size of the points and the cluster
variable to define the coloring of the points.

Protein-protein interaction (PPI) network analysis
with STRING

The PPI networks were analyzed using STRING [30],
which utilizes the STRING extension for Cytoscape
[31]. For constructing our networks, we used scores of
at least 0.7, which are considered high in STRING. We
queried genes in the 427 set and the 134 set not already
included in the 427 set (these sets represent the sets of
genes that change in common across 7 and 8 tissues,
and how they were selected is described in Results —
Comparison of altered genes across tissues), for a total
of 506 genes, of which 505 were identified in the
STRING database.

Gene overlaps

Gene overlaps and overlap significance statistics were
calculated using the GeneOverlap R package [32].

Data availability

The raw data used in this study’s analyses are available
through the Genotype-Tissue Expression (GTEX)
project at gtexportal.org/home.

RESULTS

Detection of tissue-specific differentially expressed
and connected genes

For this study, we used data from the GTEx project
(version 8), which has whole transcriptome data for up to
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54 tissues from 948 postmortem donors. To maximize
statistical power, we aggregated sub-tissues and selected
only tissues with at least 800 samples each. We then
analyzed the blood, brain, adipose tissue, muscle, blood
vessels, heart, skin, and esophagus data. The data was
processed as described in Methods. Figure 1A shows a
general schematic of data processing and analysis.

The differential expression and connectivity analyses
were then carried out as described in the Methods section.

Linear regression

For the differential connectivity analyses, the dataset was
divided into nine age ranges (Supplementary Figure 1),
and networks were constructed using WGCNA [23]
(Methods). All results obtained from the three regressions
are presented in Supplementary Data 1. For all metrics,
genes were considered altered with FDR <0.1.

The number of differentially expressed genes (DEGs),
differentially connected genes (DCGs), and differentially
eigenconnected genes (DECGs) varied considerably by
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tissue (Figure 1B). Notably, many tissues demonstrated
relative stability in either the differential expression
analysis or one of the connectivity analyses. Blood, brain,
muscle, and blood vessels all clearly fall into this
category, having many DEGs or DCGs/DECGs, but not
both simultaneously. Adipose tissue had many significant
genes in all analyses, but a clear tendency towards having
more DEGs than DCGs can be seen. Only the heart, skin,
and esophagus had relatively similar numbers of DEGs
and DCGs/DECGs (though very few in the heart).

Only a small proportion of genes were simultaneously
DEGs and DCGs/DECGs (Figure 1C). The p-value
distribution of the expression and connectivity
regressions against one another shows a significant
discordance between the metrics (Supplementary Figure
2A). A similar behavior is seen when comparing
the expression regression with the eigenconnectivity
regression (Supplementary Figure 2B). On the other

hand, the connectivity and eigenconnectivity regressions
show remarkable concordance (Supplementary Figure
2B), suggesting these metrics measure similar biological
effects.

These results demonstrate that even in tissues with a
high number of significant genes across all metrics—
such as adipose tissue, skin, and the esophagus—there
is a clear tendency for the genes that alter gene
expression levels to remain unchanged in one of the
connectivity metrics, and vice versa.

Comparisons of altered genes across tissues

To compare the genes found in each tissue, we counted
the number of tissues in which each gene was changed in
each metric. We define sets of genes changing in
common across different tissues as intersection sets. The
results for DEGs and DCGs are shown in Figure 2A.
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Most intersection sets are significant considering
permutation tests (see Methods). Non-significant sets
are either in very few tissues (DEGs in 1 and 2 tissues
and DCGs in 1 tissue) or in tiny sets in many tissues
(DCGs in 5 and 6 tissues). Results, including DECGs,
are similar (Supplementary Figure 3).

The non-significance for the sets in one tissue is
expected, as they are not true intersections and only
indicate that most genes are altered in at least one
tissue, demonstrating the heterogeneous component of
tissue aging.

Given the discordant nature of the differential
expression and differential connectivity regressions
(Supplementary Figure 2A), we asked whether genes
that are DEGs in some tissues might be DCGs or
DECGs in other tissues. This is relevant because both
analyses detect changes in transcriptomic behavior,
even if the changes are different and independent (see
Methods section for a demonstration of the
independence between the two metrics). We then
considered four scenarios:

1. Whether the gene
(DEG/DCG/DECG);

changed in any metric

2.  Whether the gene is a DEG and/or a DCG;
3.  Whether the gene is a DCG and/or a DECG or
4. Whether the gene is a DEG and/or a DECG.

The results show that although most genes changing
with age are tissue-specific or shared between a few
tissues, when intersections between tissues are
considered wusing different metrics to  assess
transcriptomic behavior, a core of common genes
changes across tissues (Figures 2A and Supplementary
Figure 3).

Interestingly, gene sets in scenarios including DEGs and
one of the connectivity metrics (DCGs or DECGs) in
many tissues were significant, including in eight tissues.
Sets that include DCGs and DECGs simultaneously,
however, were insignificant. This can be understood
considering that DCGs and DECGs overlapped
significantly (Supplementary Figure 2B), which makes
considering both partially redundant, while permuted
sets would be more significant (see Methods).

The small intersection set in eight tissues is caused by
the heart. Interestingly, the distribution of raw p-values
in the heart does not match what would be expected if
the null hypothesis were true for all genes (i.e., none are
changing) (Supplementary Figure 4), as can be observed

for blood in the differential expression regression
(Supplementary Figure 4).

While a typical scenario of FDR correction with so
many tests when there are close to no significant genes
can be observed in the FDR density histogram for blood
in the differential expression regression, the same
density histogram in the heart displays a very different
pattern, with most FDRs clustering around 0.20-0.25.
Additionally, when we plot the FDR distribution of
genes belonging to the three sets encompassing more
tissues using FDR < 0.1, they cluster around the 0.20-
0.25 range in the heart (Supplementary Figure 5). This
pattern strongly suggests a non-random distribution of
p-values and raises the question of whether the genes
that cluster around 0.20-0.25 FDR in the heart are
meaningful.

To analyze this, we considered two additional scenarios
for the intersection analysis, where we raised the FDR
threshold to 0.25:

(i) Considering genes significant at FDR < 0.25 only
for the heart and

(i) Considering FDR < 0.25 for all tissues.

It is essential to note that while increasing the FDR
threshold increases the probability of including tissue-
specific false positives, this shortcoming is mitigated in
the next step of the analysis, where we assess the
significance of the intersection sets. Essentially, an
actual false positive would be a completely random
gene that was below the FDR threshold due to chance
alone. However, if the same gene was below the FDR
threshold (0.10 or 0.25) in 7 or 8 tissues, then it is
extremely unlikely that we are observing a false
positive. In other words, true randomness would cause
random genes to cross the threshold in different tissues,
resulting in very low cross-tissue intersections. So, if a
sufficiently large number of genes are crossing the
threshold in 7 or 8 tissues, then they are extremely
unlikely to be random false positives.

To put it in a slightly different way, any gene that was
a false positive in one tissue due to a higher FDR
threshold would likely not end up in the final
intersection sets, especially in those intersection sets in
7 or 8 tissues, since it would have to coincidentally
also be a false positive in all of these other tissues. In
essence, the intersection sets in a high number of
tissues ultimately exclude false positives. This means
that our goal here should be to test whether the number
of genes in the intersection sets is large enough to rule
out the probability of them being coincidentally false
positives.
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Indeed, both additional scenarios yielded significant sets
in 5, 6,7, and 8 tissues (Figure 2A); of particular interest
are the sets in 8 tissues for both scenarios, with 49 and
427 genes, which represent conserved sets of genes that
display transcriptomic alterations across all tested tissues
during aging. Both were significant at FDR < 0.001 in the
permutation tests, indicating that despite using a higher
FDR threshold (0.25) to filter tissue-specific results, the
resulting cross-tissue sets are highly significant.

Since the results for the connectivity and eigen-
connectivity analyses were well correlated, we focus
on DEGs and DCGs in most analyses. Henceforth, we
will refer to the sets of genes presented in Figure 2A as
“intersection sets,” the specific sets of interest (with the
combination of DEGs and DCGs) will be called 3-set,
49-set, 427-set, and 134-set. Figure 2B shows a Venn
diagram overlapping these sets of interest.

GO enrichment analysis of intersection sets

We performed a GO enrichment analysis of the
intersection sets using the topGO R package. Given that
we are not interested in tissue-specific changes but
rather in intersection sets across most tissues, we limit
the results to intersection sets comprising fewer than
5,000 genes, as shown in Figure 2A. Supplementary
Data 2—4 contain enrichment results for all these sets.

In Figure 3, we show the results for selected intersection
sets. The sets shown are those with the most tissues for
which enrichment results identified significant terms in
the Biological Process ontology, accompanied by a
reasonable number of essential genes annotated.

While the DEGs chart displays immune system-related
terms not found in the DCGs chart, they both contain
terms related to RNA splicing and DNA damage
response. Furthermore, while the set of DCGs in 4
tissues was not chosen because of the previously
mentioned criteria, its analysis shows enrichment in
Cellular Component terms for the spliceosomal
complex (Supplementary Data 2). This indicates that
four tissues display good evidence for -enriching
intersecting DEGs and DCGs related to RNA splicing
and DNA damage response.

The selected intersection sets in seven or eight tissues
show similar results, with enrichment in RNA splicing,
RNA processing, and response to DNA damage. The
FDR distribution of all RNA splicing and processing
genes corroborates the tendency of these genes to be
located in the areas of greatest significance in the charts
of all tissues. It reinforces the tissue-specific discordant
behavior of the genes in the two regressions
(Supplementary Figure 6).

It is important to note that the term “RNA splicing” is
a direct child of the term “RNA processing” in the
Biological Process ontology tree, meaning that RNA
splicing genes are contained in the RNA processing
set.

DNA damage response is not found in the 49-set but is
in the 427-set, along with terms related to protein
catabolism, autophagy, and ribosome biogenesis.
Supplementary Figure 7 displays the induced GO
subgraph of the top 20 enriched terms in the 134-set.

In most tissues, genes in these sets are predominantly
upregulated in at least one of these two metrics
(Supplementary Figure 8), except for blood vessels,
which have a mixed profile, and the heart, in which
most genes are negative DEGs.

Furthermore, negative DEGs, including those in the
427-set, tended to be highly expressed in younger
samples (Supplementary Figures 9, 10). In fact, in blood
vessels and the heart, where there was a higher
proportion of negative DEGs, both overall and in the
intersection sets, the negative DEGs remained highly
expressed in older samples, even with the decreases,
indicating that most negative DEGs remain necessary
for cellular function.

Changes in connectivity between young and old
samples tended to be more dramatic, with DCGs in the
427-set and the splicing genes tending to become more
highly connected at older ages (Supplementary Figures
9, 10). The most apparent exception seems to be skin,
where most splicing and 427-set genes decrease their
connectivities (Supplementary Figures 8, 9). The 134-
set and the 49-set show similar results (Supplementary
Figure 10).

Cross-tissue analysis of connectivity changes

It is puzzling that some tissues tend to have more DEGs
or DCGs but not both. Even in the skin and esophagus,
where the number of DEGs and DCGs was more
balanced, the genes changing in one metric did not
change in the other. To explore this phenomenon, we
analyzed the distribution of DCG connectivity ranks in
each tissue against the connectivity ranks of the same
genes in the other tissues (see Methods).

The results indicate that positive DCGs in each tissue
tend to be among the lowest or middle-ranked genes in
their tissues in younger samples (Figure 4A). However,
when we examine the connectivity rank histogram of
these same genes in other tissues, we observe a
contrasting scenario, with the same set of genes being
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In older samples, the DCGs changed their rankings as
expected, such that the connectivity ranking pattern
of these genes more closely resembles the pattern
they already displayed in other tissues. This suggests
that gene connectivity is reorganized in some
tissues, and that in tissues where these genes are not
changing their connectivities, it is likely because
their connectivities were already roughly at the
physiologically ideal level.

significantly more highly ranked in the different tissues.
For example, positive DCGs in the blood are among the
low and middle ranks regarding connectivity. However,
the same genes that are positive DCGs in blood tend to
be more highly ranked in other tissues.

Negative DCGs show similar behavior with inverse
logic. The only exception is skin, since its negative
DCGs are highly ranked in many other tissues.
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Figure 3. GO enrichment analysis of intersection sets. Terms significant at FDR < 0.1. In cases where too many terms were enriched
only Biological Process terms are shown. When that still yielded too many results, further filtering was performed by removing terms with the

least number of genes.
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A Histogram of DCGs in reference tissue on other tissues
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Figure 4. Cross-tissue analysis of DCGs. (A) DCGs in reference tissues projected on other tissues in younger and older samples. Colored
portions of the histogram represent positive (red) or negative (blue) genes DCGs in the reference and target tissue. Grey portions represent
genes that are DCGs in the reference tissues but not in the target tissue. (B) Comparison of changes in correlations of connectivity ranks
between younger and older samples. Significance levels: FDR<0.1 (*), FDR<0.01 (**), FDR<0.001 (***).
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This convergence of connectivity ranks is evident when
comparing the correlations of connectivity ranks
between pairs of tissues in the younger and older age
ranges. Correlations are consistently significantly
increased in all tissues, except correlations involving the
skin, which are consistently considerably decreased
(Figure 4B — first panel).

A similar pattern can be seen when considering only the
intersection sets or all RNA processing and RNA
splicing genes (Figure 4B—second to fifth panels). In
these cases, however, the reduced number of genes
makes it more challenging to determine the significance
of all comparisons, especially for the 49-set, even when
the increase in correlation is significant (for example,
see the comparison between brain and muscle in the 49-
set).

Consensus network and GO enrichment analysis of
age-related sub-modules

While only a few common genes appear to be changing
across 7 or 8 tissues, we inquired whether other genes
changing in fewer tissues could exhibit similarities at
the process level.

We used WGCNA to build an unsigned consensus
network for each tissue’s nine age ranges. This allowed
us to identify conserved gene co-expression modules
that were present in all nine datasets. After obtaining
these modules, we overlapped them with DEGs, DCGs,
and DECGs and divided them into positive and negative
portions. This led to the definition of sub-modules,
where each sub-module comprises the positive or
negative DEGs, DCGs, or DECGs contained in that
module.

By dividing the DEGs, DCGs, and DECGs using the
modular structure provided by WCGNA, we group
them into sets likely to be related to the same biological
processes and, therefore, identify them based on a
functional enrichment analysis.

Since enriching these sub-modules generated many
lists of terms, we first summarized them in a heatmap
format (Figure 5A and Supplementary Figure 11).
Then, we used Revigo to display the results (Figure
5B) (see Methods for a detailed description). Complete
enrichment results per module can be found in
Supplementary Data 5-7.

The green rows/terms cluster contains sub-modules
enriched in RNA splicing and processing, the same
processes enriched in the intersection sets (Figure 5A
and Supplementary Figure 11). Inspecting the heatmap
and Revigo results (as well as Supplementary Figure 11

and Supplementary Data 5-7) show that, in addition to
the RNA splicing and processing terms, other processes
were frequently enriched in the sub-modules in the
same green cluster, such as proteolysis, protein
catabolism, autophagy, and ribosomal biogenesis.

Additionally, the grey cluster displayed a considerable
overlap in sub-modules with the green cluster and
contained terms related to DNA repair and DNA
damage response. This suggests that these processes
change in a coordinated fashion during aging, which
was already indicated with the enrichment of the 427-
set (Figure 3).

These terms’ sub-modules are grouped in the blue, lilac,
and yellow columns/submodule clusters (Figure 5C).

Subsequently, we counted the number of DEGs and
DCGs in the intersection sets in each module in each
tissue (Figure 5D). Most genes in the intersection sets
are grouped in the first (and largest) modules, which
contain sub-modules in Figure 5C.

Only the heart and skin display different behaviors. This
is expected in the case of heart since the sub-modules
were defined using only DEGs and DCGs with FDR <
0.1, which were very few.

Only M7 submodules related to skin are found in the
blue cluster (Figure 5C). Almost all M2 submodules,
which concentrate more genes in the intersection sets,
had no enriched terms (Supplementary Data 5-7),
explaining why they were not clustered in Figure 5A.

M1 and M5 skin submodules are present in Figure 5C
but are contained in the yellow submodule cluster,
which, although it has a pattern of terms similar to the
blue submodule cluster, has a higher number of terms
from the gray cluster, related to DNA repair and
response to DNA damage.

The M3 skin module has enriched terms in the
submodules for positive DEGs, negative DCGs,
and negative DECGs (Supplementary Data 5-7).
However, they are more enriched in terms of
ribosomal biogenesis, translation regulation, and RNA
processing. Only in the submodule of negative DECGs
do terms related to RNA splicing appear enriched at
FDR <0.1.

These results show that although the genes in the
intersection sets were the only ones changing across
tissues, they associate with modules that contain other
genes that are changing in a tissue-specific manner,
related to similar processes, which act in a coordinated
fashion with the genes in the intersection sets.

WWWw.aging-us.com

2927

AGING



Sub-modules ! B Clusters of GO terms
i
4] H e .
£ 5 h Cluster N° of tissues present in
= e —
3 L
2 l . -e0@
(U] H
T 45 6 7 8
C Pos  Neg i DNArepair(6)
© I i I DNA
3 298 vad H I rRNA i I poubl
B VB0 VYO [ (s "
= 288 8238 g |uiBbosomebloghners . it
1 |
Blood|? <
5 5 : Electron transport chain (7)
7 8|
Brain|2 P N D ®
14 g i ]| Regulationof mRNA | O Y
{ || _processing(e) ___ 1 ®
2 W< >
a | (@]
[ 10 H °
2 15 s @
3 Adipose T.|17 H W nNAdamagerespose(ﬁ)
'g 18 ¢ ° = Sumonlt] o o '
20 ix ardiac conduction
£ 21 i3 @ . ® @
& 25 H i
r-} g -4
S 28 g 1%
@ 1 3 :rg ] ®
"5 Muscle|6 o :5
7 k] £
E 1 = e Defense responset tovirus (8)
H efense responsetovirus
% 7 Be Myeloid cell differentiation (8) ! Responsetobacterium(7)
5 11 H Neuron differentiation (7) nateimmune response (7)
S x; - ' ! Granulocyte differentiation (8) -
}7 S ! Osteoclastdmeremlauonm
B. Vessel|18 :
26 :
27 = :
as | W 3 :
53 3 H |
R L
Heartla (W] 28 : 1" Ribosomal small subunit biogenesis (5) ]
1 < : ! Ribosomallarge subunit biogenesis (4) | F
H i | Ribosomeassemoly(4) BN oo TR i i
7 | cardiac chamber morphogenesis (7)
skin|s : angiogenesis (5)
1 | | skeletal muscletissue development (5)
15 i -0 :
18 :
1 :
Esophagus| i H
s :
D Intersection sets in consensus modules
Blood Brain Muscle
MiM3 ME MO M M2 M3 M4 WS ME M7 (M8 Mi2 Mi4 MiS MO M1 M2 M3 M4 M5 M6 M7 M8 MO Mi1
I I J e
S 100
1 DU e e )
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC C ABC ABC ABC ABC ABC ABC ABC
Adipose T. Esophagus
5o MO T M3 M) M M M (M9 MTO Y TS MTA WS 1S Mo Mo M2t 25 2B 130 s NsS MO M1 M2 M3 M4 M5 M6 M8 MO W10 Scenarios
@ .,w g A: 134 set
3| &% 8% B: 427 set
g"’”ll ‘._.__l_-..-._.-.-_., oy o Oz M ! ! oW s e g
E ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC /\UC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC C: 49 set
3 skin Heart
B MO, M1 M2 M3 (M S MO M7 MB MO MT T2 MIS MIG MTB MO M1 M2 NS e
80 2 v
2| se 2 O
Q| §4o J_ 8 8
‘”ﬁ.l..‘. o] Wl 0 byt e 20 Soml e : i ] P o) 2 a 8
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC C ABC ABC ABC ABC ABC ABC h 8
B. Vessels 9 a
MO M1 M2 (M3 M4 S (M6 M7 (M M9 MTO MTA A2 M4 TS MTG AT M8 MTO M21 M23 M24 M2 W26 M2 M29 3O M2 O3 M3A MOT M3B WA W8 Sz WSS O )
v >
Sto 2%
1 s
'_.l_I_J- O 10 e o ol Bl 25 S0 L R4S S0 i 1o el Vs i taey pnml R ORERIIEY | 8 @
AB(' ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC AB(‘ AB IC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC /Y
Blood Brain Esophagus
MO M1 M2 WS M4 M5 M6 M8 M10 MO Mi M2 M3 WA M5 M8 M7 M8 MO M1O M11 Mi2 M13 M1s MiS MO M1 M2 M3 WA M5 M6 M8
® - 150 ": 200
2200 8100 8150
& & S0
o P BRI o 1295 ol bt i) b ol ] 31 AL o-n e . B &
@ ABC ABC ABC ABC ABC ABC ABC ABC ABC )\BC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC I\BC ABC ABC ABC ABC ABC ABC AB(, ABC
3 Adipose T. Skin
E MO M1 M2 M3 M4 M5 M8 M7 M8 MO M1O M13 M14 MIS Mi8 M21 M24 M25 M26 M28 MO M1 M2 M3 MA NS ME M7 M8 MO MIY Mi2 MiS M18
=| 82
2 & 1 N
10° Z‘|
2 vl  H B ...I---."’ S5 o PR SIS o e it 1 )
8 ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC AE\C ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
C] B. Vessels Heart Muscle
1o, MO ME (N2 e M M M7 WS (MO MTO ATA Mi2 M1S MG W19 23 A NS 26 2D M2 M WA Mo M1 b2 (W) M WS o e
5”1 1l k |
10 10
oI D ) 25 U 1 2 ) 5 e L S B L] [
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC AEC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC

Figure 5. Consensus modules analysis. (A) Unlabeled heatmap of similarity between terms enriched in sub-modules. (B) Semantic
similarity of the terms in the heatmap with Revigo. The size of the dots on the chart represents the number of tissues in which that term is
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found, and the coloring of the dot represents the cluster of terms/rows in which that term is found. The size and coloring are based on the
term chosen to represent the cluster. Terms contained in some points in different regions of the chart are highlighted and described in the
text boxes. The numbers in parentheses next to the terms represent the number of tissues in which that term is enriched (which may or may
not be equal to the value for the representative term of the same point). (C) Sub-modules enriched in terms contained in the green and gray
terms/rows clusters. (D) Overlap between consensus modules and genes in the intersection sets. The red and blue portions of the bars

represent positive and negative DEGs/DCGs.

Protein-protein
analysis

interaction prediction network

Co-expression relationships do not identify the molecular
mechanisms through which biological interactions
manifest. Therefore, to determine whether there are
physical associations between the protein products of
these genes, we constructed protein-protein interaction
(PPI) networks using STRING. The STRING database
has curated and predicted protein-protein interactions
based on several inferences.

Several proteins in the analysis have strong evidence
of being part of physical complexes (Figure 6A, 6B).
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Many of them cluster into very well-defined physical
complexes. As expected from our previous results,
several interact in the spliceosome.

Additionally, many ribosomal proteins (both cytosolic
and mitochondrial) are present, along with translation
initiation and elongation factors. Several proteins
involved in transcription and chromatin remodeling, as
well as proteins involved in ubiquitination and
proteolysis, are clustered. The PP1 complex highlighted
is also involved in regulating RNA splicing [33].

The complexes identified in this analysis delineate a
continuous path, with the transcription of mRNAs being

STRING protein-protein interaction networks

Physical subnetwork
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Figure 6. STRING PPI physical subnetwork. (A) Color coding for the nodes in the network indicating to which intersection set the
corresponding genes belong. (B) Physical subnetwork. The network includes links with a confidence score of at least 0.7 in STRING. Singletons

(unconnected nodes) are omitted.

WWWw.aging-us.com

2929

AGING



followed by RNA splicing and processing and
subsequent translation in the ribosomes, after which
proteins are sent to the ER. During this process,
damaged or misfolded mRNAs and proteins are
degraded. The degradation of proteins is represented in
the network by proteins that promote the ubiquitination
of other proteins and tag them for degradation, as well
as some protease-related proteins. In mitochondria, in
addition to the mitochondrial ribosome, some proteins
are components of the electron transport chain.
Interestingly, only components of Complexes I (NADH
dehydrogenase) and 111 (cytochrome ¢ oxidase) seem to
be altered. Similar results are seen in the whole network
(Supplementary Figure 12).

DISCUSSION

Several studies have attempted to identify similarities in
gene expression across tissues using different strategies
[6-12, 34, 35], including employing WGCNA [14, 17].
Still, no common patterns were found at the gene level,
and very few were found at the process level.

Our work’s initial premise was that differential
expression analysis alone cannot detect all alterations
that occur in the transcriptome with age, and that a lot
of information is lost when only changes in absolute
expression levels are considered. This lost information
may be able to explain why there has been so much
difficulty in finding clear common patterns in
transcriptomic changes with aging across tissues,
especially in terms of individual genes. We
hypothesized that part of this information may be
contained in changes in co-expression (reflected in
network topological metrics), under the assumption that
some genes may not display differences in absolute
gene expression levels with age but may change the
patterns with which they co-express with others. This
combined approach yielded very different results from a
traditional differential expression analysis, revealing
patterns of transcriptomic changes that cannot be seen
by looking only at absolute gene expression values, as
even tissues with very few DEGs displayed a
considerable amount of DCGs and DECGs, and vice
versa.

Our results demonstrate that a core of genes is being
altered across tissues, and this core is significantly
enriched in RNA splicing and processing terms, in
addition to being well-connected in PPI networks.
However, these changes are captured by differential
expression or differential connectivity analyses, but
rarely in both.

This demonstrates that looking only at differential
expression may lead to an incomplete picture of the age-

related transcriptomic adjustments some tissues undergo.
For instance, given the preponderance of DCGs in blood
and brain, it is no surprise that no common set of DEGs
would be found between them and other tissues. Any
analysis comparing only DEGs using these two tissues
would miss the reality that these tissues display
transcriptomic changes with age reflected much more
heavily in co-expression/connectivity-related changes
than in absolute expression changes. Therefore, ignoring
the differences in connectivities in some tissues may
lead to a false notion that they do not display age-related
transcriptomic changes in a common set of genes.

Additionally, we believe that the results obtained by
relaxing the FDR threshold to 0.25 in the first step of
the analysis, and then verifying the significance of the
intersection sets in the subsequent step with permutation
tests using stricter thresholds, reinforces our results,
since a pattern emerges regarding who is included in the
intersection sets as the FDR threshold is increased.

Making an analogy, one way to think of this is to
imagine the entire biological network and picture an
imaginary circle within it that contains a small cluster of
well-connected genes that change in common across
tissues according to a certain significance threshold, and
which seems to be primarily enriched in RNA splicing.
As the significance threshold is increased, this circle
expands, encompassing genes that were neighbouring
the initial small cluster, which includes (i) more RNA
splicing and processing genes, (ii) more genes in
processes immediately upstream and downstream to
RNA splicing, and (iii) more genes whose protein
products are well connected to the previous PPI
network. This denotes a non-random pattern of
inclusion, which has a clear biological meaning.

The contrasting scenario would be if increasing the
significance threshold led to other random circles
popping up all around the biological network, indicating
no clear pattern. This would be expected if the inclusion
of genes in the analysis, due to the higher FDR threshold
of 0.25, had resulted in false positives. It would require
an extremely improbable data distribution to generate this
clear pattern of inclusion if the significant genes at FDR
0.25 were purely the result of chance. Therefore, this
pattern of inclusion when increasing the FDR threshold
reinforces the results. When this logic is considered, the
question ceases to be whether there is a common set of
genes related to specific enriched processes changing
across tissues with aging, and a new question arises as to
why these different tissues undergo transcriptomic
changes in varying ways.

At least for DCGs, differences can be explained mainly
by the fact that the connectivities of genes in each tissue
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are reorganizing so that their rankings converge with age,
with skin being the only exception. This behavior could
indicate that these changes reflect responses to a common
stimulus. Supposing the burden of defective spliced
RNAs and malformed proteins increases with age, it
seems reasonable for all tissues to reorganize themselves
to deal with this problem. However, given that different
tissues will have different starting points regarding the
connectivity of each gene, it makes sense that how many
genes will change in a given tissue and the trajectory of
these changes will be different according to tissue, even
if the endpoint might be approximately the same. Some
tissues might already have a specific configuration of
connectivities of their genes at young ages that allow
them to deal with higher burdens of aberrant splicing and
malformed proteins. In contrast, others may be more
susceptible to this alteration and may need to promote
a more robust reorganization of their molecular network
to deal with the increased burden of age-related
protein malformation. Therefore, a standard stimulus
may condition different tissues to converge to a similar
adaptive state.

One possibility for the different behavior observed in
the skin might be that it is the only tissue analyzed that
is directly exposed to the external environment, with a
greater impact of exogenous factors than in other
tissues, creating a different pattern of reorganization.
Nonetheless, there is mostly upregulation of DEGs in
the intersection sets for skin, indicating that the burden
of defective spliced RNAs may indeed be greater. The
fact that many negative DCGs in the skin are also
positive DEGs (Supplementary Figure 8), including
RNA processing and splicing genes, indicates that they
require an increased activity of these processes with
age. Furthermore, a significant subset of genes in the
intersection sets and RNA splicing sets are positive
DCGs, indicating, to some extent, a greater necessity
for these genes.

Alternative splicing is a fundamental process in
eukaryotes that allows the same gene to encode multiple
different transcripts, with approximately 95% of multi-
exon genes producing transcripts that undergo
alternative splicing [36]. Therefore, it is intuitive
that alterations in the splicing machinery would
have systemic effects on the biological network.
Additionally, alternative splicing is a crucial mechanism
for determining tissue identity and homeostasis,
enabling the same genes to express different isoforms in
various tissues according to the specific tissue’s needs
[37, 38]. This tissue-specific character of splicing
means that common cross-tissue alterations in the
splicing machinery can lead to different downstream
effects in different tissues, possibly explaining tissue-
specific signatures of age-related gene expression.

Indeed, aging appears to be accompanied by a high
incidence of aberrant splicing and intron retentions in
C. elegans, fruit flies, mice, and humans [39—44].
Additionally, differential expression of splicing factors
has also been found to be associated with aging
[39, 44-49]. Changes in alternative splicing are also
observed in several age-related diseases [49].
Modulation of specific splicing factors has been shown
to increase lifespan in model organisms [50, 51], and
splicing appears to be modulated in model organisms
during dietary restriction and mTOR inhibition
[41, 42], two known lifespan-promoting interventions.
Spliceosome activity also seems to have a role in the
regulation of cellular senescence [52], a process that is
associated with aging. Notably, Mariotti et al. (2022)
[43] showed an increase in these events in the same
GTEx dataset for several tissues. Most tissues they
analyzed showed an increase in intron retention with
age. This includes heart and blood vessels, for which
we detected decreased RNA processing/splicing
expression in the intersection sets. One possible
explanation for the observation that these tissues have a
higher aberrant splicing burden, but less expression of
splicing genes, is that the changes in connectivity ranks
are taking the lead in adapting these tissues to this
alteration. Since both tissues display a convergent
pattern of connectivity ranks, these changes may
already be boosting the adaptation to aberrant splicing
as much as the tissue can. Furthermore, the negative
DEGs in the intersection sets do not result in a dramatic
decrease in expression.

Determining the cause of this increased incidence of
aberrant splicing is currently impossible. One hint is the
presence of genes associated with DNA repair and DNA
damage response. The idea that DNA alterations cause
aging is one of the most classic theories of aging
[53, 54], and DNA damage is a hallmark of aging [55].
It is possible, therefore, that damage to DNA is leading
to aberrant splicing. Indeed, there seems to be a
connection between RNA splicing and DNA damage
response [56], even at the transcriptional level.
Furthermore, previous studies have shown that the
expression of DNA repair genes is positively associated
with species’ maximum lifespans [57-59], and that
transcriptional signatures related to maximum lifespan
seem to present similarities with those seen during
aging in a tissue-specific manner [60].

The processes clustering with RNA processing/splicing
in the same modules are interesting because they all
coordinate during the protein production cycle. They
can be easily interpreted in light of what we know
about aging and the lifespan extension promoted by
mTORCI1 inhibition. Inhibition of mTORCI1, through
genetic or pharmacological means, is one of the most
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studied methods of life span extension and works in
several organisms, including mice [61-76]. mTORC1
is a central regulator of autophagy [77]. Therefore,
higher expression and relative connectivity of auto-
phagy and proteolysis/protein catabolism genes, as
indicated in our enrichment results, demonstrates that
these mTORC1-related processes are more prominent
during aging (see Figure 5 and Supplementary Data
5-7). Loss of proteostasis is also a hallmark of
aging [55], and aberrant splicing is a cause of
malformed proteins, which demand more protein
degradation mechanisms to remove these malformed
proteins.

Lastly, ribosomal biogenesis has also been associated
with aging [78]. The presence of these processes in
the modules found here also suggests that they work
in a coordinated fashion. Higher rates of splicing
abnormalities may lead to more malformed proteins,
which will demand more protein degradation machinery.
Given the folding challenges, such aberrant mRNAs
may create difficulties for the ribosomal machinery since
they may take longer to translate. Therefore, we could
speculate that this increased occupancy of ribosomes
would end up signaling for the biogenesis of more
ribosomes to decrease the amount of mRNA in line to be
translated.

From the results described here, it is reasonable to
imagine a scenario in which the age-associated increase
in aberrant mRNAs, proteins, and eventually organelles,
which were negatively affected by malfunctioning
proteins, may impose significantly on catabolic processes
such as RNA catabolism, protein catabolism, and
autophagy. Lifespan extension by mTOR inhibition may
thus be working by inducing the clearance of these
defective components. Since these clearance mechanisms
seem upregulated with age, mTOR inhibition is
enhancing a naturally occurring attempt at adaptation by
the cells.
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Supplementary Figure 1. Dataset description. (A) Number of samples per tissue per age range; age ranges (shown below) account for 6
years each, except for the last one, which accounts for 3 years. (B) Proportion of male and female samples in each tissue.
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Supplementary Figure 2. Altered genes per tissue. (A) Distribution of raw p-values in each tissue only for differential expression and
differential connectivity. (B) Distribution of raw p-values (upper right panels) and FDR adjusted p-values (bottom left panels) in each tissue for

the three regressions.
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Supplementary Figure 3. Intersect counts. Number of DEGs, DCGs, DECGs, and combinations of these metrics detected in sets of 1 up to
8 tissues. The charts display the number of genes in the set and their significance in a permutation test. Significance levels: FDR<0.1 (*),
FDR<0.01 (**), FDR<0.001 (***).
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Differential expression analysis p-values and adjusted p-values (FDRs) density histogram
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Supplementary Figure 4. Density histogram of p-values and adjusted p-values (FDRs) of the regression analyses in each
tissue. (A) Distribution of p-values and adjusted p-values (FDRs) in the differential expression analysis. (B) Distribution of p-values and
adjusted p-values (FDRs) in the differential connectivity analysis. (C) Distribution of p-values and adjusted p-values (FDRs) in the differential
eigenconnectivity analysis. Dashed horizontal lines in the raw p-value density histograms represent what would be the expected distribution
of p-values if the null hypothesis of no change was true for all genes.
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Supplementary Figure 5. Scatterplots with FDR distributions in both regressions with intersecting genes highlighted. Green
points represent the 900 DEGs/DCGs in at least 6 tissues, red points represent the 134 DEGs/DCGs in at least 7 tissues, and purple points
represent the 3 DEGs/DCGs in 8 tissues.
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Supplementary Figure 6. Distribution of genes annotated as “RNA processing” or “RNA splicing” in the FDR distribution

charts.
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Supplementary Figure 7. Induced GO subgraph of the 20 top enriched nodes in the 134 set.
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DEGs and DCGs slopes in the intersection sets : &
s 2 i
£ s £ 3
2 = § 3
&
& & 2 =
EEN
o
g
" P
] I II o
a ‘ IIIII (MR o aox
I L} rl | I H m e
LI'IIIIII'IU I I I'Ih“IuII'III i I'I |
| | 1 | 1111 | 11111 EEt
. 20
s 2%
™ Adipose Tissue 1% 5%
] Muscle % %
8 Blood Vessel 7% 8%
Heart 17% kLl
Skin 5% a%
Esophagus | o3 13%
Blood 2% 26% %
I Brain 7% % %
O | Adipose Tissue 5% 5% 20%
e % 10w %
: o% aw o
] gt
o s5%  26%  19%
o % 6w

RNA splicing

RNA processing

gene expression | |

RNA metabolic process | ¢
nucleic acid metabolic process

ubiquitin-dependent protein catabolic process. i
proteolysis | | bl

protein catabolic process

peptide biosynthetic process | |
translation
ribonucleoprotein complex biogenesis Fll 1 |
mitochondrion organization || | | m e rn | I il
RNA export from nucleus 1 |
intracellular transport
LI [TV [ |

cellularresponse to DNA damage stimulus || | nn | | nim i
growth hormone receptor signaling pathway 1 1

Supplementary Figure 8. Slopes of DEGs and DCGs in the selected intersection sets. In the two upper heatmaps, red entries
represent positive and blue entries represent negative slopes. In the bottom heatmap, red entries represent genes that are either a positive
DEG, a positive DCG, or positive in both regressions; blue entries represent genes that are either a negative DEG, a negative DCG, or negative
in both regressions; and green entries indicate genes significant in both regressions, but the slopes have opposite signals (either a positive
DEG and negative DCG or a negative DEG and positive DCG). The most annotated terms were selected and displayed in the last panel.
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Connectivity rank X average expression in younger and older age ranges
DEGs and DCGs highlighted (FDR < 0.25)

In age range 1 (youngest samples) In age range 9 (oldest samples)
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Supplementary Figure 9. Connectivity ranks x average expression of different sets of genes in age ranges 1 or 9, with DEGs
and DCGs highlighted. DEGs and DCGs highlighted considered FDR < 0.25, to emphasize the overall patterns of the trajectories. Results
with FDR < 0.1 can be found in Supplementary Figure 6.
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Connectivity rank X average expression in younger and older age ranges
DEGs highlighted (FDR < 0.1)
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Supplementary Figure 10. Distribution of positive and negative slopes among DEGs and DCGs. (A) Connectivity ranks x average
expression of different sets of genes in age ranges 1 or 9, with DEGs highlighted with FDR < 0.1. (B) Connectivity ranks x average expression of
different sets of genes in age ranges 1 or 9, with DCGs highlighted with FDR < 0.1. (C) Connectivity ranks x average expression of the 49-set
genes in age range 1 or 9, with DEGs and DCGs highlighted with FDR < 0.1 for all tissues except heart, with an FDR < 0.25. (C) only displays the
charts for the 49-set as the charts for other tissues with FDR < 0.1 or FDR < 0.25 are shown in Figures S5, S5A and S5B.
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Supplementary Figure 11. Consensus Modules Enrichment Heatmap. Larger version of the heatmap in Figure 5A, displaying all
labels.
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A STRING protein-protein interaction networks

Node color coding

134 set

Full network

l PPl enrichment p-value = 3.93e? |

Supplementary Figure 12. STRING PPI full network. (A) Color coding for the nodes in the network indicating to which intersection set
the corresponding genes belong. (B) Full interaction network, including only links with a confidence score of at least 0.7 in STRING; singletons
(unconnected nodes) are omitted. The larger cluster in the middle represents ribosomal proteins, and the cluster below it, RNA splicing
genes.

WWw.aging-us.com 2948 AGING



Supplementary Data
Please browse Full Text version to see the data of Supplementary Data 1-7.

Supplementary Data 1. Regression results. Slopes, p-values and FDR-adjusted p-values of all genes in each
tissue for differential expression, differential connectivity and differential eigen connectivity analyses.

Supplementary Data 2. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR <
0.1in all tissues.

Supplementary Data 3. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR <
0.1 in blood, brain, adipose tissue, muscle, blood vessels, skin and esophagus; and significant at FDR < 0.25 in
heart.

Supplementary Data 4. GO enrichment analysis of intersection sets. DEGs, DCGs and DECGs significant at FDR <
0.25 in all tissues.

Supplementary Data 5. GO enrichment analysis of consensus modules. DEGs submodules.

Supplementary Data 6. GO enrichment analysis of consensus modules. DCGs submodules.

Supplementary Data 7. GO enrichment analysis of consensus modules. DECGs submodules.
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