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ABSTRACT

At the 10" Annual International Cell Senescence Association (ICSA) Conference, held in Rome (ltaly) from
September 17-19, 2025, “senescence and infection” emerged as a recurring highlight linking diverse sessions
across virology, immunology, and aging research. Presentations addressed virus-induced senescence in
influenza A virus (IAV), SARS-CoV-2, cytomegalovirus (CMV), and human immunodeficiency virus (HIV), as well
as bacterial infections such as Mycobacterium abscessus. Together, these studies have defined infection-driven
senescence (IDS) as a critical biological process in both acute disease and long-term sequelae, connecting
infectious pathology with mechanisms of aging and chronic inflammation.
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Mechanistically, IDS integrates DNA damage responses, inflammatory signaling, and metabolic stress, with
consistent activation of p16'**2, p21, and NF-kB pathways. Evidence across immune, epithelial, and neuronal
systems have revealed that senescence contributes to impaired regeneration, persistent inflammation, and
altered host-pathogen dynamics. Emerging therapeutic data suggest that senolytic or senomorphic strategies

may alleviate infection-associated tissue damage.

Collectively, the conference highlighted IDS as an expanding frontier that bridges infection biology and aging
research, emphasizing its potential relevance for prevention and therapy of chronic age-related disease.

INTRODUCTION: SENESCENCE AT THE
CROSSROADS OF AGING AND INFECTION

Cellular senescence is a fundamental biological process,
originally characterized as an irreversible cell cycle
arrest that limits proliferation of damaged or aged cells
[1]. Over the past three decades—largely due to the
pioneering work of Judith Campisi and colleagues—
senescence has been redefined as a multifaceted
stress response with both protective and deleterious
consequences [2, 3]. While senescent cells act
as barriers against malignant transformation and play
roles in tissue remodeling and repair, their persistence
and pro-inflammatory secretome—known as the
senescence-associated secretory phenotype (SASP)—
fuel chronic inflammation, tissue degeneration, and
aging-associated pathologies [4—6].

Traditionally studied in the contexts of cancer and
aging, senescence has only recently entered the
spotlight in infection biology. A growing body of
evidence suggests that microbes can trigger senescence
directly through cellular damage or indirectly through
paracrine signaling. Infections may thus induce
senescence as part of an antiviral or antibacterial
defense program, while pathogens in turn evolve
strategies to exploit, subvert, or persist within
senescent environments. The outcome is a complex
and sometimes paradoxical interplay: senescence can
restrict pathogen replication but can also provide niches
for persistence and drive long-term tissue dysfunction.

At the 2025 International Cell Senescence Association
(ICSA) meeting held in Rome, Italy, IDS emerged as a
unifying theme across the talks presented in the session
on infections and senescence, which was sponsored by
the Department of Excellence in Aging, University of
Piemonte Orientale, Novara - Italy. Presentations
spanned  virus-induced senescence (VIS) from
influenza, SARS-CoV-2, CMV, and HIV to bacterial
infections such as Mycobacterium abscessus.

Here we will synthesize these highlights, outline
common mechanisms, and discuss therapeutic
opportunities, framing IDS as an emerging frontier in

medicine—one that echoes and extends Judith

Campisi’s enduring scientific legacy.

INFECTIONS AND SENESCENCE: FROM
ACUTE PATHOLOGY TO LONG-TERM
SEQUELAE

Respiratory viral infections remain among the most
significant global health threats, particularly in older
adults. Francois Trottein’s (Institut Pasteur de Lille,
France) research team investigates the role of age-
related senescent cells in respiratory infections. Using
influenza and COVID-19 models in aged animals, they
showed that pharmacologic depletion of senescent cells
with navitoclax, a Bcl-2 family inhibitor, reduces acute
pulmonary inflammation and mitigates long-term
pulmonary sequelae [7] and submitted]. In SARS-CoV-
2 infection, prophylactic clearance of senescent cells
decreases viral replication, likely due to their high
expression of the viral receptor ACE2. In young mice,
both pharmacologic and genetic removal of senescent
cells (p16-ATTAC mice) also reduces post-influenza
pulmonary sequelae [8]. Importantly, they observed that
senescent cell depletion accelerates epithelial repair
even after virus clearance, suggesting a therapeutic
window beyond the acute phase. Ongoing work of this
group focuses on elucidating the molecular pathways by
which senescent cell clearance confers protection with
the aim of investigating the translational potential of
senolytic therapies in viral pneumonia.

Stefanie Deinhardt-Emmer (Jena University Hospital,
Germany) presented compelling evidence that respiratory
viruses themselves can drive premature cellular
senescence. She showed that Influenza A virus (IAV)
triggers an indirect senescence program via TNF-
dependent macrophage activation, whereas the SARS-
CoV-2 omicron variant directly induces senescence in
infected lung epithelial cells [9, 10]. Hallmarks include
pl6™K4a 21 and p38 activation alongside a robust
SASP. Importantly, senescent fibroblasts in infected
tissue exhibited increased susceptibility to secondary
infections, coupled with altered intracellular pH,
JAK/STAT activation, and TRAIL expression. These
findings position VIS as a central mechanism not only in
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acute pathology but also in shaping tissue environments
that perpetuate infection and inflammation [11].

The long-term consequences of respiratory viral
infections were further explored by Federico Armando
(University of Parma, Italy; University of Hannover,
Germany), who examined alveolar progenitors in a
hamster model of SARS-CoV-2 infection. In this
setting, alveolar differentiation intermediate (ADI) cells
displayed atypical morphology, p53 expression, and
transcriptomic features consistent with VIS [12]. While
these senescent cells declined after 28 days, airway
progenitors replaced them, potentially explaining
chronic remodeling and the impaired gas exchange seen
in long-COVID. These data suggest that IDS in
progenitor populations may act as a gateway to
persistent lung dysfunction, as supported by in vivo lung
measurements up to 4 months after infection of this
study [13].

Together, these studies underscore that respiratory
viruses exploit and induce senescence at multiple
levels—through immunosenescence, direct infection-
driven programs, and paracrine mechanisms—creating a
pro-inflammatory, permissive environment that extends
pathology well beyond the acute phase.

Human cytomegalovirus (CMV), a ubiquitous pB-
herpesvirus, is a paradigm of chronic infection and
persistence. In immunocompromised patients and
transplant recipients, CMV reactivation can lead to
acute severe disease. In addition to that, CMV infection
is increasingly linked to aging-related comorbidities,
including fatigue syndrome and vascular dysfunctions.
In collaboration with Marisa Gariglio (University of
Piemonte Orientale, Italy), Marco De Andrea
(University of Turin and University of Piemonte
Orientale, Italy) previously showed that CMV triggers
senescence and paracrine inflammation in renal
proximal tubular epithelial cells [14]. At the 2025 ICSA
meeting, they reported that similar mechanisms can also
occur in human endothelial cells—a key cellular target
of CMV in wvivo. Infected human umbilical
vein endothelial cells (HUVECs) displayed multiple
hallmarks of senescence, including reduced EdU
incorporation, increased p16™&4 expression, and loss of
Ki67, with most Ki67-negative cells accumulating in
Go, consistent with deep and stable cell cycle exit.
SASP-associated cytokines were also significantly
increased from 4 days post-infection onward, especially
IL-6, IL-8, CCLS, IP-10, and IFN-B. Transcriptomic
profiling confirmed enrichment of the SenMayo gene
set [15], reinforcing activation of a canonical
senescence program. They claimed that VIS was not
limited to infected cells: through paracrine signaling,
inflammation spread to neighboring uninfected cells, as

shown by enhanced NF-kB nuclear translocation in both
compartments. In summary, the highly inflammatory
phenotype of infected endothelial cells—and its
transmission to bystanders—may partially explain some
of the degenerative complications often observed in
patients with prolonged CMV viremia, including
vascular disorders.

Complementary data presented by Rocio M. Tolosa
from the Carmen Rivas laboratory (University of
Santiago de Compostela, Spain), in collaboration with
the Manuel Collado group, confirmed that CMV
infection elicits DNA damage, p53 activation, and
elevated senescence-associated P-galactosidase activity.
Consistent with earlier findings from this group [16],
senescent cells were markedly less permissive to CMV
replication, supporting the view that senescence acts as
an intrinsic antiviral defense. These authors further
proposed that the accumulation of senescent cells may
contribute to vascular inflammation and tissue
dysfunction, highlighting the dual role of senescence in
CMV pathobiology.

Despite the success of antiretroviral therapy (ART),
people with HIV (PWH) exhibit premature aging and
increased rates of age-related comorbidities. Multiple
presentations at ICSA 2025 highlighted senescence
as a key mechanism in this setting. Andrea Rodriguez-
Agustin and Victor Casanova (FRCB-IDIBAPS,
Barcelona, Spain) showed that the HIV-1 Tat protein
induces DNA methylation changes, acting as an
epigenetic driver of the accelerated aging phenotype
observed in PWH [17]. Previously, other authors reported
that HIV-1 infection reshapes the host DNA methylation
landscape in PWH, which is not fully restored by ART
[18]. Tat expression led to transcriptional reprogramming
favoring inflammation, lipid metabolism alterations, and
anti-apoptotic processes [19]. Indeed, it has been
described that full-length Tat protein can directly
modulate the transcription of more than 400 genes in
CD4* T cells [20]. Moreover, they demonstrated that
intracellular Tat upregulates senescence markers in CD4*
T cells, including p21¢™®!, p16™K42 and yH2AX, along
with secretion of SASP mediators [21]. These findings
are consistent with observations reported by other authors
in which Tat induces cellular senescence in microglia
[22] and in primary CD4'T models [23], where this
protein increases BCL-2 expression, induces apoptosis
resistance mediated by FasL and ROS generation. These
findings extend the senescence paradigm beyond
bystander cell types to the primary targets of HIV
infection.

Finally, Nuria Climent (CIBERINFEC, FRCB-
IDIBAPS, Barcelona, Spain) reported that PWH with or
without ART had increased cellular senescence
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biomarkers in T cells (SA-B-gal, p16™K42 yH2AX, and
BCL-2) and SASP in plasma (including IL-6, IL-8, IL-
10, RANTES, and CXCL1), especially at chronic and
advanced stages of HIV infection. Those results are
consistent with previous studies where p16™K4 in PWH
T cells and inflammatory cytokines in plasma were
higher [24, 25]. PWH also had increased soluble
exhaustion biomarkers in plasma such as PD-1, PD-L1,
PD-L2, LAG-3, CTLA-4, and TIM-3, even under ART,
consistent with reports from other authors [26]. In
addition, ex vivo treatment with dasatinib plus quercetin
(D+Q), a senolytic combination currently used in
humans [27], induced senolytic activity and reduced
senescence biomarkers in PBMCs from PWH with or
without ART, including SA-B-gal, pl6™K42 and 24 key
SASP cytokines. This proof-of-principle suggests that
senotherapeutics could mitigate inflammaging in HIV,
even under ART.

Collectively, these studies highlight how a persistent
viral protein can rewire host epigenomes and
senescence programs, providing mechanistic insight
into the phenomenon of HIV-associated accelerated
aging, while pointing toward senolytics such as D+Q as
potential interventions to counteract cellular senescence.

Neurological sequelae of viral infections are increasing-
ly linked to glial cells activation. Pamela Martinez-
Orellana (ICGEB, Trieste, Italy) showed that SARS-
CoV-2 and tick-borne encephalitis virus (TBEV) can
induce DNA damage and senescence in neurons and
glial cells. In a previous work, they demonstrated that
SARS-CoV-2 infection degrades CHK1 and RRM2,
leading to nucleotide pool depletion, S-phase stress,
DNA damage accumulation and cellular senescence
in vitro, in vivo and in COVID-19 patients [28].
Activated glial cells are key players in the response to
central nervous system infection, yet they are also
implicated in inflammation and neurodegeneration.
They showed that after SARS-CoV-2 or TBEV
infection, human astrocytes and microglia display signs
of senescence (increase of p21¢™! and SA-B-gal),
activation of cGAS-STING pathway drove by the pro-
inflammatory cytokine release (CCL2, CCL5, TNF and
IFN-B), and virus induced DNA damage, as observed by
the increment of YH2AX positive cells. In rat cortical
cultures, effective SARS-CoV-2 infection of the glia led
to a major loss of synaptic connections, an increase of
cGAS-STING pro-inflammatory response, and an
increment of DNA damage foci. In addition, by using
an antagonist of the cGAS—STING pathway, they were
able to rescue the post-infection decrease in electrical
activity. [29]. Taken together, their results suggest that
human glial cells are key to initiating the inflammatory
cascade in the brain upon viral infection, thereby
contributing to long-lasting neuropathology.

Senescence is not restricted to viral infections. Edoardo
Scarpa (University of Milan, Italy) presented
compelling evidence that Mycobacterium abscessus
(Mab) causes cellular senescence in macrophages both
in vitro and in mouse models. In murine alveolar-like
macrophages (MPI cells) infected for 5 days, trans-
criptomic profiling revealed extensive reprogramming
during chronic infection, with coordinated upregulation
of senescence gene signatures. Likewise, chronically
infected cells demonstrated canonical senescence
hallmarks, including differential expression of genes
related to cellular senescence, elevated p21¢™P!
expression, SA-B-gal activity, DNA damage response
activation (yH2AX and 53BP1 foci), and SASP
production and release. Notably, they found that
senescence from infected cells resulted transmissible to
neighboring uninfected cells via paracrine SASP factors
[30]. This paracrine transmission also increased
susceptibility to subsequent Mab infection, suggesting
amplification of the infected niche and a potential
mechanism of infection spreading. Most importantly,
senolytic therapy using Navitoclax (a BCL-2 family
inhibitor) [31] selectively eliminated senescent
macrophages and significantly reduced the bacterial
burden. Finally, they also demonstrated that signatures
of cellular senescence were present in the lungs of
chronically infected mice, and that their treatment with
Navitoclax also reduced bacterial burden.

Overall, their findings suggest that chronic bacterial
pathogens exploit senescent cellular niches for
persistence, and that senolytics could represent
promising adjunctive host-directed therapies in
mycobacterial disease. This work broadens the
paradigm of infection-driven senescence (IDS) beyond
viruses and emphasizes its generality as a host response
to persistent intracellular pathogens, with therapeutic
implications for chronic infections.

CONCLUSIONS AND TRIBUTE

Here we propose the concept of infection-driven
senescence (IDS) to describe the phenomenon in which
microbial agents, beyond viruses, can trigger cellular
senescence in host cells. While pathogens are clear
candidates, whether commensal organisms elicit similar
responses remains unresolved and deserves further
investigations. Senescence is not merely a hallmark of
aging—it is a dynamic cellular program that intersects
with infection biology, immunity, and chronic disease.
Findings from ICSA 2025 highlight IDS as both a
barrier and a liability: it can restrict pathogen
replication, yet it fuels chronic inflammation, immuno-
senescence, and long-term sequelae. Pathogens from
influenza and SARS-CoV-2 to CMV, HIV, and
mycobacteria engage senescence as part of their host
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interactions, leaving imprints that extend into aging
trajectories.

Therapeutic  modulation of senescence—whether
through clearance, reprogramming, or suppression of
the SASP—represents a new frontier in infectious
disease management. As the field advances, it will
continue to draw inspiration from Judith Campisi’s
pioneering insights into the complexity of senescence
and its context-dependent roles.

In honoring her contributions, we also chart a path
forward: integrating infection biology with aging
research to better understand and ultimately mitigate the
shared burden of senescence in human health.
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