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ABSTRACT 
 

Research findings suggest that advanced paternal age is associated with an increased risk of autism spectrum 
disorder (ASD) in children. The biological process behind this father-to-child inheritance of a disease may be 
driven by sperm epigenetic marks. This has been suggested earlier, but the identification of epigenomic regions 
responsible for these age-related responses have not been further elaborated. To identify sperm-specific 
marks, we conducted an epigenome-wide association study in sperm from 63 men, using the Illumina 450K 
array. Linear regression modeling was applied to identify differentially methylated CpGs (DMCs) by age; we 
controlled for body mass index, patient status, and multiple testing. We found 14,622 statistically significant 
age-related DMCs; most (69%) were inversely correlated. We identified 95 imprinted genes and emphasized 
747 age-related DMCs adjacent to an imprint control region (ICR). Altered methylation patterns in ICRs may 
result in disturbed expression of imprinted genes and are suspected to be at the origin of several diseases in 
offspring, including neurodevelopmental disorders. Mapping our results to other databases revealed the 
following set of imprinted genes linked to ASD: OTX1, PRDM16, PTPRN2, B4GALNT4, KCNQ1, KCNQ1OT1, 
DLGAP2, PLAGL1, GNAS, GRB10, MAGEL2, CDH24, and FBRSL1. Further research on these genes could help 
understand the contribution of paternal age on the development of autism. A change in DNA methylation levels 
in ICRs before conception may contribute to the heterogeneity and complexity of ASD. Measured DNA 
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INTRODUCTION 
 

Animal models and human epidemiological data 

indicate that male ageing can interfere with multiple 

health outcomes, including fertility, embryo growth, 

and pregnancy success [1–3]. If pregnancy succeeds, 

older men have an increased risk to father a child with a 

psychiatric disorder, compared to younger fathers [4]. A 

worrisome observation is that these findings have been 

reported within “normal age-ranges” of fatherhood for 

the first time [5]. Exploring the role of preconceptional 

age in autism is a time-wise question. Especially 

because autism diagnosis has risen dramatically over 

the last decade. Between 2011 and 2022 rates of ASD 

diagnosis in the US increased by 175% in children 

between 5 and 8 years old [6]. Within the same period 

of time, the average age of American men fathering a 

first child shifted from 30.8 to 32.1 years [7]. A 

genome-wide DNA methylation study in sperm from 

mice indicated an age-related decrease in DNA 

methylation in regions associated with transcriptional 

regulation. Offspring of older males exhibited reduced 

exploratory behaviors and showed a transcriptional 

dysregulation at genes linked to schizophrenia and 

autism [3]. A link between advanced age of the father 

and autism in offspring has been demonstrated through 

multiple studies [8–10]. However, the underlying 

biological or epigenetic processes are not well 

understood. A few genome-wide association studies 

have provided evidence that sperm DNA methylation in 

human is sensitive to ageing [11–14]. Some were 

designed to predict male age from a semen sample (e.g. 

in forensics). Limitations of these studies included the 

use of distinct populations, such as mixtures of fertility 

patients, sperm donors and men recruited from the 

general population. Other reports used limited numbers 

of young and healthy participants; and populations also 

included smokers [12]. Smoking is a known confounder 

in age-related epigenetic studies [14]. Other factors may 

also affect age-DNA methylation associations, such as 

body mass index (BMI), diet, and medical conditions 

[15, 16]. In brief, most published data from age-related 

epigenetic studies in sperm were not designed -or their 

analytic approach was not fully optimized- to identify 

genes involved in inheritance or offspring health. 

 

In this publication we perform a genome-scale DNA 
methylation study and comprehensive analysis using the 

Infinium HumanMethylation450 array to identify age-

associated alterations in sperm that may possibly be 

transmitted to offspring. Our male population largely 

consists of healthy and non-smoking volunteers. 

Considering current knowledge on imprint control 

regions (ICRs), whose parent-of-origin CpG methylation 

patterns are established during gametogenesis and 

resistant to postfertilization epigenetic reprogramming, 

we specifically explore these regions for age-related 

alterations [17]. ICRs regulate imprinted genes and 

potentially acquired imprint instability from pre-

conceptional exposures (including ageing and age-

related factors) may be carried on to the next generation, 

increasing the risk for development of a chronic 

disorder. We hypothesize that a better understanding of 

age-related DNA methylation patterns in the male germ 

line will provide valuable information about father-to-

child inheritance of diseases. 

 

RESULTS 
 

Characteristics of study participants and semen 

samples 

 

Because of variability in human populations, we studied 

a subgroup of the general population. Non-smoking 

men with a healthy reproductive profile were recruited 

at the Duke Fertility Center. Study design and inclusion 

or exclusion criteria are illustrated in Supplementary 

Figure 1. Socio-demographic data of our study 

population is shown in Table 1. In brief, a total of 63 

men between 18 to 35 years old was included in our 

statistical analysis. Men aged less than 25 years old 

represented 44% (n = 28), 27% (n = 17) were between 

25 and 29 years old, and nearly 29% (n = 18) were 

between 30 and 35 years old. Most men lacked a 

graduate degree (n = 46, 74.1%) and had not fathered a 

child (n = 55, 87.3%). The majority were healthy 

volunteers from outside the clinic (n = 48, 76.2%). The 

mean age of those that were patients was 24 years, 

while that of the non-patient subgroup was 30 years; 

this difference was significant (p-value <0.001). 

Abnormal clinical sperm parameters were found in 16 

men (25.4%); 5 in the patient subgroup and 11 in the 

non-patient subgroup. About one-third (n = 20) was 

categorized as being overweight or obese. Having a 

BMI of 25 or more was strongly associated with older 

age (p-value = 0.001). 

 

Distributions and categorization of DNA methylation 

outcomes in sperm 

 

Primary analyses of DNA methylation percentages in 

sperm on the Illumina array, such as global means and 

methylation effect sizes were subtle, but small epigenetic disturbances in sperm may be important on a 
population level, especially if men continue delaying fatherhood. Public health would benefit from the 
development of preventive and educational programs. 
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Table 1. Socio-demographic data of TIEGER participants and semen characteristics.  

Variables Categorization n % 

Age (years)  
(median: 25.00, mean: 25.48) 

18–24 28 44.4 

25–29 17 27.0 

30–35 18 28.6 

BMI 
Normal weight (18 ≤ BMI <25) 43 68.2 

Overweight/obese (BMI ≥25) 20 31.8 

Patient at fertility clinic 
Yes 15 23.8 

No 48 76.2 

Highest degree of education 

High school graduate/GED 6 9.7 

Some college 18 29.0 

College graduate 22 35.5 

Graduate degree 16 25.8 

Biological children 
Yes 8 12.7 

No 55 87.3 

Total motile count (TMC) 
≤39 × 106 (abnormal) 10 16.1 

>39 × 106 52 83.9 

Concentration 
<15 × 106 (abnormal)   3 4.8 

≥15 × 106 59 95.2 

Motility 
<40% (abnormal) 11 17.7 

≥40% 51 82.3 

Sperm quality 
normal 47 74.6 

abnormal 16 25.4 

Legend: The study population includes 63 men between 18 and 35 years old. Variables included in our statistical analysis are 
shown. Sperm quality is categorized as “abnormal” if at least one of the sperm quality metrics (concentration, motility, TMC)  
is below the WHO recommended threshold. If the sum is not 63, due to missing data, the percentage was calculated on 
known data (missing data: TMC: 1; concentration: 1; motility: 1). 
 

 

individual means, were performed on BMIQ normalized 

β-values. An overview of our analytic approach is 

illustrated in Figure 1. In total, we evaluated 482,287 

CpG sites. The mean DNA methylation at all CpG sites 

was 47.63% (β-value = 0.4763). We classified each CpG 

site by its mean β-value in the following subgroups: 

unmethylated (UM), hemi-methylated (HM) and fully 

methylated (FM), as described in the methods section. 

The number of CpG sites in each methylation subgroup 

is presented in Table 2. Most CpG sites in sperm were 

either unmethylated (UM) (46.95%) or fully methylated 

(FM) (43.02%); the remaining 10.03% was categorized 

as hemi-methylated (HM). Because β-values have severe 

heteroscedasticity at low and high methylation values, 

we used M-values in our validation of individual CpG 

outcomes. Distributions of the average M-values per 
site, before and after normalization, are shown as the 

average densities across 63 samples in Supplementary 

Figure 2. For the purpose of data interpretation, we also 

show (and discuss) β-value outcomes. 

Global DNA methylation outcomes in sperm by age 

 

After calculating global DNA methylation at all sites, 

we searched for a potential correlation between age 

and DNA methylation. No significant relationship  

was found. Neither if age was used as a continuous 

variable in a linear regression model (p-value = 0.76) 

(Supplementary Figure 3), nor through stratifying by 

age (below and above median age) (p-value = 0.97) 

(Supplementary Figure 4). Next, we verified if age-

associations could be found after stratification of our 

population by patient status or by obesity status. 

Although an opposite trend could be seen by these 

strata, these correlations were not significant 

(Supplementary Figures 5 and 6). We further verified if 

global DNA methylation differed by age within each 
CpG subgroup (UM, HM and FM). We found no 

significant correlations; p-values were 0.74 at UM sites, 

0.92 at HM sites, and 0.96 at FM sites (Supplementary 

Figure 7). 

2952



www.aging-us.com 4 AGING 

Site specific DNA methylation outcomes in sperm by 

age: directions and magnitudes of change 

 

At each CpG site of the 450K array a potential 

association between DNA methylation and age was 

evaluated using a linear regression model, adjusting for 

BMI, patient status and multiple testing. We found a 

small fraction of CpG sites (3.03%) that was significantly 

altered by age; 14,622 CpG sites out of 482,287 CpGs 

could be identified as differentially methylated sites 

(DMCs). Among those, most DMCs (69.01%; n = 

10,091) were negatively associated with age (Table 2). A 

Volcano plot illustrates all DMCs that are significantly 

altered by age (Figure 2A). After subdividing our probes 

by subgroups, associations were as follows: in the UM 

subgroup, 91.84% of the DMCs were decreased by age 

(Table 2 and Figure 2B); in the HM subgroup, 74.73% 

DMCs were negatively associated with age (Table 2 

and Figure 2C); and in the FM subgroup, significant 

DMCs were nearly equally distributed, with 53.3% (n 

= 2,719) being positively associated and 46.7% (n = 

3,099) being negatively associated with age (Table 2  

and Figure 2D). We present a short list of highly 

significant age-related DMCs (top 30 within each 

subgroup); with highest magnitude in change (absolute 

delta M-value higher than 0.1) underlined in Table 3. 

 

 
 

Figure 1. Workflow to assess age-related DNA methylation changes in sperm and biomarker selection for ASD. Data 

generated from the Illumina HumanMethylation450 BeadChip went through the following analytic procedures. (1) global DNA methylation 
(mean per subject) by age. (2) DNA methylation at individual CpGs by age. Note, additional tests were performed, as described in the 
methods section. (3) We subdivided our outcome data as follows: Unmethylated (UM, mean β-value <0.2), Hemi-methylated (HM, 0.20≤ 
mean β-value ≤0.80), and Fully methylated (FM, mean β-value >0.80), defined by the mean DNA methylation per CpG site (of all subjects). 
The top 30 of the most significant results (lowest adjusted p-value) were classified by: (4) significance (top 90), direction (positive, 
negative), and magnitude (absolute Delta-M >0.1). All age-related DMCs (n = 14,622) were analyzed in terms of the following approaches: 
(5) chromosome location, island content, functional genomic allocation, and (6) gene ontology (GO). We compared our results with: (7) 
similar published reports, and (8) listed data on imprinting. Finally, (9) a focus was applied on all DMCs using Simons Foundation Autism 
Reference Initiative database and other publicly available databases on ASD. (10) We selected a set of potential biomarkers for ASD within 
our set of imprinted genes. 
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Table 2. Frequencies and distributions of CpG sites in sperm by DNA methylation subgroup and by age. 

DNA Methylation 
subgroup (SG) 

β-value M-value 

Analyzed CpG 
sites  

Significant DMCs by age 

N % N %1 %2 

All sites All All 482,287 100 
14,622 100 3.03 

10,091−; 4,531+ 69.01−; 30.99+ 2.09−; 0.94+ 

Unmethylated 
(UM) 

<0.2 (−inf, −2) 226,432 46.95 
2,414 16.51 1.07 

2,217−; 197+ 91.84−; 8.16+ 0.98−; 0.09+ 

Hemi-methylated 
(HM) 

(0.2–0.8) (−2, 2) 48,391 10.03 
6,390 43.70 13.20 

4,775−; 1,615+ 74.73−; 25.27+ 9.87−; 3.33+ 

Fully methylated 
(FM) 

>0.8 (2, +inf) 207,464 43.02 
5,818 39.79 2.80 

3,099−; 2,719+ 53.27−; 46.73+ 1.49−; 1.31+ 

According to the mean β-value all CpGs of the 450K are categorized by subgroup (SG): Unmethylated (UM), Hemi-methylated 
(HM), or Fully methylated (FM) (UM: β-value <0.2; HM: β-value (0.2–0.8); FM: β-value >0.8). Within each subgroup the 
number of analyzed CpG sites on the array are shown, as well as the number (and %) of significant age-related DMCs (FDR 
<0.05). (+) number of sites that are increased by age. (−) number of sites that are decreased by age. 1% relative to the total 
number of significant DMCs. 2% relative to the total number of CpGs assessed on the 450K within each subgroup. 

 

In the UM subgroup, 20 DMCs were highly susceptible 

to ageing with a high DNA methylation impact at the 

following genes: HOXA11; HOXA11AS, LRRC25, 

LHX1, LHX2, LHX5, ZIC4, GRASP, C16orf13, 

LOC283999, ZNF385A, LOXL3; DOK1, MAGEL2, 
GNA13, IRF9 and OSR2. In the HM subgroup we 

identified eight DMCs, annotated to the following 

genes: NOTCH4, RSPO1, LOXL3, HOXA5, 
LOC283999, HBA1 and ESAM. In the FM subgroup we 

found four DMCs, corresponding to LOC283999, 

FAM184A, as well as some unidentified (NA) genes. 

For instance, the gene LOC283999 showed an opposite 

direction in DNA methylation change by age at the FM 

subgroup; this may have biological consequences. Older 

men may have less sperm cells that are fully methylated 

at the corresponding site (cg09445803); a ten-year 

increase in age was associated with a 2.7% decrease in 

DNA methylation, or a drop from 82.56% to 79.86% 

(Table 3). As indicated in our methods section, we 

controlled for BMI, patient status and multiple testing. 

In our sensitivity analyses (excluding outliers or 

patients) and in our extended models (including 

additional co-factors) our results remained consistent 

with the main analysis (data not shown). 

 

Genomic allocations, island content and other 

functional characteristics of age-associated DMCs or 

annotated genes 

 

A Miami plot was created of all significant age-related 

DMCs across the chromosomes, separated by hyper-

methylated sites and hypomethylated sites (Figure 3). A 

remarkable observation is a general hypomethylation at 

sites annotated to imprinted genes. Next, we did a 

parallel analysis of all 14,622 DMCs in terms of their 

CpG content and neighborhood content (island, shore, 

shelf, open sea). CpG islands and open sea areas are the 

most frequent targets on the microarray, accounting for 

30.91% and 36.28% of all analyzed CpG sites, 

respectively (Supplementary Table 1, Figure 4A). We 

detected limited age-related DMCs at islands; 

accounting for nearly 5% (n = 722) of the DMCs 

(Figure 4B), and only 0.48% of all analyzed sites 

(which is in large contrast to the 30.9% in the complete 

array) (Supplementary Tables 1 and 2). A comparison 

of increase (or hypermethylation) versus decrease 

(hypomethylation) in numbers and in ratios - by age, by 

island and by neighborhood content - are shown in 

Supplementary Table 2. Only a small difference was 

seen between the prevalence of negative and positive 

associations by age (55.7% versus 44.3 %, 

respectively); ratio is 1.26 if all DMCs are included,  

but it is 2.38 if only UM sites are considered 

(Supplementary Table 2). Still, an overall ratio of 1.26 

at CpG islands is modest if compared to a high ratio of 

24.8 at shores (hence, 24.8 times more negative 

associations than positive associations are measured at 

shores). An opposite but small ratio (0.40) is seen at 

open seas (or 2.5 times more positive associations than 

negative associations). 

 

We further examined variations in DNA methylation 

in relation to CpG island content by our three 

subgroups of DNA methylation (Supplementary Table 

2 and Figure 4C–4E). Island associated DMCs were 

predominantly at unmethylated sites (UM), at which 

13% of the age-related DMCs could be detected. 

Calculated ratios indicate that the direction of age-

related changes is mostly negative in UM and positive 

in FM. Out of the 325 UM DMCs at islands, age had a 

positive effect on a small subset of 96 sites. And, out 

of the 117 FM DMCs at islands, 36 sites showed a 
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decrease in DNA methylation. These sites -opposite to 

the characteristics of these subgroups (being low or 

high in DNA methylation, respectively)- may be 

interesting in the context of potential imprinting by 

parent of origin (discussed below). Most FM sites at 

shores and at shelves showed a decrease in 

methylation by age (approximately 95%, 1,611 sites 

out of 1,700 at shore sites; 81%, 776 out of 961 at 

shelf sites, respectively). Next, we explored functional 

genomic allocations (e.g., in subgroups such as pro-

moter, body, 3′UTR, and intergenic) (Supplementary 

Table 3 and Figure 5). Overall, distributions of age-

associated DMCs by functional allocations did not 

differ substantially from what was expected from the 

450K array; although a higher representation of 

promotors within our DMCs was seen at the UM 

subgroup (28%) versus the FM subgroup (13%). Gene 

Ontology (GO) term enrichment analysis using all 

DMCs showed 11 significant GO terms related to male 

age (Supplementary Figure 8). Specifically, the 

following terms were captured with the highest 

enrichment: cell morphogenesis (biological process), 

and plasma membrane protein complex (cellular 

component). 

 

 
 

Figure 2. Volcano plots of 450K data by age in sperm. Volcano plots of our age-association study on the 450K array. X-axis: Delta β-

values (Δβ) representing age-associated changes in DNA methylation (after linear regression, adjusted for BMI and patient status). Y-axis: 
logarithmic transformation of the adjusted p-value (BH-method). Dashed line: indicates where the adjusted p-value is 0.05; dots above the 
dashed line represent CpG sites where sperm DNA methylation is significantly associated with male age. (A) All sites of the 450K are 
included (n = 482,287) and dots above the dashed line are age-associated DMCs (n = 14,622). (B–D) Volcano plots by subgroup of DNA 
methylation. Colored dots: significant age-related DMCs mapped to genes selected by their potential role in inheritance of ASD from father 
to child; these include: OTX1, PRDM16, PTPRN2, B4GALNT4, KCNQ1, KCNQ1OT1, DLGAP2, PLAGL1, GNAS, GRB10, MAGEL2, CDH24 and 
FBRSL1. Each colored dot represents one DMC; multiple dots with same color are allocated to the same gene. 
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Table 3. Alterations at the top 90 most significant DMCs by age in sperm. 

SG Probe ID Delta M Mean M p-value Mean β Delta β Gene Chr Chr location 

<0.2 cg16038003 −0.139 −2.434 2e-08 0.169 −0.023 
HOXA11; 

HOXA11AS  
7 chr7:27227520-27229043 

<0.2 cg07834682 −0.099 −2.274 3.2e-07 0.179 −0.017 SIX2 2 chr2:45231211-45231482 

<0.2 cg11207353 −0.104 −2.834 3.8e-07 0.131 −0.017 LRRC25 19 NA 

<0.2 cg01298678 −0.132 −2.994 4e-07 0.123 −0.023 LHX2 9 chr9:126773246-126780953 

<0.2 cg06490225* −0.128 −2.693 4.2e-07 0.146 −0.021 LHX1* 17 chr17:35291899-35300875 

<0.2 cg03861097 −0.138 −3.850 4.3e-07 0.073 −0.023 NA 21 chr21:34395128-34400245 

<0.2 cg08178072 −0.111 −2.149 5e-07 0.193 −0.019 NA 2 chr2:45164561-45166567 

<0.2 cg00896370 −0.106 −2.689 5.4e-07 0.143 −0.018 ZIC4 3 chr3:147115764-147116421 

<0.2 cg01447831* −0.158 −3.373 6.3e-07 0.102 −0.027 NA* 7 chr7:155246390-155251955 

<0.2 cg22566906 −0.103 −2.292 6.3e-07 0.177 −0.018 GRASP 12 chr12:52400467-52401696 

<0.2 cg25156915 −0.129 −4.268 7.2e-07 0.055 −0.018 NA 4 chr4:174427891-174428192 

<0.2 cg16757281* −0.109 −4.821 8.5e-07 0.038 −0.010 C16orf13* 16 chr16:682634-687106 

<0.2 cg04856022 −0.100 −2.603 8.7e-07 0.148 −0.017 PPT2 6 chr6:32121829-32122529 

<0.2 cg16872071 −0.094 −2.500 9.4e-07 0.158 −0.016 RALGDS 9 chr9:135995969-135996954 

<0.2 cg24764168s −0.143 −2.199 1.2e-06 0.196 −0.019 NA 6 chr6:1381743-1385211 

<0.2 cg14699734 −0.085 −2.491 1.7e-06 0.157 −0.014 NA 19 chr19:5803734-5806023 

<0.2 cg02675859 −0.102 −3.796 1.7e-06 0.072 −0.013 LOC283999 17 chr17:76228110-76228380 

<0.2 cg10073842 −0.127 −2.573 1.8e-06 0.156 −0.022 MAGEL2 15 NA 

<0.2 cg21619325 −0.095 −2.725 2.4e-06 0.138 −0.015 OSR1 2 chr2:19560963-19561650 

<0.2 cg00260116 −0.079 −2.472 2.4e-06 0.158 −0.013 C7orf52 7 chr7:100815484-100816995 

<0.2 cg08788246 −0.097 −3.373 3.1e-06 0.094 −0.015 ZNF74 22 chr22:20759743-20760923 

<0.2 cg08940570 −0.125 −2.852 3.3e-06 0.133 −0.022 
LOXL3;  

DOK1 
2 chr2:74781494-74782685 

<0.2 cg17465423 −0.105 −2.530 3.7e-06 0.157 −0.018 ZNF385A 12 chr12:54784900-54785238 

<0.2 cg09600715 −0.086 −2.188 3.8e-06 0.186 −0.015 NA 7 chr7:27227520-27229043 

<0.2 cg19556208 −0.110 −3.334 4e-06 0.098 −0.017 IRF9 14 NA 

<0.2 cg18911395 −0.193 −3.374 4.2e-06 0.112 −0.028 LHX5 12 chr12:113908887-113910681 

<0.2 cg17413194 −0.125 −2.593 4.2e-06 0.154 −0.022 GNA13 17 chr17:63051893-63053355 

<0.2 cg15287594 −0.089 −3.758 4.3e-06 0.073 −0.010 FITM2 20 chr20:42939450-42940043 

<0.2 cg03157027 −0.107 −3.804 5e-06 0.073 −0.017 OSR2 8 chr8:99960497-99961438 

<0.2 cg04479580 −0.100 −2.315 5.2e-06 0.176 −0.017 NA 12 chr12:6438272-6438931 

(0.2–0.8) cg02991082 −0.086 0.009 4.7e-10 0.502 −0.010 TSC22D3 X chrX:106959378-106959914 

(0.2–0.8) cg02494945 −0.098 −1.762 1.1e-08 0.234 −0.016 TBX4 17 chr17:59531723-59535254 

(0.2–0.8) cg26854298 −0.100 0.250 2e-08 0.542 −0.008 NA 4 chr4:174443365-174443948 

(0.2–0.8) cg11671335 −0.104 0.819 7.1e-08 0.634 −0.007 NOTCH4 6 chr6:32163292-32164383 

(0.2–0.8) cg03767475 −0.090 1.785 8.7e-08 0.770 −0.004 COMP 19 chr19:18899037-18902284 

(0.2–0.8) cg01862311s −0.099 1.156 8.7e-08 0.685 −0.006 NA 8 chr8:26305853-26306825 

(0.2–0.8) cg15032957 −0.061 1.985 8.7e-08 0.796 −0.004 TLE2 19 chr19:3035638-3035872 

(0.2–0.8) cg24049629 −0.086 0.304 9.9e-08 0.551 −0.009 RASSF1 3 chr3:50377803-50378540 

(0.2–0.8) cg04508739 −0.088 1.142 2.3e-07 0.683 −0.006 NA 14 chr14:57264638-57265561 
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(0.2–0.8) cg24114899s −0.081 0.972 2.3e-07 0.659 −0.007 
MGC12982;  

FOXD2 
1 chr1:47902793-47905518 

(0.2–0.8) cg13054119 −0.115 −1.459 2.6e-07 0.276 −0.018 RSPO1 1 chr1:38099677-38100864 

(0.2–0.8) cg02021127 −0.100 1.404 2.6e-07 0.719 −0.005 PIP5KL1 9 chr9:130692839-130693331 

(0.2–0.8) cg04044203 −0.109 0.059 2.7e-07 0.510 −0.010 ESAM 11 chr11:124632063-124633239 

(0.2–0.8) cg10836509 −0.083 −0.834 3.1e-07 0.363 −0.012 NA 1 chr1:226297287-226298586 

(0.2–0.8) cg23674882 −0.117 −0.602 3.2e-07 0.403 −0.012 LOXL3 2 chr2:74781494-74782685 

(0.2–0.8) cg05269451s −0.103 −1.157 3.2e-07 0.317 −0.014 NA 2 chr2:172963623-172964135 

(0.2–0.8) cg03107888 −0.084 −0.677 3.2e-07 0.388 −0.012 HOXA13 7 chr7:27238690-27240311 

(0.2–0.8) cg06097213s −0.080 −1.002 3.2e-07 0.337 −0.013 LOC285830 6 chr6:29716468-29717158 

(0.2–0.8) cg20437892 −0.091 −0.046 3.2e-07 0.492 −0.011 NA 2 NA 

(0.2–0.8) cg00215611 −0.088 0.063 3.2e-07 0.511 −0.009 NA 2 chr2:219860927-219861242 

(0.2–0.8) cg19701577 −0.131 −0.824 3.2e-07 0.371 −0.012 HOXA5 7 chr7:27182613-27185562 

(0.2–0.8) cg10919107cr −0.094 0.201 3.2e-07 0.534 −0.009 PMEPA1 20 chr20:56227252-56227687 

(0.2–0.8) cg04730768 −0.077 0.710 3.2e-07 0.618 −0.007 CHAT 10 chr10:50817095-50817309 

(0.2–0.8) cg23327992 −0.079 −0.472 3.2e-07 0.421 −0.012 IRF9 14 NA 

(0.2–0.8) cg20774552 −0.057 0.707 3.3e-07 0.619 −0.006 NA 11 chr11:46410921-46414687 

(0.2–0.8) cg20005923 −0.102 −0.365 3.6e-07 0.440 −0.011 LOC283999 17 chr17:76228110-76228380 

(0.2–0.8) cg02825052 −0.076 1.115 3.8e-07 0.681 −0.006 PICALM 11 NA 

(0.2–0.8) cg01704105 −0.114 −1.250 3.8e-07 0.305 −0.016 HBA1 16 chr16:226173-227254 

(0.2–0.8) cg00176496 −0.075 0.579 3.8e-07 0.597 −0.008 PITPNM3 17 NA 

(0.2–0.8) cg01344797cr −0.067 0.977 4e-07 0.661 −0.005 PSD 10 chr10:104168558-104169153 

>0.8 cg02882504s −0.085 2.748 8.7e-08 0.866 −0.002 NA 16 chr16:3238805-3239492 

>0.8 cg02680566 −0.083 2.100 2.3e-07 0.806 −0.004 OSR1 2 chr2:19560963-19561650 

>0.8 cg08604523s −0.089 2.171 4e-07 0.812 −0.003 MDK 11 chr11:46406904-46407441 

>0.8 cg01943692 −0.077 2.409 7.7e-07 0.837 −0.003 NA 1 chr1:26686516-26687281 

>0.8 cg00019678 −0.065 2.564 1.1e-06 0.852 −0.003 C12orf34 12 chr12:110151327-110152758 

>0.8 cg09445803 −0.101 2.325 1.2e-06 0.826 −0.003 LOC283999 17 chr17:76228110-76228380 

>0.8 cg12001078 0.064 2.708 1.4e-06 0.864 0.010 DAPP1 4 NA 

>0.8 cg18672716 0.144 3.521 1.8e-06 0.907 0.024 NA 2 NA 

>0.8 cg24321297 −0.046 2.627 2.8e-06 0.859 −0.002 ST6GALNAC2 17 chr17:74580974-74582396 

>0.8 cg24888609s 0.152 3.321 3.1e-06 0.894 0.026 FAM184A 6 NA 

>0.8 cg21483922 −0.067 2.220 3.1e-06 0.820 −0.003 SAMD14 17 chr17:48206663-48207601 

>0.8 cg05525368 −0.062 2.950 3.8e-06 0.883 −0.002 CDC20 1 chr1:43824134-43825059 

>0.8 cg11433866s −0.070 2.122 3.8e-06 0.809 −0.003 NA 12 chr12:115124729-115125152 

>0.8 cg01405985 −0.107 2.441 4.2e-06 0.835 −0.002 NA 19 chr19:36347044-36348101 

>0.8 cg24073074 −0.069 2.175 4.9e-06 0.815 −0.003 WIPI1 17 NA 

>0.8 cg04078221 −0.064 2.042 5.2e-06 0.801 −0.003 NA 1 chr1:47899125-47899398 

>0.8 cg18231690 −0.075 2.092 5.3e-06 0.805 −0.004 ZNF592 15 chr15:85291079-85291697 

>0.8 cg21690489 −0.063 2.621 5.6e-06 0.857 −0.003 CREB3L1 11 NA 

>0.8 cg08692104 −0.055 3.365 6.3e-06 0.910 −0.001 ZNF823 19 chr19:11849359-11849796 

>0.8 cg11277190cr 0.093 2.905 6.4e-06 0.876 0.015 FAM184A 6 NA 

>0.8 cg21574186 0.079 3.519 6.4e-06 0.916 0.009 UNC5C 4 NA 
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>0.8 cg00471142 −0.059 3.040 6.5e-06 0.889 −0.002 LRFN1 19 chr19:39804621-39805954 

>0.8 cg01109643 −0.083 2.152 6.6e-06 0.810 −0.003 NA 13 chr13:113548643-113549127 

>0.8 cg24842142 −0.069 2.175 6.9e-06 0.815 −0.003 RNF39 6 chr6:30042918-30043500 

>0.8 cg14101976 0.081 4.098 7.3e-06 0.942 0.010 UNC5C 4 NA 

>0.8 cg12391323s −0.046 2.435 7.5e-06 0.842 −0.003 NA 5 chr5:139027443-139030219 

>0.8 cg05878073 −0.067 3.194 7.6e-06 0.899 −0.002 ABCD4 14 chr14:74769366-74769815 

>0.8 cg11338156 −0.078 2.657 7.9e-06 0.858 −0.003 NA 10 NA 

>0.8 cg13244241 −0.082 3.833 8.2e-06 0.931 −0.001 NA 10 chr10:102489343-102491011 

>0.8 cg00730441 −0.061 2.187 8.4e-06 0.817 −0.003 TBX2 17 chr17:59485573-59485780 

Probes related to DMCs by age were first sorted by subgroups (UM: β-value <0.2; HM: β-value (0.2–0.8); FM: β-value >0.8), then by adjusted  
p-values (Benjamini-Hochberg method; FDR <0.05). Only the top 30 most significant results by each subgroup (SG) are presented. Delta-M and 
Delta-β: estimated changes by age in M-value and in β-value, respectively. Annotated gene names and chromosome locations are shown according 
to the UCSC Genome Browser. *Probe related to CpG Islands; crcross-reactive probe; sSNP; (bold) direction is opposite (e.g., hypomethylated in FM 
subgroup); (underlined) highest magnitude in DNA methylation changes (Delta-M is higher than 0.1). 

 

 
 

Figure 3. Chromosomal distribution of age-associated DMCs in sperm. Miami plot of age-associated differentially methylated CpG 

sites (DMCs), shown by direction of change (Delta β >0 relates to an increase in number of sperm cells that are methylated, Delta β <0 
means a decrease in number of sperm cells that are methylated). Dashed line: no change (Δβ = 0). Delta β-values are calculated from M-

values, as shown in the methods section 
0 0

0 0

(M + delta M) M

(M + delta M) M

2 2
( β )

1 2 1 2
 = −

+ +
. Significant DMCs correspond to FDR <0.05. Blue dots are sites 

allocated to imprinted genes, listed in the Geneimprint database. 
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Identifying age-related DMCs linked to imprinted 

genes and candidate ICRs 

 

We screened our findings on age-related DMCs for their 

potential role in imprinting (Figure 1). First, imprinted 

genes were defined using Geneimprint, with a list of 

227 imprinted genes in human; including 104 predicted 

and 123 confirmed imprinted genes [18]. Out of the 

14,622 age-related DMCs, we found 271 DMCs 

(1.85%) that could be mapped to 95 (predicted) 

imprinted genes [17]; these genes are listed by subgroup 

in Figure 6. Because our 450K array includes 215 

(potentially) imprinted genes, this means that 44% of 

these imprinted genes theoretically present on the array 

are sensitive to influences from ageing. Out of the 95 

age-related imprinted genes, 49 are maternally 

expressed (or paternally imprinted), 42 are paternally 

expressed (or maternally imprinted), and imprinting is 

isoform dependent in four of the identified genes 

(Supplementary Table 4). Second, we extended our 

approach using a database published by Jima et al. [17], 

which includes a genomic map of 1,488 putative 

Imprint Control Regions (ICRs) or so-called 

Imprintome. Of our 14,622 DMCs, 747 DMCs could be 

linked to 380 candidate ICRs (Supplementary Table 5). 

More precisely, out of these 747 ICR-associated DMCs, 

152 DMCs were allocated to 94 ICRs with paternal 

origin of methylation and 74 genes were identified; 193 

DMCs were linked to 107 maternally methylated ICRs 

and 86 genes were found; and, the remaining 402 

DMCs were associated to regions with unknown parent-

of-origin methylation; corresponding to 179 ICRs or 

158 genes (Supplementary Table 5). After a stringent 

selection of age-related genes based on a combined use 

of our findings above by Geneimprint list (n = 95) and 

by the Imprintome (n = 318), we selected 22 imprinted 

genes with previously reported ICRs (Figure 6). This set 

of genes corresponds to 94 age-associated DMCs; 79 

DMCs are hypomethylated and 15 DMCs are hyper-

methylated (Table 4 and Figure 6). For instance, the 

highest magnitude at hypomethylated DMCs was 

measured at the PTPRN2 gene, being −28% per 10 

years of ageing (cg18285788; Delta β = −0.028, p = 

5.64e-04); and, the highest magnitude at hyper- 

 

 
 

Figure 4. Island content of CpGs within 450K array and age-associated DMCs. (A) Percentages of CpGs by island content are 

displayed with respect to the 450K (n = 482,287). (B) Percentages of CpGs by island content are displayed with respect to the number of 
significant age-related DMCs (n = 14,622). (C–E) By DNA methylation subgroup (Abbreviations: UM: unmethylated, mean β-value <0.2; HM: 
hemi-methylated, 0.20 ≤ mean β-value ≤0.80; FM: fully methylated, mean β-value>0.80). 
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methylated DMCs was found at the KCNQ1 gene, being 

+10% per 10 years of ageing (cg17416793; Delta β = 

+0.010, p = 0.0127). In our search to define a set of age-

related biomarkers of inheritance we could classify 

these 22 imprinted genes into the following categories: 

seven genes are paternally imprinted (or maternally 

expressed) (H19, KCNQ1DN, PTPRN2, KCNQ1, 

SVOPL, B4GALNT4, FBRSL1; the last two are yet 

predicted imprinted genes); twelve genes are known to 

be maternally imprinted (or paternally expressed) 

(MAGEL2, DIRAS3, FAM50B, DLGAP2, PLAGL1, 
ZIM2, GLI3, DLK1, CDH24, RB1, SNRPN, 

KCNQ1OT1); and, in 3 genes imprinting is isoform 

dependent (GNAS, BLCAP, GRB10). Notably, we 

repeated our analyses after exclusion of reported SNPs 

and cross-reactive probes [19, 20]. This test did not 

significantly change our results, with two exceptions: 

ZIM2 and C6orf145 (indicated in Figure 6 and Tables 3 

and 4). 

 

Comparison of the current findings on age-related 

DMCs with results from similar studies 

 

In a recent review by the research group of Haaf, 2,355 

genes have been reported in sperm with age affected 

DMRs [11]. Considering the current study results  

and those found by four other observational studies,  

we retrieved 2,098 age-associated genes in sperm. 

Although similar techniques (Illumina platforms) were 

used, study populations and study conditions differed 

[9–12]. A Venn diagram illustrates the numbers of 

overlapping age-affected genes identified by each report 

(Figure 7). We counted 929 genes that were found by at 

least two studies, 83 genes that were found by at least 

three studies, seven genes that were found by at least 

four studies, and one gene that was found by all five 

studies. (Supplementary Table 6). In brief, six genes 

found by four studies are SLC22A18AS, C7orf50, 

UTS2R, BEGAIN, GRIN1, and PCDH15; and, a single 

gene identified by all is DLGAP2. Apart from C7orf50, 

all genes recurrently found in age-association studies 

over the last couple of years have been linked to the 

development of autism (discussed below) [21–26]. The 

role of UTS2R (or GPR14) in autism is unclear. It plays 

a role in various brain functions, but it has been 

considered as a candidate gene for autism [27, 28]. 

Overall, our findings are in line with Bernhardt et al.’s 

conclusion that age-induced DNA methylation 

alterations in sperm may contribute to the development 

of neurodevelopmental disorders in offspring [11]. 

 

 
 

Figure 5. Functional genomic distribution of CpGs within 450K array and age-associated DMCs. (A) Percentages of CpGs by 

functional genomic region are displayed; by promoter, 1stExon, 5′UTR, 3′UTR, body, and intergenic regions. CpG sites allocated to multiple 
regions are reported as a separate category. (A) Percentages with respect to the 450K (n = 482,287). (B) Percentages are displayed with 
respect to the number of significant age-related DMCs (n = 14,622). (C–E) By DNA methylation subgroup (Abbreviations: UM: 
unmethylated, mean β-value <0.2; HM: hemi-methylated, 0.20 ≤ mean β-value ≤0.80; FM: fully methylated, mean β-value >0.80). 
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Figure 6. Imprinted genes affected by age in sperm and our approach for biomarker selection to predict autism spectrum 
disorders in offspring. A summary of (predicted) imprinted genes linked to significant age-associated DMCs is ordered by expressed 

allele, and significance (results with smallest p-values are on top). Upper frame: 95 (predicted) imprinted genes linked to 271 DMCs within 
DNA methylation subgroups (Abbreviations: UM: unmethylated, mean β-value <0.2; HM: hemi-methylated, 0.20≤ mean β-value ≤0.80; FM: 
fully methylated, mean β-value >0.80). Lower frame: out of the 95 (predicted) imprinted genes (upper frame) 22 genes have been mapped 
to ICRs. In bold, genes involved in ASD. Right frame: summary of 27 ASD-related imprinted genes (due to probe cross-reactivity, the gene 
C6orf145 with a single DMC was not withheld). The following superscripts are used if at least one DMC had the following characteristic: *, 
at CpG Islands; PR, at promotor region; ↓ or ↑, an opposite direction in DNA methylation change was measured (increase or decrease in 
DNA methylation, at UM and FM methylated DMCs, respectively); s, at SNPs; cr, at a cross-reactive probe. M, maternally expressed genes; P, 
paternally expressed genes; I, isoform dependent. 
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Table 4. Age-related DMCs and 22 allocated genes in sperm linked to ICRs and imprinting. 

SG EA Probe ID Delta β Mean β p-value Chr Gene 

<0.2 I cg21809160 −0.027 0.102 6.65e-05 20 GNAS 

<0.2 I cg24058407 −0.017 0.190 2.61e-04 20 GNAS 

<0.2 I cg11399589 −0.017 0.139 0.0021 20 BLCAP 

<0.2 I cg17696847 −0.008 0.079 0.0107 20 GNAS 

<0.2 I cg27006764 −0.001 0.035 0.0334 7 GRB10 

<0.2 I cg13591710 −0.016 0.168 0.0453 20 BLCAP 

<0.2 I cg11948874 −0.010 0.104 0.0482 20 BLCAP 

<0.2 M cg07439128 −0.017 0.067 2.35e-05 11 KCNQ1DN 

<0.2 M cg04937416 −0.015 0.091 3.17e-05 7 PTPRN2 

<0.2 M cg10798664 −0.012 0.179 1.40e-04 11 B4GALNT4* 

<0.2 M cg18285788 −0.028 0.054 5.64e-04 7 PTPRN2 

<0.2 M cg26461944 −0.007 0.139 0.0016 11 B4GALNT4* 

<0.2 M cg01923099 −0.020 0.122 0.0017 11 KCNQ1DN 

<0.2 M cg16083838 −0.020 0.087 0.0040 11 KCNQ1DN 

<0.2 M cg03983213 −0.009 0.074 0.0042 7 PTPRN2 

<0.2 M cg22675922 −0.005 0.060 0.0068 11 KCNQ1DN 

<0.2 M cg10726517 −0.003 0.050 0.0101 11 B4GALNT4* 

<0.2 M cg13538517 −0.017 0.150 0.0119 7 PTPRN2 

<0.2 M cg03481077 −0.014 0.193 0.0120 11 B4GALNT4* 

<0.2 M cg04876474 −0.002 0.043 0.0128 11 KCNQ1DN 

<0.2 M cg17682432 −0.003 0.073 0.0229 11 B4GALNT4* 

<0.2 M cg08242024 −0.007 0.151 0.0330 7 PTPRN2 

<0.2 P cg10073842 −0.022 0.156 1.84e-06 15 MAGEL2 

<0.2 P cg22872376 −0.014 0.100 1.20e-04 15 MAGEL2 

<0.2 P cg23076194 −0.011 0.161 0.0029 1 DIRAS3 

<0.2 P cg19447496 −0.011 0.190 0.0225 13 RB1 

<0.2 P cg23985641 −0.010 0.177 0.0473 6 FAM50B 

(0.2–0.8) I cg07964163 −0.004 0.782 6.42e-05 20 GNAS 

(0.2–0.8) I cg24214471 −0.006 0.681 2.87e-04 20 BLCAP 

(0.2–0.8) I cg21733794 −0.008 0.555 6.94e-04 20 BLCAP 

(0.2–0.8) I cg04820254 −0.005 0.723 0.0011 20 BLCAP 

(0.2–0.8) I cg21045560 −0.011 0.351 0.0016 20 BLCAP 

(0.2–0.8) I cg20569652 −0.009 0.282 0.0053 20 BLCAP 

(0.2–0.8) I cg17658854 −0.011 0.207 0.0094 20 GNAS 

(0.2–0.8) I cg01565918 −0.010 0.340 0.0128 20 GNAS 

(0.2–0.8) I cg14235271 −0.011 0.219 0.0365 20 GNAS 

(0.2–0.8) M cg21996245 −0.016 0.202 6.08e-05 11 B4GALNT4* 

(0.2–0.8) M cg20846508 −0.012 0.390 1.29e-04 11 B4GALNT4* 

(0.2–0.8) M cg24221919 −0.006 0.589 2.18e-04 7 PTPRN2 

(0.2–0.8) M cg18628367 −0.012 0.289 4.13e-04 7 PTPRN2 

(0.2–0.8) M cg03371125 −0.010 0.345 6.71e-04 11 KCNQ1 

(0.2–0.8) M cg04666029 −0.004 0.641 0.0021 11 KCNQ1 
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(0.2–0.8) M cg20533553 −0.012 0.221 0.0068 11 KCNQ1 

(0.2–0.8) M cg19698309 −0.010 0.361 0.0094 11 KCNQ1 

(0.2–0.8) M cg20482223 −0.006 0.513 0.0177 7 SVOPL 

(0.2–0.8) M cg19713140 −0.010 0.374 0.0378 7 PTPRN2 

(0.2–0.8) M cg21231189 0.006 0.776 0.0403 7 PTPRN2 

(0.2–0.8) M cg01100465cr −0.005 0.642 0.0408 7 PTPRN2 

(0.2–0.8) M cg15094119 0.004 0.772 0.0463 7 PTPRN2 

(0.2–0.8) M cg15971656 −0.006 0.374 0.0481 11 B4GALNT4* 

(0.2–0.8) P cg20808078 −0.004 0.747 2.87e-06 1 DIRAS3 

(0.2–0.8) P cg25135755 −0.007 0.631 3.14e-06 15 MAGEL2 

(0.2–0.8) P cg09834049 −0.012 0.291 5.29e-06 14 CDH24* 

(0.2–0.8) P cg01152488 −0.011 0.440 9.06e-05 15 MAGEL2 

(0.2–0.8) P cg03439898cr 0.009 0.770 0.0025 8 DLGAP2 

(0.2–0.8) P cg20076070 −0.011 0.413 0.0056 8 DLGAP2 

(0.2–0.8) P cg21113768 −0.008 0.464 0.0069 6 PLAGL1 

(0.2–0.8) P cg08082351 −0.005 0.708 0.0106 8 DLGAP2 

(0.2–0.8) P cg26939721 0.005 0.702 0.0147 15 SNRPN 

(0.2–0.8) P cg12818159 0.006 0.785 0.0272 8 DLGAP2 

(0.2–0.8) P cg02566775 −0.005 0.577 0.0352 6 PLAGL1 

(0.2–0.8) P cg09212014 −0.007 0.329 0.0375 14 DLK1 

(0.2–0.8) P; M cg03654058 −0.012 0.331 3.96e-04 11 KCNQ1OT1; KCNQ1 

(0.2–0.8) P; M cg04762676 −0.003 0.764 0.0271 11 KCNQ1OT1; KCNQ1 

>0.8 I cg09993814 −0.003 0.830 5.19e-04 20 BLCAP 

>0.8 I cg10546626 −0.002 0.891 0.0034 20 GNAS 

>0.8 I cg17820025cr −0.002 0.832 0.0455 20 BLCAP 

>0.8 M cg05821571 −0.003 0.825 5.53e-04 7 PTPRN2 

>0.8 M cg04799270 −0.001 0.924 0.0019 7 PTPRN2 

>0.8 M cg15012939 −0.003 0.855 0.0027 7 PTPRN2 

>0.8 M cg02855778 −0.002 0.904 0.0034 7 PTPRN2 

>0.8 M cg02773779 −0.002 0.866 0.0039 7 PTPRN2 

>0.8 M cg19100996 −0.002 0.896 0.0061 12 FBRSL1* 

>0.8 M cg22172494 0.005 0.859 0.0078 11 H19 

>0.8 M cg27629384 0.008 0.952 0.0119 7 PTPRN2 

>0.8 M cg17416793 0.010 0.942 0.0127 11 KCNQ1 

>0.8 M cg05926314 0.005 0.937 0.0129 7 PTPRN2 

>0.8 M cg19764489 0.007 0.906 0.0164 11 KCNQ1 

>0.8 M cg09350411 −0.002 0.910 0.0222 7 PTPRN2 

>0.8 M cg12001456 0.005 0.922 0.0234 7 PTPRN2 

>0.8 M cg08376924 0.005 0.913 0.0244 7 PTPRN2 

>0.8 M cg27050114cr 0.008 0.884 0.0264 11 KCNQ1 

>0.8 M cg06423822 −0.002 0.865 0.0274 7 PTPRN2 

>0.8 M cg03647659 −0.001 0.955 0.0320 11 B4GALNT4* 

>0.8 M cg24652817 −0.002 0.861 0.0363 7 PTPRN2 

>0.8 P cg07599819s −0.002 0.899 0.0012 19 ZIM2 

>0.8 P cg03652257 −0.003 0.818 0.0033 7 GLI3 
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>0.8 P cg24257495 0.005 0.930 0.0038 8 DLGAP2 

>0.8 P cg03156547 −0.002 0.839 0.0065 14 CDH24* 

>0.8 P cg06450373cr 0.008 0.889 0.0087 14 CDH24* 

>0.8 P cg01983373 −0.002 0.890 0.0178 14 DLK1 

>0.8 P cg18100008 −0.001 0.920 0.0228 7 GLI3 

>0.8 P cg03646329 −0.003 0.822 0.0243 13 RB1 

>0.8 P cg11882053 −0.003 0.827 0.0256 13 RB1 

Significant age-associated DMCs and allocated genes (n = 22) are shown based on Geneimprint and the Imprintome (see methods). 
Probe IDs, estimated changes of β-values by age, annotated imprinted genes, and expressed allele are indicated. *Predicted imprinted 
gene; (EA): expressed alleles: (P) Paternally, (M) Maternally, or (I) Isoform Dependent; crcross-reactive probe; sSNP. Results are ordered by 
subgroup (SG): unmethylated, UM (<0.2); hemi-methylated, HM ((0.2–0.8)); fully methylated, FM (>0.8); and, sorted by adjusted p-value 
(FDR <0.05). Note: If DMCs were mapped to multiple genes, only the ICR-related (predicted) imprinted gene is reported. 

 

Assessment of a potential role in autism development 

of genes linked to age-related DMCs in sperm 

 

Based on our results and reports by others, age-related 

DMCs in sperm were frequently seen at genes involved 

in autism. However, no earlier studies verified if these 

DNA methylation marks were located at sites important 

in epigenetic inheritance. First, we verified which of the 

seven recurrently reported genes (see paragraph above) 

are prone to imprinting. Two of the seven genes are 

known to be imprinted: DLGAP2 has been reported as a 

paternally expressed gene, and SLC22A18AS has been 

listed as a maternally expressed gene [18]. The 

estimated effects by age based on the current study at 

five CpG sites allocated to DLGAP2 are illustrated 
(Figure 8 and Supplementary Tables 4 and 5), directions 

 

 
 

Figure 7. Comparison of our set of age-related DMCs with earlier published datasets. Venn diagram showing the number of 

genes that have been identified by different authors as being differentially methylated by age in sperm; starting from a recent review by 
Bernhardt et al. [11], where 2,355 genes have been selected. Next to our results, the following publications have been included in this 
comparison: Bernhardt et al., Jenkins et al., Laurentino et al., and Oluwayiose et al. [9–12]. Seven genes (center of diagram) were identified 
by at least four studies (DLGAP2, SLC22A18AS, C7orf50, UTS2R, BEGAIN, GRIN1, and PCDH15); two are known imprinted genes (DLGAP2 
and SLC22A18AS). 
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varied by site; while at the three CpG sites allocated to 
SLC22A18AS all were hypomethylated by age (Figure 8 

and Supplementary Table 4). This suggests that these 

genes may play an important role in autism 

development in children born to fathers of an advanced 

age. Hence, changes in DNA methylation patterns at 

these genes could be considered as a potential predictor 

for autism in the next generation. 

When screening the 95 age-related imprinted genes 

based on the Geneimprint database (Supplementary 

Table 4), we found 28 genes that have been reported in 

autism development. When considering cross-reactivity 

of probes, the gene C6orf145 was excluded from our 

final list, resulting in 27 ASD-related imprinted genes 

(Figure 6). Eleven of these imprinted genes have been 

linked to a reported ICR (Figure 6, lower right panel); 

 

 
 

Figure 8. DNA methylation by age at CpGs linked to DLGAP2 and SLC22A18AS. Estimates of DNA methylation in β-values by age 

for all significant CpG sites annotated to DLGAP2 (A–E) and SLC22A18AS (F–H) imprinted genes are shown; DNA methylation changes at 
these genes have been identified by at least three other age-related studies. Fitted regression lines are shown. Regression models included 
potential confounding factors (BMI and patient status); these were corrected for multiple testing (BH-method). The following CpG sites 
were annotated to DLGAP2: (A) cg03439898 (Delta β = 0.0085, p-value = 0.0025), (B) cg20076070 (Delta β = −0.011, p-value = 0.0056), (C) 
cg08082351 (Delta β = −0.0046, p-value = 0.7083), (D) cg12818159 (Delta β = 0.0059, p-value = 0.0272), and (E) cg24257495 (Delta β = 
0.0049, p-value = 0.0038). The following CpG sites were annotated to SLC22A18AS: (F) cg08222610 (Delta β = −0.0153, p-value = 6.158515e-
06), (G) cg26874323 (Delta β = −0.0097, p-value = 1.840627e-05), (H) cg23335134 (Delta β = −0.005, p-value = 6.076208e-05). 
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Table 5. ASD-associated (predicted) imprinted genes and scoring. 

Gene Chr Probe ID ICR Co 
Multi  

CpG 
Top 90 Ma Op Is Pr 

Score of 

interest 

MAGEL2 15 cg10073842 1 0 1 1 1 0 0 1 5 

DLGAP2 8 cg03439898 1 1 1 0 0 0 1 0 4 

GNAS 20 cg21809160 1 0 1 0 1 0 1 0 4 

B4GALNT4 11 cg10798664 1 0 1 0 0 0 0 1 3 

GRB10 7 cg27006764 1 0 0 0 0 0 1 1 3 

KCNQ1 11 cg03371125 1 0 1 0 0 0 0 1 3 

KCNQ1OT1; KCNQ1 11 cg03654058 1 0 1 0 0 0 0 1 3 

OTX1 2 cg10487970 0 0 0 0 0 1 1 1 3 

PLAGL1 6 cg21113768 1 0 1 0 0 0 0 1 3 

PTPRN2 7 cg04937416 1 0 1 0 0 0 1 0 3 

PRDM16 1 cg10588310 0 0 1 0 0 1 1 0 3 

CDH24 14 cg03156547 1 0 1 0 0 1 0 0 3 

SLC26A10 12 cg08177625 0 0 1 0 0 1 0 1 3 

ATP10A 15 cg06066676 0 0 1 0 0 0 0 1 2 

FBRSL1 12 cg19100996 1 0 0 0 0 1 0 0 2 

HOXB3 17 cg10585948 0 0 1 0 0 0 0 1 2 

ANO1 11 cg11058904 0 0 0 0 1 0 0 0 1 

C6orf145 6 cg18815879cr 0 0 0 0 0 0 0 1 1 

FOXG1 14 cg18299578 0 0 0 0 0 0 0 1 1 

GLIS3 9 cg13804450 0 0 1 0 0 0 0 0 1 

LMX1B 9 cg13466694 0 0 1 0 0 0 0 0 1 

MAGI2 7 cg00110846 0 0 1 0 0 0 0 0 1 

NTM 11 cg12079699 0 0 1 0 0 0 0 0 1 

OBSCN 1 cg18477163 0 0 0 0 0 0 1 0 1 

UBE3A 15 cg12060334 0 0 1 0 0 0 0 0 1 

ADAMTS16 5 cg26892415 0 0 0 0 0 0 0 0 0 

DDC 7 cg15001032 0 0 0 0 0 0 0 0 0 

RNU5D 5 cg19107296 0 0 0 0 0 0 0 0 0 

ASD-associated (predicted) imprinted genes and related probes. Genes were linked to ASD disorders according to previously published 
databases (see methods). “Score of interest” is given by the following criteria: (ICR) listed by others as being close to an ICR; (Co) confirmed 
by at least four studies (including the current one); (Multi CpG) age-association was found at more than one CpG of the gene reported; 
(Top 90) belongs to the most significant top 90 age-related DMCs; (Ma) belongs to the highest magnitude in change by age (Delta-M > 0.1); 
(Op) opposite direction in methylation change; (Is) located at CpG island; (Pr) located at promoter region. Note: “1” means at least one CpG 
was found with this characteristic; “0” means none of the DMCs or genes met our criterium. Last column is the sum of eight criteria. crGene 
linked to a cross-reactive probe. Genes are listed from highest to lowest scores. For each gene, probe with highest score is shown. Note: 
one gene (SLC26A10) is reported by the NCBI Gene database as a pseudogene in human. 

 

five of these are included in the SFARI database (see 

Methods): MAGEL2 (score 1; high confidence for ASD), 

GNAS, and DLGAP2 (score 2; strong candidate for 

ASD), GRB10 (score 3; suggested evidence for ASD), 

and FBRSL1 (unknown score). Based on other databases 

(including genes found in multiplex ASD families), the 

following six genes are also listed: B4GALNT4, KCNQ1, 

KCNQ1OT1, PLAGL1, CDH24, and PTPRN2 (Figure 6) 

[25, 29]. Finally, these eleven genes form a first set of 

age-related biomarkers (Figure 6). Based on important 

functional characteristics of epigenetic inheritance, 

current and earlier findings on age-related epigenetic 

marks in sperm and ASD risk, we ranked our findings by 

several characteristics (significance, magnitude of 

change, overlapping findings with earlier reports, 

multiple age-related CpGs within the same gene, 

promoter or island content) (Table 5). Except for the 

FBRSL1 gene, all 11 genes had a “score of interest” of 3 

or higher. We used this numerical value (3) to further 

select for potential biomarkers within the remaining  

set of ASD-related imprinted genes without a yet 

established link to an ICR. Hence, additional genes with 
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a “score of interest” of at least 3 are: OTX1, PRDM16, 

and SLC26A10. The latter is listed in the NCBI Gene 

database as a pseudogene; hence, we do not select for 

this gene in our final list of potential biomarker genes. 

Consequently, we found thirteen candidate imprinted 

genes as potential biomarkers for age-related inheritance 

of ASD from father to child. These are illustrated in 

Volcano plots by DNA methylation subgroups (Figure 

2), and fitted regression lines are shown for each gene 

(Figures 8 and 9). 

 

 
 

Figure 9. DNA methylation by age at CpGs linked to imprinted genes and related to ASD. Estimates of DNA methylation in β-

values by age of CpG sites mapped to our selected list of ASD-related imprinted genes (with exception of CpGs mapped to DLGAP2, which 
are shown in Figure 8). Fitted regression lines are shown. Our regression models included potential confounding factors (BMI and patient 
status), and we corrected for multiple testing (BH-method). (A–E) maternally expressed genes; (F–J) paternally expressed genes; (K, L) 
isoform dependent transcribed gene. If more than one CpG site per gene was significant, the one with the lowest p-value is shown. 
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DISCUSSION 
 

This study revealed an overall decrease in DNA 

methylation at 14,622 CpG sites in sperm by age. In 

our unique search for age-related signatures in sperm 

featuring epigenetic inheritance from father to 

offspring we identified 95 imprinted genes. Only two 

of these identified genes have been found in similar 

studies: DLGAP2 and SLC22A18AS [9–12, 30]. 

SLC22A18AS, encoding a lncRNA, is a paternally 

imprinted gene [18]. While this gene is not listed in 

SFARI, two independent study cohorts in children with 

neurodevelopmental disorders showed aberrancies in 

expression levels or epimutations at regulatory sites of 

SLC22A18AS [22, 23]. Our data show a decrease in 

DNA methylation percentage by age at all three CpG 

sites of SLC22A18AS (Figure 8). While not selected as 

a potential biomarker for ASD-risk in the current study, 

we believe more research is needed to identify this 

gene’s potential role in inheritance of ASD. The 

DLGAP2 gene has been listed as a strong ASD 

candidate in SFARI and its imprinted domain has been 

validated by others [17, 18]. DLGAP2 is a paternally 

expressed gene, but we measured an average DNA 

methylation of 78% in sperm. Higher methylation 

percentages than anticipated have also been measured 

by others [31, 32]. We found that age-related DMCs 

near DLGAP2 are either hypermethylated (at islands, 

and open sea) or hypomethylated (at shores), which 

suggests that expression of this gene is malleable by 

environmental stressors. However, not all probes have 

been mapped to an ICR, and more research on the  

role of methylation in these regions is needed. 

Hypomethylation in sperm has also been reported in 

sperm cannabis users [31]. A role for intergenerational 

inheritance of these altered DNA methylation patterns 

at DLGAP2 by cannabis exposure, has been 

demonstrated in a rat model [32]. Other studies in rat 

indicate that the DLGAP2 methylation status can also 

be modified by conditions similar to post-traumatic 

stress in human [33]. According to a review by 

Rasmussen et al., DLGAP2 belongs to a family with  

a direct link to a variety of neurological and 

psychological disorders. Expression profiles are mainly 

found in testis and brain, and aberrancies in these 

expression patterns have been associated with 

schizophrenia and autism spectrum disorders [34, 35]. 

This confirms that this gene, important in early 

development of the brain, is highly susceptible to 

environmental influences. 

 

After mapping our findings to a list of earlier reported 

ICRs, 22 genes were retrieved of which 11 have been 

related to ASD (Figure 6). Notably, 11 out of the 22 

genes were also reported by a separate study performed 

by Court et al., where differentially methylated regions 

were verified in a range of human tissues (including 

sperm, embryos and somatic tissues) [36]. Five of these 

genes verified by Court et al. -providing evidence for 

inheritable epigenetic states- have been linked to 

(neuro)developmental disorders: MAGEL2, KCNQ1OT1, 

PLAGL1, GNAS, GRB10. All are included in our 

selected biomarkers, using an independent ranking 

system (Figure 6 and Table 5). Among all identified 

imprinted genes (n = 95), the gene MAGEL2 is 

matching multiple criteria, such as high magnitude in 

change by age, being within the top-90, at least one 

DMC at a promotor region, and having multiple DMCs 

of highest degree of significance; for instance, at probe 

cg10073842 we measured a Delta β of −0.022 (or 

−2.2% per year) (p = 1.84e-06). MAGEL2 is listed in 

the SFARI database and some DMCs could be 

allocated to an ICR (Supplementary Tables 5 and 7). 

The latter was (re)confirmed through data from an 

independent investigation where Illumina probes were 

mapped to candidate ICRs [37]. Aberrancies or 

variations in methylation at these sites have been linked 

to various diseases [36, 37]. In addition to its role in 

autism, it has also been reported as a contributor to 

Prader-Willi, Angelman, and Schaaf-Yang syndromes 

[38–41]. Another interesting finding is the paternally 

imprinted gene PTPRN2. DMCs related to this gene 

showed an age-related decrease in methylation; 

including one DMC within the FM subgroup that was 

located at an island region. PTPRN2 plays an important 

role in vesicle-mediated secretory processes, such as 

the accumulation of neurotransmitters norepinephrine, 

dopamine and serotonin in the brain [42]. Copy number 

variations of this gene have been found to be associated 

with ASD in a Brazilian cohort [43]. DNA methylation 

changes have been investigated in other populations, as 

well as by other exposures than ageing. For instance, 

hypomethylation at PTPRN2 was found in cord blood 

of children exposure to organochlorine compounds 

(DDE) in families at the Faroe Islands [44]. However, 

hypomethylation in sperm could not be linked to DDE 

exposure in the same Faroese population. Instead, the 

authors found both directions in DNA methylation 

changes; significant hypo and hypermethylation at 

multiple DMCs of PTPRN2. They concluded that this 

was suggestive for a regulatory role and potential 

inheritance of ASD [45]. Similarly, we found nine age-

related DMCs at the paternally imprinted gene 

B4GALNT4. These DMCs are either located in the 

body or the promoter region; we measured an overall 

decrease in DNA methylation. Liu et al. showed in a rat 

model that B4GALNT4 plays a role in brain function 

and development, including the development of ASD 

[46]. We further found age-related DNA methylation 
alterations at promotor regions of several other genes. 

In the case of KCNQ1, this gene is member of the 

KCNQ voltage-gated potassium channel family, 
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implicated in the pathogenesis of several forms of 

autism spectrum disorders [47, 48]. Hypomethylation 

was also measured at PRDM16 and SLC26A10; 

however, as the latter is reported as a pseudogene in 

human with unknown function we did not select 

SLC26A10. Aberrant PRDM16 expression has been 

linked to cardiovascular diseases and migraine in 

human [49]. In mice, Prdm16 is expressed in brain 

throughout middle and late stages of cortical neuro-

genesis, as well as during early post-natal development. 

This gene also plays a role in gene regulation through 

epigenetic mechanisms, and it co-operates with Pax6 

[50]. Interestingly, heterozygous spontaneous mutant 

mice with a mutation in Pax6 show phenotypes 

corresponding to autism in human; behavioral 

abnormalities in these mice are more prominent in 

offspring from aged fathers compared to young fathers 

[51, 52]. Next, we found age-related alterations at the 

promoter regions of the following genes: PLAGL1, 

GRB10, KCNQ1OT1 and OTX1. DNA methylation 

differences have been found at imprinted loci of 

PLAGL1 in patients with autism versus controls [38]. 

The same study also indicated epivariations at 

imprinted sites of GNAS in patients with autism. Note, 

according to Carreras-Gallo et al.’s report, the 

identified age-related DMC of GNAS in the current 

study is part of a reported ICRs [37]. Next, based on 

animal studies, GRB10 is also a contributor to ASD 

pathogenesis. Its transcript forms a complex with the 

autism-associated protein GIGYF1 to regulate the IGF-

1R/ERK signaling pathway, important in brain 

development [53]. In a study of postmortem temporal 

cortex samples from ASD subjects, histone 

modifications could be detected at GRB10 [54].  

The authors suggested that the measured GRB10 

deacetylation could represent an epigenetic mechanism 

in idiopathic autism linked to pathways that are also 

affected by rare genetic variants causing syndromic 

ASD. This supports earlier insights that rare coding 

variants alone cannot account for all ASD cases, but 

epigenetic alterations (by environmental conditions) 

may contribute to many ASD cases [55]. GRB10 is 

listed as an isoform dependent imprinted gene because 

of its complex imprinted expression pattern. It is 

expressed maternally in most tissues, but it is 

paternally expressed (or maternally methylated) in the 

early embryo and in the brain [56]. Deletion of the 

paternal allele in mice resulted in offspring with an 

aberrant social behavior, such as social dominance 

[57]. Alterations at imprint regulatory regions of 

KCNQ1OT1 have been linked to autism and Beckwith-

Wiedemann and Silver–Russell syndromes [58]. A 

DNA methylation alteration was found at KCNQ1OT1 
in patients with autism or intellectual disability [59]. 

An overlap in disease outcomes was also found for 

FBRSL1. This gene is included in the SFARI and Homs 

et al.’s databases, but it has also been linked to a 

disability syndrome, including heart defects and 

intellectual disability. Evidence suggests this gene 

orchestrates gene expression in neurogenesis and in the 

development of autism. An assessment of DNA 

methylation patterns for this gene has been considered 

as a future diagnostic tool for ASD [60, 61]. The gene 

OTX1 encodes a transcription factor important in brain 

and sensory organ development [62, 63]. It is also 

known as a tumor promotor, suggesting its broader 

involvement in developmental and proliferative 

processes. In the context of ASD, OTX1 has emerged 

as a strong candidate gene (SFARI score 2, meaning 

that the association has been shown earlier with high 

confidence) [21]. CDH24 (cadherin 24) is a paternally 

imprinted gene. In general, this gene mediates cell 

adhesion (particularly in the brain) and is involved in 

the formation of intracellular signaling pathways. But 

early genome wide association studies revealed some 

autism-associated cadherins [64]. 

 

In summary, imprinted genes selected in the current 

age-association study as potential epigenetic biomarkers 

for ASD in offspring are: OTX1, PRDM16, PTPRN2, 
B4GALNT4, KCNQ1, KCNQ1OT1, DLGAP2, PLAGL1, 

GNAS, GRB10, MAGEL2, CDH24, and FBRSL1; these 

are highlighted in Figure 2 and fitted regression lines 

are illustrated for at least one probe per gene (Figures 8 

and 9). We measured small DNA methylation 

differences by age; ranging from 0.07% (B4GALNT4) to 

2.75% (PTPRN2) per year. However, if fertilization 

were to occur with a sperm cell that carries one (or 

multiple) aberrantly methylated sites at one (or several) 

of these genes, this developing child may be at risk to 

have ASD. For instance, at OTX1 -a gene with an 

average change per year- our linear estimates shows that 

a ten-year increase in paternal age could result in 1.2% 

more sperm cells being hypermethylated. On an 

individual level this can be translated to 1 200 000 

aberrant sperm cells in an ejaculate of 100 million cells, 

associated with paternal age. While the chance is low 

that the affected sperm will result in a pregnancy, on a 

population level 1.2 % more children with an increased 

risk to develop ASD is an important contribution to 

public health. However, this is still hypothetical as other 

factors play a role in ASD development as well, and 

current knowledge is too limited to understand the 

effects of one or more affected CpGs at one gene. Even 

less is known about the combined effect of paternal age 

on multiple imprinted genes and possible interactions 

with other determinants. 

 

We detected limited age-related DMCs at CpG islands; 
only 4.5%, while the expected island content within the 

array is about 31% [46]. We hypothesize that CpG 

islands are more protected against changes by ageing or 
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related factors, because of their importance in gene 

regulation. Yet, the limited number of significant DNA 

methylation alterations we have measured at these sites 

in sperm may be important in evolution and inheritance 

of specific phenotypes. Notably, our selection of 

biomarkers was based on several stringent criteria, 

including ASD-related databases. It is possible that 

other (unknown) autism-associated genes may have 

been missed. Consequently, our list of biomarkers is not 

final and should not be taken strictly. It is a first step 

towards a more refined and validated set of genes 

sensitive to epigenetic changes by age. As our sample 

size is small, other populations of men (on a larger scale 

and using a broader age-range) should be tested before 

implementing our findings in clinic. Another reason 

why we acknowledge its prematurity, is the integration 

of data from lists of ICRs and imprinted genes that are 

extensive but not yet fully developed [17]. It has been 

estimated that the human genome comprises between 

300 and 1,000 imprinted genes [65]. Theoretically, this 

means that male sperm harbors hundreds of important 

regulatory sites yet to be discovered. As indicated, 

because of variation in populations, men living in 

different geographical areas or men with different 

cultural backgrounds may have different patterns of 

DNA methylation as they age. For example, in a recent 

study in the UK, differences were seen in DNA 

methylation patterns by biological ageing and by 

housing circumstances [66]. We do not exclude that the 

use of age is a proxy for a mixture of environmental 

exposures that coincide with ageing. A remarkable 

finding by Wang et al. shows that depending on the 

method used to select a sperm cell in fertility treatment 

procedures, children may have higher risk for autism 

[67]. Given the need for more research on the exposure 

impact on sperm epigenetics, age remains an important 

variable to include in prediction modeling of acquired 

diseases. A potential weakness of our study is its limited 

age-range. The current study does not provide an 

answer to the potential ASD-risk associated with 

fathering a child at older age (e.g., 40 years old or 

older). Nevertheless, we detected significant DNA 

methylation alterations within a range of 18 years (from 

18 till 35 years old). This covers the age when most 

men father their first child. Literature raises the problem 

of the biological clock of the male germ line in ageing 

men and related effects on the increasing numbers  

of children with ASD or other neurodevelopmental 

disorders. It has been suggested that age of the father 

gradually increases the risk for autism in offspring [68]. 

In a meta-analysis it was calculated that every 10 years 

increase in age results in 21% increase in risk for ASD 

in offspring (OR: 1.21; 95% CI: 1.18–1.24) [69]. 
 

Finally, we do not exclude a potential higher risk for 

other disorders (than autism) in children from men of 

advanced age. As hypothesized by other researchers, 

such as Levine et al., epigenetic biomarkers of ageing 

could be used to capture an overall risk for future 

diseases [70]. Because of recurrent findings in 

literature on autism-related outcomes, we focused on 

ASD databases in our final analysis, and we did not 

explore our list of 14,622 DMCs on other potential 

outcomes. Hence, although our results point to a (first) 

set of candidate biomarkers for one disorder, ASD, we 

believe that the sperm epigenome contains more 

signatures to be explored. A strength of studying 

imprinting in sperm -and potential offspring outcomes- 

is the fact that these signatures may persist in somatic 

cells of the next generation. This is particularly 

important in research on brain related disorders. 

Studying causes of autism in humans is complicated, 

especially because key tissues (brain) are not available 

for clinical testing. Hence, as indicated earlier by the 

research group of Craig, researchers can either study 

postmortem samples, test mechanisms associated with 

the disorder, or identify and evaluate biomarkers for 

risk or prognosis of autism [71]. However, our age-

associated epigenetic marks in sperm should still be 

present in somatic cells of offspring. While our study 

design was limited to sperm analyses only, and 

inheritance could not be tested, including these 

biomarkers in future research on children (considering 

paternal age in children with versus without ASD) 

would facilitate the creation of a causation model for 

autism, with no (or limited) need of postmortem 

tissues. In this way, if explored and validated further on 

a larger scale, it would be possible to estimate the 

effect (or risk) for ASD in children by preconceptional 

conditions of the father. Moreover, although risk at 

individual level may be small, the effect on a 

population level is an important result to consider, 

especially in the context of future policy re-

commendations. For instance, educational programs 

would benefit from this knowledge. Specifically, 

awareness could be increased in young men about the 

risks for having a child with autism, if they postpone 

fathership; and in clinic, appropriate preconceptional 

counseling of couples in which the man is of advanced 

age could be implemented. Our results may further 

contribute to new insights on subtypes of autism, 

reported by the group of Troyanskaya [72, 73]. In their 

most recent publication, they were able to subdivide 

autism by specific genetically underlying mechanisms. 

In brief, some autism subtypes may be caused by de 

novo mutations in DNA at coding regions, while other 

subtypes may have their origin in changes at non-

coding regions or sites with allele-specific regulatory 

activities. This aligns with our finding and supports the 
importance of a -yet underestimated role- of epi-

genetics in the onset and heterogeneity of neuro-

developmental diseases. 
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MATERIALS AND METHODS 
 

Study participants and sample collection 

 

Male volunteers were recruited as part of The Influence 

of the Environment on Gametic Epigenetic Reprogram-

ming (TIEGER) study. The cross-sectional design, 

sample and data collection, and selection criteria of this 

North Carolina, USA-based study have been published 

previously; a flow chart of the current study population 

of 63 men is included in Supplementary materials 

(Supplementary Figure 1) [15]. In brief, eligibility 

criteria at recruitment included: non-smoking, no 

personal history of cancer, no vasectomy or other 

procedures that may cause infertility, age range of 18–

35, and Caucasian; this was applied to keep our 

population relatively homogenous in this small study 

sample. In the clinic, semen was analyzed for standard 

clinical parameters after liquefaction, no later than 60 

minutes from collection. These parameters included 

volume, pH, viscosity, liquification time, presence of 

white blood cells, concentration, and motility. The 

World Health Organization’s (WHO) Laboratory 

Manual for the Examination and Processing of Human 

Semen 5th edition was referenced for normal values 

[74]. After completion of the clinical sperm analyses, 

the samples were subjected to two-step ISolate-gradient 

centrifugation (Irvine Scientific) to select a motile 

population enriched in normal morphology. This 

colloidal silica gradient, consisting of a 90% lower layer 

and 50% upper layer, was prepared by sequentially 

adding 1.5 ml of each layer to a 15 ml polystyrene 

conical tube. The sperm sample was pipetted on top of 

the upper layer and centrifuged at 200× g for 15 

minutes. The gradient solution was removed, and 

pelleted sperm were stored at −80°C for subsequent 

DNA methylation analysis [15]. 

 

DNA methylation measurements in sperm, data 

preprocessing, and validation 

 

Sperm genomic DNA was extracted and prepared  

for Illumina HumanMethylation450 BeadChip as 

previously described [15]. Methylation levels range 

from 0% to 100%; where 0% means no sperm cell is 

methylated at a specific CpG site, and 100% means that 

all sperm cells in a sample are methylated. Then, we 

scaled our data in an interval of (0, 1). Hence, DNA 

methylation values are represented as proportions 

ranging from 0 (if “unmethylated”) to 1 (if 

“methylated”). Our preprocessing scenario included 

sample quality control, filtering of low intensities 

probes, Beta Mixture Quantile normalization (BMIQ), 

and logit transformation of default β-values into M-

values; M = log(β/1−β) (Supplementary Figure 2) [75–

77]. Probes with low quality signal (detection p-value 

greater than 0.01 in at least one sample) were filtered 

out. Our final dataset represents outcomes of 482,287 

probes (out of 485,512), referred as “450K”. Validation 

tests were performed through data obtained after 

bisulfite pyrosequencing. These protocols, including 

PCR conditions and primer sequences were reported 

previously [15, 78, 79]. In brief, using the 

Pyrosequencing WorkStation, the single strand was 

isolated and then underwent pyrosequencing using a 

PyroMark Q96 MD pyrosequencing instrument 

(Qiagen). The region upstream from IGF2 exon 3, 

including three CpG dinucleotides (chr 11p15.5), was 

tested, as well as the DMR for H19, including four CpG 

sites (chr 11 p15.5). Assay validation data and the 

results of sensitivity tests for pyrosequencing have been 

published [15, 78, 79]. At IGF2, an increase of 1 year of 

age showed a decrease in DNA methylation (β-value = 

−0.10; SE = 0.04; p = 0.02). At H19, an increase of 1 

year of age corresponded to a significant increase in 

DNA methylation (β-value = +0.14; SE = 0.05; p = 

0.009). These results are similar to our findings in the 

current approach, when using the 450K array (e.g., all 

DMCs at IGF2 are negatively associated with age with 

a mean delta β-value of −0.01; at H19, one age-

associated DMC was found, with a delta β-value of 

+0.0054). 

 

Statistical analysis 

 

Two main analyses were assessed to better understand 

how age may affect sperm DNA methylation. We 

analyzed 1) age versus global DNA methylation, and 2) 

age versus DNA methylation at each CpG site of the 

450K. A workflow illustrates our approach (Figure 1). 

The mean β-value was measured at all CpG sites of the 

450K. Using this mean we calculated the global DNA 

methylation in sperm for each subject. Pearson 

correlation coefficient was used to measure the 

correlation between global DNA methylation and age, 

and Mann-Whitney U-test was used to evaluate the 

difference in global DNA methylation for different 

subgroups of men. We used the mean β-value (in all 

subjects, for each CpG site) to classify each CpG site by 

its potential biological relevance, as suggested in 

literature [80]. Consequently, a CpG site with a mean β-

value <0.20 was defined as “unmethylated” (UM), as 

“hemi-methylated” (HM) if 0.20≤ mean β-value ≤0.80, 

and as “fully methylated” (FM) if mean β-value >0.80. 

To estimate age-related associations, outcomes of the 

450K -expressed as M-values- were included as 

dependent variables in a linear regression model. Age, 

BMI and patient status were added as independent 

variables. We used moderated t-statistic and corrected 
for multiple testing using the Benjamini-Hochberg (BH) 

method. Significant threshold was defined as FDR 

<0.05. Notably, the use of M-values in regression 
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modeling -while less intuitive than β-values- provides a 

better estimate of age-related effects on DNA 

methylation as data of M-values are approximately 

homoscedastic. We back-transformed delta M-values to 

delta β-values, using Kruppa et al.’s “intercept method”; 

as follows: 

 

 
0 0

0 0

(M + delta M) M

(M + delta M) M

2 2
β ;

1 2 1 2
 = −

+ +
 

 

where M0 indicates the baseline DNA methylation 

(intercept) [81, 82]. Volcano plots and fitted regression 

lines (based on estimated β-values) were used to 

graphically represent the results of our linear regression 

models (Figures 2, 8 and 9). Sensitivity tests were 

performed, removing outliers. We also repeated our 

analyses by excluding patients, and by adding additional 

co-factors in our models, such as sperm quality. These 

tests did not result in differences in our final results. In a 

post-hoc analysis we also repeated our analyses 

excluding 73,735 CpGs reported at SNPs [19]. We 

investigated cross-reactivity of probes using DMRcate 

package, based on Chen et al.’s list [20, 83]. SNPs and 

cross-reactive probes are indicated in our tables with “s” 

and “cr”, respectively. To investigate the chromosomal 

distribution of all age-associated DMCs, a Miami  

plot was generated, showing the direction of DNA 

methylation change by age per chromosome 

(hypermethylated CpG sites, Delta Beta >0 vs. 

hypomethylated CpG sites, Delta Beta <0). We used the 

Illumina annotation manifest to explore DMCs by 

island content, their functional genomic allocation and 

associated genes [84]. To investigate the potential role 

of differentially methylated CpG sites (DMCs) in 

imprinting, we identified genes corresponding to age-

associated sites that were previously listed in the 

Geneimprint database, and as nearest transcript of a 

candidate imprint control region (ICR) [17]. Moreover, 

we verified if DMCs allocated to those genes 

correspond to probes identified by Carreras Gallo et al. 

as part of related ICRs [37]. In order to compare our 

results with earlier reports, we used datasets from 

Bernhardt et al. [11], Jenkins et al. [9], Laurentino 

et al. [10], and Oluwayiose et al. [12]. Finally, we used 

the following databases to elaborate our study on 

ASD: The Simons Foundation Autism Research 

Initiative (SFARI) database (which includes a gene 

scoring system to reflect the strength of evidence for its 

genetic involvement in ASD) and few other studies 

reporting ASD-related gene databases; including also 

ASD risk genes based on families with multiple affected 

children [29, 30, 85]. We also used the following open 

access resources: the Human Protein Atlas and the 

NCBI gene database [42, 86]. We ranked our findings 

by the following characteristics (Table 5): Top 90 most 

significant (yes/no), delta-M >0.1 (yes/no), opposite 

direction (yes/no), located at CpG island (yes/no), 

located at promoter region (yes/no), and listed by at 

least three other studies (yes/no). The sum was called 

“score of interest” (Table 5). 

 

Our analysis was conducted in R (version 4.2.2.). Data 

preprocessing and annotation were conducted using 

Bioconductor packages, including missMethyl for GO 

terms enrichment analysis [87–90]. Upon request, full 

lists of data will be made available upon documentation 

of approval by a recognized Institutional Review Board 

(IRB). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Flow chart of study design. The influence of the Environment on Gametic Epigenetic Reprogramming 

(TIEGER) study design and inclusion/exclusion criteria are illustrated. 
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Supplementary Figure 2. Distribution of M-values per probe type. Distribution of: (A) raw M-values, and (B) M-values obtained 

from BMIQ-normalized β-values. This is shown for the Infinium I (black) and Infinium II (gray) probe types. 
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Supplementary Figure 3. Global DNA methylation in human sperm by age. Global DNA methylation per subject was calculated as 

the average DNA methylation at all CpG sites of the 450K. The estimated Pearson correlation coefficient (R = −0.0395, p-value = 0.7588) is 
reported. After removing two outliers, these results remained unchanged (R = −0.0724, p-value = 0.5793). 
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Supplementary Figure 4. Global DNA methylation in sperm of men above and below 25 years old. Boxplot comparing global 

DNA methylation levels in sperm from men below the median age (25 years old) versus above the median age in our study population. 
Global DNA methylation for each subject was calculated as the average DNA methylation at all CpG sites of the 450K. The differences in 
outcomes were evaluated by the Wilcoxon rank sum exact test (W = 493, p-value = 0.9726). After removing two outliers, our results 
remained unchanged (W = 452, p-value = 0.9254). 
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Supplementary Figure 5. Global DNA methylation in human sperm by age and stratified by patient status. Global DNA 

methylation, calculated as the average DNA methylation percentage at all CpG sites of the 450K, is represented per subject by age, in (A) 
non-patient subgroup (n = 48) and (B) patient subgroup (n = 15). Linear regression analysis shows no significant association between global 
DNA methylation and age in both subgroups (non-patients: p-value = 0.3974; patients: p-value = 0.3763). 
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Supplementary Figure 6. Global DNA methylation in human sperm by age and stratified by obesity status. Global DNA 

methylation, calculated as the average DNA methylation percentage at all CpG sites of the 450K, is represented per subject by age, in (A) 
normal weight subgroup (n = 43) and (B) overweight/obese weight subgroup (n = 20). Linear regression analysis shows no significant 
association between global DNA methylation and obesity status (normal weight men: p-value= 0.7789; overweight/obese men: p-value = 
0.6543). 
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Supplementary Figure 7. Global DNA methylation in human sperm by age subdivided by DNA methylation subgroups. 
Linear regression models show no association between global DNA methylation levels and age by DNA methylation subgroups: (A) 
unmethylated CpG sites (R = −0.0426 and p-value = 0.7406), (B) hemi-methylated CpG sites (R = −0.0124 and p-value = 0.9231), and (C) fully 
methylated CpG sites (R = −0.0056 and p-value = 0.9651). 
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Supplementary Figure 8. Gene Ontology terms enrichment analysis. Eleven significant GO terms (FDR <0.05). X-axis shows the 

logarithmic transformation of adjusted p-values. Left Y-axis: GO term description. Right Y-axis: biological process (BP), cellular component 
(CC), and molecular function (MF). Gene ratio represents the percentage of genes that are differentially methylated out of the total number 
of genes in our 450K in the specific GO term. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 4–7. 

 

Supplementary Table 1. Distribution of CpGs by island content within the 450K array. 

CpG 
island 
content 

Total of analyzed CpG sites 
DNA methylation subgroups 

UM HM FM 

n % N % N % n % 

Island 149,092 30.91 131,110 87.94 4,875 3.27 13,107 8.79 

Shore 111,367 23.09 67,762 60.85 15,613 14.02 27,992 25.13 

Shelf 46,845 9.71 2,419 5.16 5,792 12.36 38,634 82.47 

OpenSea 174,983 36.28 25,141 14.37 22,111 12.64 127,731 73.00 

 482,287 100 226,432  48,391  207,464  

All CpG sites of the analytic 450K are targeted by a specific region of CpG neighborhood content, then presented by DNA 
methylation subgroups: Unmethylated (UM), Hemi-methylated (HM), or Fully methylated (FM) (UM: β-value <0.2; HM:  
β-value (0.2–0.8); FM: β-value >0.8). 

 

 

Supplementary Table 2. Distribution of CpGs by island content after age-related analysis. 

CpG 
island 
content 

Differentially Methylated CpG sites 

Total   UM HM FM 

n %1 %2 n % n % n % 

Island 

722 4.94 0.15 325 13.46 280 4.38  117 2.01 

320+ (44.32%); 402- (55.68%)   96+; 229−  143+; 137−  81+; 36−  

Ratio: 1.26   Ratio: 2.38  Ratio: 0.95  Ratio: 0.44  

Shore 

7,182 49.12 1.49 1,753 72.62 3,729 58.36 1,700 29.22 

278+ (3.87%); 6,904- (96.13%)   66+; 1,687−  123+; 3,606−  89+; 1,611−  

Ratio: 24.83   Ratio: 25.56  Ratio: 29.3  Ratio: 18.10  

Shelf 

1,575 10.77 0.33 93 3.85 521 8.15 961 16.52 

258+ (16.38%); 1,317- (83.62%)   2+; 91-  71+; 450−  185+; 776−  

Ratio: 5.10   Ratio: 45.45  Ratio: 6.34  Ratio: 4.19  

Open 
Sea 

5,143 35.17 1.06 243 10.07 1,860 29.11 3,040 52.25 

3,675+ (71.46%);1,468- (28.54%)   33+; 210−  1,278+; 82−  2,364+; 676−  

Ratio: 0.40   Ratio: 6.36  Ratio: 0.45  Ratio: 0.29  

All 
14,622 100 3.03 2,414 100 6,390 100 5,818 100 

4,531+ (30.99%); 10,091- 69.01%)   197+; 2,217−  1,615+; 4,775−  2,719+; 3,099−  

Significant age-related DMCs are grouped by DNA methylation subgroups: Unmethylated (UM), Hemi-methylated (HM), or Fully methylated 
(FM) (UM: β-value <0.2; HM: β-value (0.2–0.8); FM: β-value >0.8). Adjusted p-values are used (BH method; FDR ≤0.05). (+) positive 
correlation with age; (–) negative correlation with age. The ratio is calculated as a negative versus a positive correlation. (%) calculated 
relative to the total number of sites within subgroups. 1% calculated in relation to the total number of DMCs (n = 14,622); 2% calculated to 
the total number of CpGs tested at the 450K array. 
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Supplementary Table 3. Distribution of age-associated DMCs in sperm by functional genomic allocations. 

 
Differentially Methylated CpG sites 

Total UM HM FM 

Functional genomic distribution n % N % N % n % 

Promoter 2,710 18.54 669 27.71 1,297 20.30 744 12.79 

1stExon 160 1.09 15 0.62 50 0.78 95 1.63 

5′UTR 873 5.97 154 6.38 365 5.71 354 6.08 

Body 4,266 29.18 614 25.43 1,755 27.46 1,897 32.61 

3′UTR 519 3.55 69 2.86 216 3.38 234 4.02 

Intergenic 4,586 31.36 565 23.41 2,010 31.46 2,011 34.57 

Multiple allocation 1,508 10.31 328 13.59 697 10.91 483 8.30 

Total 14,622 100 2,414 100 6,390 100 5,818 100 

Distributions are shown for all significant DMCs and by subgroups: Unmethylated (UM), Hemi-methylated (HM), or Fully 
methylated (FM) (UM: β-value <0.2; HM: β-value (0.2–0.8); FM: β-value >0.8). CpG sites allocated to multiple regions are 
reported as a separate category (multiple allocation). 

 

 

Supplementary Table 4. Age-associated DMCs allocated to (predicted) 95 imprinted genes according to the 
Geneimprint database. 

 

Supplementary Table 5. Age-associated DMCs allocated to 318 genes identified as nearest transcript of 
candidate ICRs. 

 

Supplementary Table 6. Genes susceptible to ageing in sperm according to current and earlier studies. 

 

Supplementary Table 7. Age-associated DMCs and allocated (predicted) imprinted genes linked to autism 
spectrum disorders and ranked by scoring criteria for biomarker selection. 
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